Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation
Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples d...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 51; no. 43; pp. 16527 - 16535 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.
KN-HCN exhibited enhanced photocatalytic ammonia production because of the presence of a large number of cyano groups and the loading mode of potassium and sodium ions. |
---|---|
AbstractList | Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl–KCl, KCl–NaCl, LiCl–KCl–NaCl and LiCl–NaCl as molten salts: LK-HTCN (Li–K co-doping), KN-HCN (K–Na co-doping), LKN-HTCN (Li–K–Na co-doping) and LN-HTCN (Li–Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride. Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride. KN-HCN exhibited enhanced photocatalytic ammonia production because of the presence of a large number of cyano groups and the loading mode of potassium and sodium ions. Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride. |
Author | Chen, Gui Li, Yang Wang, Baibing Zhang, Qin Xiang, Quan-Jun |
AuthorAffiliation | Jiangxi Agricultural University State Key Laboratory of Electronic Thin Film and Integrated Devices Dongguan University of Technology College of Land Resource and Environment School of Electronic Science and Engineering Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province School of Environment and Civil Engineering University of Electronic Science and Technology of China |
AuthorAffiliation_xml | – name: College of Land Resource and Environment – name: State Key Laboratory of Electronic Thin Film and Integrated Devices – name: University of Electronic Science and Technology of China – name: Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province – name: Jiangxi Agricultural University – name: School of Environment and Civil Engineering – name: Dongguan University of Technology – name: School of Electronic Science and Engineering |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang – sequence: 2 givenname: Baibing surname: Wang fullname: Wang, Baibing – sequence: 3 givenname: Quan-Jun surname: Xiang fullname: Xiang, Quan-Jun – sequence: 4 givenname: Qin surname: Zhang fullname: Zhang, Qin – sequence: 5 givenname: Gui surname: Chen fullname: Chen, Gui |
BookMark | eNpt0UtLAzEQAOAgFWyrF-_CghcRVpPZTdI9ltYXFLy05yXNQ1N3k5qkYP-9aysViqcJk2_CzGSAes47jdAlwXcEF9W9ApUw8ILIE9QnJed5BUXZO5yBnaFBjCuMATCFPlqMmw_R2KzVSTR565U1VqtMhm3sEo11OpMiLL3LnE3BKp0ZH7L1u09eik5sk5W7K_-mXWbsl0jWu3N0akQT9cVvHKLF48N88pzPXp9eJuNZLgtSplwqMFSWxZJgUVIMZASCgBGUUmAVrWAEFTbcSMWBY7Y0DAgwqrkGNZKcFUN0s393HfznRsdUtzZK3TTCab-JNXCgjGLMaEevj-jKb4LruutUARUjDMpO4b2SwccYtKmlTbuRUhC2qQmuf_ZcT2E63-150pXcHpWsg21F2P6Pr_Y4RHlwf59WfAOr8YkA |
CitedBy_id | crossref_primary_10_1002_cnl2_154 crossref_primary_10_1016_j_ijhydene_2025_01_453 crossref_primary_10_1016_S1872_2067_23_64491_2 crossref_primary_10_1039_D3CC03052K crossref_primary_10_1016_j_jcis_2024_05_003 crossref_primary_10_1016_j_jcis_2023_01_046 crossref_primary_10_1016_j_cej_2023_146908 crossref_primary_10_1039_D3MH01115A crossref_primary_10_1002_smll_202304404 crossref_primary_10_1016_j_cclet_2023_109347 |
Cites_doi | 10.1016/j.apsusc.2015.01.233 10.1016/j.jcis.2019.08.067 10.1021/acsnano.5b04210 10.1016/j.apcatb.2018.03.066 10.1021/ar960158h 10.1002/adma.201701774 10.1002/smll.202005231 10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q 10.1002/asia.201200781 10.1007/s12274-018-2268-5 10.1016/j.joule.2018.09.011 10.1016/j.apcatb.2018.11.069 10.1016/j.apcatb.2019.118381 10.1021/acsami.6b08129 10.1021/jacs.8b02076 10.1016/S1872-2067(20)63684-1 10.1016/j.nanoen.2020.104645 10.1016/j.cej.2020.126185 10.3389/fchem.2019.00639 10.1021/jp4009338 10.1016/j.apcatb.2018.09.084 10.1016/j.apcatb.2018.01.023 10.1007/s10853-017-0940-x 10.1016/j.apcatb.2018.12.044 10.1021/acs.chemmater.5b03722 10.1002/anie.200250371 10.1016/j.apcatb.2018.03.009 10.1016/j.jcis.2017.01.111 10.1016/S1872-2067(20)63776-7 10.1021/acssuschemeng.8b01093 10.1002/adma.201703828 10.1021/ja00464a015 10.1021/acscatal.6b00922 10.1039/D1DT02367E 10.1002/aenm.201701503 10.1021/acsnano.0c04544 10.1021/ja411321s 10.1002/anie.201813331 10.1002/smll.202002411 10.1016/j.cej.2021.130278 10.1039/D0NH00046A 10.1002/asia.201700041 10.1021/jacs.5b03105 10.1039/C9DT02748C 10.1016/S1872-2067(19)63427-3 10.1021/acs.chemmater.5b00812 10.1002/anie.201405161 10.1016/j.jmst.2020.03.033 10.1039/C9CC08793A 10.1016/j.jcis.2017.12.002 10.1016/j.apsusc.2018.09.165 10.1016/j.apcatb.2021.120179 10.1021/acsenergylett.7b01328 10.1016/j.apcatb.2021.120167 10.1016/j.apcatb.2018.07.021 10.1021/acscatal.5b02922 10.1016/j.nanoen.2018.07.045 10.1021/acsami.6b07754 10.1021/acs.chemmater.5b02344 10.1039/D0DT01332C 10.1002/anie.201402191 10.1002/adma.201700008 10.1016/j.apsusc.2018.04.116 10.1039/c3cp53774a |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2dt02731c |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 16535 |
ExternalDocumentID | 10_1039_D2DT02731C d2dt02731c |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70J 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAPBV AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GNO H13 HZ~ H~N IDZ J3G J3H J3I O9- R7B R7C RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP M4U R56 RAOCF 2WC 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-cd2f5c43b10a4502182a12fa5552695928290f7fcd72706bf621265e7e2d8c763 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 16:10:59 EDT 2025 Mon Jun 30 02:23:32 EDT 2025 Tue Jul 01 04:27:10 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Nov 09 04:50:15 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-cd2f5c43b10a4502182a12fa5552695928290f7fcd72706bf621265e7e2d8c763 |
Notes | https://doi.org/10.1039/d2dt02731c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2734-9822 0000-0002-9245-4928 0000-0002-4486-7429 0000-0003-4493-7551 |
PQID | 2732961624 |
PQPubID | 2047498 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D2DT02731C rsc_primary_d2dt02731c crossref_citationtrail_10_1039_D2DT02731C proquest_miscellaneous_2725650065 proquest_journals_2732961624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-08 |
PublicationDateYYYYMMDD | 2022-11-08 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lin (D2DT02731C/cit31/1) 2018; 231 Ou (D2DT02731C/cit34/1) 2017; 29 Sellmann (D2DT02731C/cit10/1) 1997; 30 Bai (D2DT02731C/cit4/1) 2016; 8 Schrauzer (D2DT02731C/cit12/1) 1977; 99 Fu (D2DT02731C/cit40/1) 2018; 8 Bhunia (D2DT02731C/cit29/1) 2014; 53 An (D2DT02731C/cit2/1) 2021; 292 Han (D2DT02731C/cit7/1) 2018; 52 Mao (D2DT02731C/cit22/1) 2019; 48 Lin (D2DT02731C/cit65/1) 2016; 6 Yin (D2DT02731C/cit63/1) 2016; 8 Fei (D2DT02731C/cit21/1) 2021; 50 Zeng (D2DT02731C/cit54/1) 2018; 227 Gao (D2DT02731C/cit44/1) 2013; 15 Tuczek (D2DT02731C/cit11/1) 1998; 37 Xu (D2DT02731C/cit52/1) 2017; 495 Ham (D2DT02731C/cit26/1) 2013; 8 Xiong (D2DT02731C/cit61/1) 2016; 6 Jorge (D2DT02731C/cit42/1) 2013; 117 Algara-Siller (D2DT02731C/cit27/1) 2014; 53 Xue (D2DT02731C/cit46/1) 2019; 556 Zhao (D2DT02731C/cit5/1) 2017; 29 Kokane (D2DT02731C/cit64/1) 2017; 52 Li (D2DT02731C/cit23/1) 2020; 41 Cheng (D2DT02731C/cit59/1) 2018; 232 Zhang (D2DT02731C/cit6/1) 2018; 140 Fang (D2DT02731C/cit53/1) 2020; 402 Hu (D2DT02731C/cit60/1) 2021; 423 Lan (D2DT02731C/cit3/1) 2020; 49 Dorr (D2DT02731C/cit15/1) 2003; 42 Cheng (D2DT02731C/cit58/1) 2019; 245 Chen (D2DT02731C/cit57/1) 2016; 10 Wu (D2DT02731C/cit20/1) 2019; 465 Li (D2DT02731C/cit33/1) 2021; 42 Li (D2DT02731C/cit49/1) 2021; 292 Dontsova (D2DT02731C/cit50/1) 2015; 27 Zhao (D2DT02731C/cit32/1) 2015; 332 Cheng (D2DT02731C/cit36/1) 2020; 16 Luo (D2DT02731C/cit8/1) 2019; 3 Chai (D2DT02731C/cit39/1) 2018; 448 Wang (D2DT02731C/cit14/1) 2017; 29 Li (D2DT02731C/cit48/1) 2018; 513 Li (D2DT02731C/cit18/1) 2020; 5 Li (D2DT02731C/cit56/1) 2020; 268 Li (D2DT02731C/cit13/1) 2015; 137 Cheng (D2DT02731C/cit17/1) 2021; 17 Li (D2DT02731C/cit16/1) 2018; 513 Wang (D2DT02731C/cit55/1) 2018; 6 Wu (D2DT02731C/cit41/1) 2017; 12 Schwinghammer (D2DT02731C/cit30/1) 2014; 136 Tan (D2DT02731C/cit43/1) 2019; 242 Liu (D2DT02731C/cit47/1) 2019; 7 Zhang (D2DT02731C/cit1/1) 2020; 71 Li (D2DT02731C/cit19/1) 2021; 42 Xing (D2DT02731C/cit28/1) 2018; 3 Li (D2DT02731C/cit35/1) 2020; 14 Lin (D2DT02731C/cit24/1) 2019; 58 Dontsova (D2DT02731C/cit25/1) 2016; 28 Yan (D2DT02731C/cit62/1) 2019; 244 Li (D2DT02731C/cit37/1) 2020; 56 Li (D2DT02731C/cit38/1) 2020; 56 Tay (D2DT02731C/cit45/1) 2015; 27 Xue (D2DT02731C/cit9/1) 2019; 12 Liu (D2DT02731C/cit51/1) 2018; 238 |
References_xml | – volume: 332 start-page: 625 year: 2015 ident: D2DT02731C/cit32/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.01.233 – volume: 556 start-page: 206 year: 2019 ident: D2DT02731C/cit46/1 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.08.067 – volume: 10 start-page: 3166 year: 2016 ident: D2DT02731C/cit57/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b04210 – volume: 232 start-page: 330 year: 2018 ident: D2DT02731C/cit59/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.03.066 – volume: 30 start-page: 460 year: 1997 ident: D2DT02731C/cit10/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar960158h – volume: 29 start-page: 1701774 year: 2017 ident: D2DT02731C/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701774 – volume: 17 start-page: 2005231 year: 2021 ident: D2DT02731C/cit17/1 publication-title: Small doi: 10.1002/smll.202005231 – volume: 37 start-page: 2636 year: 1998 ident: D2DT02731C/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q – volume: 8 start-page: 218 year: 2013 ident: D2DT02731C/cit26/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201200781 – volume: 12 start-page: 1229 year: 2019 ident: D2DT02731C/cit9/1 publication-title: Nano Res. doi: 10.1007/s12274-018-2268-5 – volume: 3 start-page: 279 year: 2019 ident: D2DT02731C/cit8/1 publication-title: Joule doi: 10.1016/j.joule.2018.09.011 – volume: 244 start-page: 475 year: 2019 ident: D2DT02731C/cit62/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.069 – volume: 268 start-page: 118381 year: 2020 ident: D2DT02731C/cit56/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118381 – volume: 8 start-page: 27661 year: 2016 ident: D2DT02731C/cit4/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08129 – volume: 140 start-page: 9434 year: 2018 ident: D2DT02731C/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 42 start-page: 627 year: 2021 ident: D2DT02731C/cit33/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63684-1 – volume: 71 start-page: 104645 year: 2020 ident: D2DT02731C/cit1/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104645 – volume: 402 start-page: 126185 year: 2020 ident: D2DT02731C/cit53/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126185 – volume: 7 start-page: 639 year: 2019 ident: D2DT02731C/cit47/1 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00639 – volume: 117 start-page: 7178 year: 2013 ident: D2DT02731C/cit42/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp4009338 – volume: 242 start-page: 67 year: 2019 ident: D2DT02731C/cit43/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.09.084 – volume: 227 start-page: 153 year: 2018 ident: D2DT02731C/cit54/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.01.023 – volume: 52 start-page: 7077 year: 2017 ident: D2DT02731C/cit64/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-0940-x – volume: 245 start-page: 197 year: 2019 ident: D2DT02731C/cit58/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.12.044 – volume: 28 start-page: 772 year: 2016 ident: D2DT02731C/cit25/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03722 – volume: 42 start-page: 1540 year: 2003 ident: D2DT02731C/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200250371 – volume: 231 start-page: 234 year: 2018 ident: D2DT02731C/cit31/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.03.009 – volume: 495 start-page: 27 year: 2017 ident: D2DT02731C/cit52/1 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.01.111 – volume: 42 start-page: 1608 year: 2021 ident: D2DT02731C/cit19/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63776-7 – volume: 6 start-page: 8754 year: 2018 ident: D2DT02731C/cit55/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01093 – volume: 29 start-page: 1703828 year: 2017 ident: D2DT02731C/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703828 – volume: 99 start-page: 7189 year: 1977 ident: D2DT02731C/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 6 start-page: 3921 year: 2016 ident: D2DT02731C/cit65/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00922 – volume: 50 start-page: 16887 year: 2021 ident: D2DT02731C/cit21/1 publication-title: Dalton Trans. doi: 10.1039/D1DT02367E – volume: 8 start-page: 1701503 year: 2018 ident: D2DT02731C/cit40/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701503 – volume: 14 start-page: 10552 year: 2020 ident: D2DT02731C/cit35/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c04544 – volume: 136 start-page: 1730 year: 2014 ident: D2DT02731C/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411321s – volume: 58 start-page: 2 year: 2019 ident: D2DT02731C/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813331 – volume: 16 start-page: 2002411 year: 2020 ident: D2DT02731C/cit36/1 publication-title: Small doi: 10.1002/smll.202002411 – volume: 423 start-page: 130278 year: 2021 ident: D2DT02731C/cit60/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130278 – volume: 5 start-page: 765 year: 2020 ident: D2DT02731C/cit18/1 publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00046A – volume: 12 start-page: 860 year: 2017 ident: D2DT02731C/cit41/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201700041 – volume: 137 start-page: 6393 year: 2015 ident: D2DT02731C/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 48 start-page: 14864 year: 2019 ident: D2DT02731C/cit22/1 publication-title: Dalton Trans. doi: 10.1039/C9DT02748C – volume: 41 start-page: 21 year: 2020 ident: D2DT02731C/cit23/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63427-3 – volume: 27 start-page: 5170 year: 2015 ident: D2DT02731C/cit50/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00812 – volume: 53 start-page: 11001 year: 2014 ident: D2DT02731C/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201405161 – volume: 56 start-page: 69 year: 2020 ident: D2DT02731C/cit37/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.03.033 – volume: 56 start-page: 2443 year: 2020 ident: D2DT02731C/cit38/1 publication-title: Chem. Commun. doi: 10.1039/C9CC08793A – volume: 513 start-page: 866 year: 2018 ident: D2DT02731C/cit16/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.12.002 – volume: 513 start-page: 866 year: 2018 ident: D2DT02731C/cit48/1 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.12.002 – volume: 465 start-page: 1037 year: 2019 ident: D2DT02731C/cit20/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.09.165 – volume: 292 start-page: 120179 year: 2021 ident: D2DT02731C/cit49/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120179 – volume: 3 start-page: 514 year: 2018 ident: D2DT02731C/cit28/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01328 – volume: 292 start-page: 120167 year: 2021 ident: D2DT02731C/cit2/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120167 – volume: 238 start-page: 465 year: 2018 ident: D2DT02731C/cit51/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.07.021 – volume: 6 start-page: 2462 year: 2016 ident: D2DT02731C/cit61/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02922 – volume: 52 start-page: 264 year: 2018 ident: D2DT02731C/cit7/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 8 start-page: 23133 year: 2016 ident: D2DT02731C/cit63/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07754 – volume: 27 start-page: 4930 year: 2015 ident: D2DT02731C/cit45/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02344 – volume: 49 start-page: 9123 year: 2020 ident: D2DT02731C/cit3/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01332C – volume: 53 start-page: 7450 year: 2014 ident: D2DT02731C/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402191 – volume: 29 start-page: 1700008 year: 2017 ident: D2DT02731C/cit34/1 publication-title: Adv. Mater. doi: 10.1002/adma.201700008 – volume: 448 start-page: 1 year: 2018 ident: D2DT02731C/cit39/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.116 – volume: 15 start-page: 18077 year: 2013 ident: D2DT02731C/cit44/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53774a |
SSID | ssj0022052 |
Score | 2.4686165 |
Snippet | Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16527 |
SubjectTerms | Alkali metals Ammonia Carbon Carbon nitride Crystallization Cyano groups Doping Lithium chloride Metal chlorides Molten salts Nitrogenation Photocatalysis Potassium chloride Sodium |
Title | Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation |
URI | https://www.proquest.com/docview/2732961624 https://www.proquest.com/docview/2725650065 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwkBB8IKmQOLYzvJY2qExAdKkVipPleOLiCjJlCUS453_zfEll4ohAS9RartN5fPF_s6x_R2EXmIlmc4UD3mSRiHJtQhzzfKQZOANAb-lMjYHnD9-Ymcrcr6m68nk52jXUtvkr8WPG8-V_I9VoQzsak7J_oNl-x-FArgH-8IVLAzXv7LxbPsVaLTJAs234bdKFtoQSlFfA-XbWv4oeJ2DfeG9rQvp9L0vv1RNZaM210as1VRV8IRjXXwfrOTp6oKbpNMmj0SXVPzKxhB4aXUmhlDijgCFyxQljkWXTK7f9WO3Dnzmfra0cXw31rzlRV4MxevCl1-0vAzP2x7BfXz7wiuG-4AF-Lo2CDsaY4lZNcbYK2CPy3xc0w_MXonWAZAko2E2ZtQpCvg5Gz470ZPfJoQoMXqqEsvGCPfEYpj2-s2IQ-UeOsDgbcBweTA7Xb7_0HvuOLKpm_p_3uncJtmb4du7zGZwV_bqLpeM5SzLu-iOdzaCmUPOPTRR5X10a96Z5QFaOQQFuwgKRggKHIICj6AAEBTsIijoEBR0CHqIVu9Ol_Oz0CfaCEUSkyYUEmsqSJLHESfUivrzGGtOqck_TzO72q5TLSSw3YjBywyEh1GVKixPBMxQh2i_rEr1CAUsUxnOo5RxRUnMJeepPKGpxCTRcBNN0auukzbCq9CbZCjbjd0NkWSbBV4sbYfOp-hF3_bSaa_c2Oqo6-uNB_vVBmpwxmKGyRQ976uhc81yGC9V1Zo2QPep4eBTdAg26p8xmPTxnyqeoNsDtI_QflO36imw0yZ_5rHzC0K0lAs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali+metal-modified+crystalline+carbon+nitride+for+photocatalytic+nitrogen+fixation&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Li%2C+Yang&rft.au=Wang%2C+Baibing&rft.au=Xiang%2C+Quan-Jun&rft.au=Zhang%2C+Qin&rft.date=2022-11-08&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=51&rft.issue=43&rft.spage=16527&rft.epage=16535&rft_id=info:doi/10.1039%2Fd2dt02731c&rft.externalDocID=d2dt02731c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |