Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation

Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples d...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 51; no. 43; pp. 16527 - 16535
Main Authors Li, Yang, Wang, Baibing, Xiang, Quan-Jun, Zhang, Qin, Chen, Gui
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride. KN-HCN exhibited enhanced photocatalytic ammonia production because of the presence of a large number of cyano groups and the loading mode of potassium and sodium ions.
AbstractList Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl–KCl, KCl–NaCl, LiCl–KCl–NaCl and LiCl–NaCl as molten salts: LK-HTCN (Li–K co-doping), KN-HCN (K–Na co-doping), LKN-HTCN (Li–K–Na co-doping) and LN-HTCN (Li–Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.
Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride. KN-HCN exhibited enhanced photocatalytic ammonia production because of the presence of a large number of cyano groups and the loading mode of potassium and sodium ions.
Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.
Author Chen, Gui
Li, Yang
Wang, Baibing
Zhang, Qin
Xiang, Quan-Jun
AuthorAffiliation Jiangxi Agricultural University
State Key Laboratory of Electronic Thin Film and Integrated Devices
Dongguan University of Technology
College of Land Resource and Environment
School of Electronic Science and Engineering
Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province
School of Environment and Civil Engineering
University of Electronic Science and Technology of China
AuthorAffiliation_xml – name: College of Land Resource and Environment
– name: State Key Laboratory of Electronic Thin Film and Integrated Devices
– name: University of Electronic Science and Technology of China
– name: Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province
– name: Jiangxi Agricultural University
– name: School of Environment and Civil Engineering
– name: Dongguan University of Technology
– name: School of Electronic Science and Engineering
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 2
  givenname: Baibing
  surname: Wang
  fullname: Wang, Baibing
– sequence: 3
  givenname: Quan-Jun
  surname: Xiang
  fullname: Xiang, Quan-Jun
– sequence: 4
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
– sequence: 5
  givenname: Gui
  surname: Chen
  fullname: Chen, Gui
BookMark eNpt0UtLAzEQAOAgFWyrF-_CghcRVpPZTdI9ltYXFLy05yXNQ1N3k5qkYP-9aysViqcJk2_CzGSAes47jdAlwXcEF9W9ApUw8ILIE9QnJed5BUXZO5yBnaFBjCuMATCFPlqMmw_R2KzVSTR565U1VqtMhm3sEo11OpMiLL3LnE3BKp0ZH7L1u09eik5sk5W7K_-mXWbsl0jWu3N0akQT9cVvHKLF48N88pzPXp9eJuNZLgtSplwqMFSWxZJgUVIMZASCgBGUUmAVrWAEFTbcSMWBY7Y0DAgwqrkGNZKcFUN0s393HfznRsdUtzZK3TTCab-JNXCgjGLMaEevj-jKb4LruutUARUjDMpO4b2SwccYtKmlTbuRUhC2qQmuf_ZcT2E63-150pXcHpWsg21F2P6Pr_Y4RHlwf59WfAOr8YkA
CitedBy_id crossref_primary_10_1002_cnl2_154
crossref_primary_10_1016_j_ijhydene_2025_01_453
crossref_primary_10_1016_S1872_2067_23_64491_2
crossref_primary_10_1039_D3CC03052K
crossref_primary_10_1016_j_jcis_2024_05_003
crossref_primary_10_1016_j_jcis_2023_01_046
crossref_primary_10_1016_j_cej_2023_146908
crossref_primary_10_1039_D3MH01115A
crossref_primary_10_1002_smll_202304404
crossref_primary_10_1016_j_cclet_2023_109347
Cites_doi 10.1016/j.apsusc.2015.01.233
10.1016/j.jcis.2019.08.067
10.1021/acsnano.5b04210
10.1016/j.apcatb.2018.03.066
10.1021/ar960158h
10.1002/adma.201701774
10.1002/smll.202005231
10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q
10.1002/asia.201200781
10.1007/s12274-018-2268-5
10.1016/j.joule.2018.09.011
10.1016/j.apcatb.2018.11.069
10.1016/j.apcatb.2019.118381
10.1021/acsami.6b08129
10.1021/jacs.8b02076
10.1016/S1872-2067(20)63684-1
10.1016/j.nanoen.2020.104645
10.1016/j.cej.2020.126185
10.3389/fchem.2019.00639
10.1021/jp4009338
10.1016/j.apcatb.2018.09.084
10.1016/j.apcatb.2018.01.023
10.1007/s10853-017-0940-x
10.1016/j.apcatb.2018.12.044
10.1021/acs.chemmater.5b03722
10.1002/anie.200250371
10.1016/j.apcatb.2018.03.009
10.1016/j.jcis.2017.01.111
10.1016/S1872-2067(20)63776-7
10.1021/acssuschemeng.8b01093
10.1002/adma.201703828
10.1021/ja00464a015
10.1021/acscatal.6b00922
10.1039/D1DT02367E
10.1002/aenm.201701503
10.1021/acsnano.0c04544
10.1021/ja411321s
10.1002/anie.201813331
10.1002/smll.202002411
10.1016/j.cej.2021.130278
10.1039/D0NH00046A
10.1002/asia.201700041
10.1021/jacs.5b03105
10.1039/C9DT02748C
10.1016/S1872-2067(19)63427-3
10.1021/acs.chemmater.5b00812
10.1002/anie.201405161
10.1016/j.jmst.2020.03.033
10.1039/C9CC08793A
10.1016/j.jcis.2017.12.002
10.1016/j.apsusc.2018.09.165
10.1016/j.apcatb.2021.120179
10.1021/acsenergylett.7b01328
10.1016/j.apcatb.2021.120167
10.1016/j.apcatb.2018.07.021
10.1021/acscatal.5b02922
10.1016/j.nanoen.2018.07.045
10.1021/acsami.6b07754
10.1021/acs.chemmater.5b02344
10.1039/D0DT01332C
10.1002/anie.201402191
10.1002/adma.201700008
10.1016/j.apsusc.2018.04.116
10.1039/c3cp53774a
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2dt02731c
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 16535
ExternalDocumentID 10_1039_D2DT02731C
d2dt02731c
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70J
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CAG
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
O9-
R7B
R7C
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
M4U
R56
RAOCF
2WC
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-cd2f5c43b10a4502182a12fa5552695928290f7fcd72706bf621265e7e2d8c763
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 16:10:59 EDT 2025
Mon Jun 30 02:23:32 EDT 2025
Tue Jul 01 04:27:10 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Nov 09 04:50:15 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-cd2f5c43b10a4502182a12fa5552695928290f7fcd72706bf621265e7e2d8c763
Notes https://doi.org/10.1039/d2dt02731c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2734-9822
0000-0002-9245-4928
0000-0002-4486-7429
0000-0003-4493-7551
PQID 2732961624
PQPubID 2047498
PageCount 9
ParticipantIDs crossref_primary_10_1039_D2DT02731C
rsc_primary_d2dt02731c
crossref_citationtrail_10_1039_D2DT02731C
proquest_miscellaneous_2725650065
proquest_journals_2732961624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-08
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D2DT02731C/cit31/1) 2018; 231
Ou (D2DT02731C/cit34/1) 2017; 29
Sellmann (D2DT02731C/cit10/1) 1997; 30
Bai (D2DT02731C/cit4/1) 2016; 8
Schrauzer (D2DT02731C/cit12/1) 1977; 99
Fu (D2DT02731C/cit40/1) 2018; 8
Bhunia (D2DT02731C/cit29/1) 2014; 53
An (D2DT02731C/cit2/1) 2021; 292
Han (D2DT02731C/cit7/1) 2018; 52
Mao (D2DT02731C/cit22/1) 2019; 48
Lin (D2DT02731C/cit65/1) 2016; 6
Yin (D2DT02731C/cit63/1) 2016; 8
Fei (D2DT02731C/cit21/1) 2021; 50
Zeng (D2DT02731C/cit54/1) 2018; 227
Gao (D2DT02731C/cit44/1) 2013; 15
Tuczek (D2DT02731C/cit11/1) 1998; 37
Xu (D2DT02731C/cit52/1) 2017; 495
Ham (D2DT02731C/cit26/1) 2013; 8
Xiong (D2DT02731C/cit61/1) 2016; 6
Jorge (D2DT02731C/cit42/1) 2013; 117
Algara-Siller (D2DT02731C/cit27/1) 2014; 53
Xue (D2DT02731C/cit46/1) 2019; 556
Zhao (D2DT02731C/cit5/1) 2017; 29
Kokane (D2DT02731C/cit64/1) 2017; 52
Li (D2DT02731C/cit23/1) 2020; 41
Cheng (D2DT02731C/cit59/1) 2018; 232
Zhang (D2DT02731C/cit6/1) 2018; 140
Fang (D2DT02731C/cit53/1) 2020; 402
Hu (D2DT02731C/cit60/1) 2021; 423
Lan (D2DT02731C/cit3/1) 2020; 49
Dorr (D2DT02731C/cit15/1) 2003; 42
Cheng (D2DT02731C/cit58/1) 2019; 245
Chen (D2DT02731C/cit57/1) 2016; 10
Wu (D2DT02731C/cit20/1) 2019; 465
Li (D2DT02731C/cit33/1) 2021; 42
Li (D2DT02731C/cit49/1) 2021; 292
Dontsova (D2DT02731C/cit50/1) 2015; 27
Zhao (D2DT02731C/cit32/1) 2015; 332
Cheng (D2DT02731C/cit36/1) 2020; 16
Luo (D2DT02731C/cit8/1) 2019; 3
Chai (D2DT02731C/cit39/1) 2018; 448
Wang (D2DT02731C/cit14/1) 2017; 29
Li (D2DT02731C/cit48/1) 2018; 513
Li (D2DT02731C/cit18/1) 2020; 5
Li (D2DT02731C/cit56/1) 2020; 268
Li (D2DT02731C/cit13/1) 2015; 137
Cheng (D2DT02731C/cit17/1) 2021; 17
Li (D2DT02731C/cit16/1) 2018; 513
Wang (D2DT02731C/cit55/1) 2018; 6
Wu (D2DT02731C/cit41/1) 2017; 12
Schwinghammer (D2DT02731C/cit30/1) 2014; 136
Tan (D2DT02731C/cit43/1) 2019; 242
Liu (D2DT02731C/cit47/1) 2019; 7
Zhang (D2DT02731C/cit1/1) 2020; 71
Li (D2DT02731C/cit19/1) 2021; 42
Xing (D2DT02731C/cit28/1) 2018; 3
Li (D2DT02731C/cit35/1) 2020; 14
Lin (D2DT02731C/cit24/1) 2019; 58
Dontsova (D2DT02731C/cit25/1) 2016; 28
Yan (D2DT02731C/cit62/1) 2019; 244
Li (D2DT02731C/cit37/1) 2020; 56
Li (D2DT02731C/cit38/1) 2020; 56
Tay (D2DT02731C/cit45/1) 2015; 27
Xue (D2DT02731C/cit9/1) 2019; 12
Liu (D2DT02731C/cit51/1) 2018; 238
References_xml – volume: 332
  start-page: 625
  year: 2015
  ident: D2DT02731C/cit32/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.01.233
– volume: 556
  start-page: 206
  year: 2019
  ident: D2DT02731C/cit46/1
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.08.067
– volume: 10
  start-page: 3166
  year: 2016
  ident: D2DT02731C/cit57/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04210
– volume: 232
  start-page: 330
  year: 2018
  ident: D2DT02731C/cit59/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.03.066
– volume: 30
  start-page: 460
  year: 1997
  ident: D2DT02731C/cit10/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar960158h
– volume: 29
  start-page: 1701774
  year: 2017
  ident: D2DT02731C/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701774
– volume: 17
  start-page: 2005231
  year: 2021
  ident: D2DT02731C/cit17/1
  publication-title: Small
  doi: 10.1002/smll.202005231
– volume: 37
  start-page: 2636
  year: 1998
  ident: D2DT02731C/cit11/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19981016)37:19<2636::AID-ANIE2636>3.0.CO;2-Q
– volume: 8
  start-page: 218
  year: 2013
  ident: D2DT02731C/cit26/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201200781
– volume: 12
  start-page: 1229
  year: 2019
  ident: D2DT02731C/cit9/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2268-5
– volume: 3
  start-page: 279
  year: 2019
  ident: D2DT02731C/cit8/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.011
– volume: 244
  start-page: 475
  year: 2019
  ident: D2DT02731C/cit62/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.069
– volume: 268
  start-page: 118381
  year: 2020
  ident: D2DT02731C/cit56/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118381
– volume: 8
  start-page: 27661
  year: 2016
  ident: D2DT02731C/cit4/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08129
– volume: 140
  start-page: 9434
  year: 2018
  ident: D2DT02731C/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– volume: 42
  start-page: 627
  year: 2021
  ident: D2DT02731C/cit33/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63684-1
– volume: 71
  start-page: 104645
  year: 2020
  ident: D2DT02731C/cit1/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104645
– volume: 402
  start-page: 126185
  year: 2020
  ident: D2DT02731C/cit53/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126185
– volume: 7
  start-page: 639
  year: 2019
  ident: D2DT02731C/cit47/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00639
– volume: 117
  start-page: 7178
  year: 2013
  ident: D2DT02731C/cit42/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4009338
– volume: 242
  start-page: 67
  year: 2019
  ident: D2DT02731C/cit43/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.084
– volume: 227
  start-page: 153
  year: 2018
  ident: D2DT02731C/cit54/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.01.023
– volume: 52
  start-page: 7077
  year: 2017
  ident: D2DT02731C/cit64/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-0940-x
– volume: 245
  start-page: 197
  year: 2019
  ident: D2DT02731C/cit58/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.12.044
– volume: 28
  start-page: 772
  year: 2016
  ident: D2DT02731C/cit25/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03722
– volume: 42
  start-page: 1540
  year: 2003
  ident: D2DT02731C/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200250371
– volume: 231
  start-page: 234
  year: 2018
  ident: D2DT02731C/cit31/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.03.009
– volume: 495
  start-page: 27
  year: 2017
  ident: D2DT02731C/cit52/1
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.01.111
– volume: 42
  start-page: 1608
  year: 2021
  ident: D2DT02731C/cit19/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63776-7
– volume: 6
  start-page: 8754
  year: 2018
  ident: D2DT02731C/cit55/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01093
– volume: 29
  start-page: 1703828
  year: 2017
  ident: D2DT02731C/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703828
– volume: 99
  start-page: 7189
  year: 1977
  ident: D2DT02731C/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 6
  start-page: 3921
  year: 2016
  ident: D2DT02731C/cit65/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00922
– volume: 50
  start-page: 16887
  year: 2021
  ident: D2DT02731C/cit21/1
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT02367E
– volume: 8
  start-page: 1701503
  year: 2018
  ident: D2DT02731C/cit40/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701503
– volume: 14
  start-page: 10552
  year: 2020
  ident: D2DT02731C/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04544
– volume: 136
  start-page: 1730
  year: 2014
  ident: D2DT02731C/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411321s
– volume: 58
  start-page: 2
  year: 2019
  ident: D2DT02731C/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813331
– volume: 16
  start-page: 2002411
  year: 2020
  ident: D2DT02731C/cit36/1
  publication-title: Small
  doi: 10.1002/smll.202002411
– volume: 423
  start-page: 130278
  year: 2021
  ident: D2DT02731C/cit60/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130278
– volume: 5
  start-page: 765
  year: 2020
  ident: D2DT02731C/cit18/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00046A
– volume: 12
  start-page: 860
  year: 2017
  ident: D2DT02731C/cit41/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201700041
– volume: 137
  start-page: 6393
  year: 2015
  ident: D2DT02731C/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 48
  start-page: 14864
  year: 2019
  ident: D2DT02731C/cit22/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02748C
– volume: 41
  start-page: 21
  year: 2020
  ident: D2DT02731C/cit23/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63427-3
– volume: 27
  start-page: 5170
  year: 2015
  ident: D2DT02731C/cit50/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00812
– volume: 53
  start-page: 11001
  year: 2014
  ident: D2DT02731C/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201405161
– volume: 56
  start-page: 69
  year: 2020
  ident: D2DT02731C/cit37/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.03.033
– volume: 56
  start-page: 2443
  year: 2020
  ident: D2DT02731C/cit38/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08793A
– volume: 513
  start-page: 866
  year: 2018
  ident: D2DT02731C/cit16/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.12.002
– volume: 513
  start-page: 866
  year: 2018
  ident: D2DT02731C/cit48/1
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.12.002
– volume: 465
  start-page: 1037
  year: 2019
  ident: D2DT02731C/cit20/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.165
– volume: 292
  start-page: 120179
  year: 2021
  ident: D2DT02731C/cit49/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120179
– volume: 3
  start-page: 514
  year: 2018
  ident: D2DT02731C/cit28/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01328
– volume: 292
  start-page: 120167
  year: 2021
  ident: D2DT02731C/cit2/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120167
– volume: 238
  start-page: 465
  year: 2018
  ident: D2DT02731C/cit51/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.07.021
– volume: 6
  start-page: 2462
  year: 2016
  ident: D2DT02731C/cit61/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02922
– volume: 52
  start-page: 264
  year: 2018
  ident: D2DT02731C/cit7/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.045
– volume: 8
  start-page: 23133
  year: 2016
  ident: D2DT02731C/cit63/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07754
– volume: 27
  start-page: 4930
  year: 2015
  ident: D2DT02731C/cit45/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02344
– volume: 49
  start-page: 9123
  year: 2020
  ident: D2DT02731C/cit3/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01332C
– volume: 53
  start-page: 7450
  year: 2014
  ident: D2DT02731C/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402191
– volume: 29
  start-page: 1700008
  year: 2017
  ident: D2DT02731C/cit34/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700008
– volume: 448
  start-page: 1
  year: 2018
  ident: D2DT02731C/cit39/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.116
– volume: 15
  start-page: 18077
  year: 2013
  ident: D2DT02731C/cit44/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53774a
SSID ssj0022052
Score 2.4686165
Snippet Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16527
SubjectTerms Alkali metals
Ammonia
Carbon
Carbon nitride
Crystallization
Cyano groups
Doping
Lithium chloride
Metal chlorides
Molten salts
Nitrogenation
Photocatalysis
Potassium chloride
Sodium
Title Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation
URI https://www.proquest.com/docview/2732961624
https://www.proquest.com/docview/2725650065
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwkBB8IKmQOLYzvJY2qExAdKkVipPleOLiCjJlCUS453_zfEll4ohAS9RartN5fPF_s6x_R2EXmIlmc4UD3mSRiHJtQhzzfKQZOANAb-lMjYHnD9-Ymcrcr6m68nk52jXUtvkr8WPG8-V_I9VoQzsak7J_oNl-x-FArgH-8IVLAzXv7LxbPsVaLTJAs234bdKFtoQSlFfA-XbWv4oeJ2DfeG9rQvp9L0vv1RNZaM210as1VRV8IRjXXwfrOTp6oKbpNMmj0SXVPzKxhB4aXUmhlDijgCFyxQljkWXTK7f9WO3Dnzmfra0cXw31rzlRV4MxevCl1-0vAzP2x7BfXz7wiuG-4AF-Lo2CDsaY4lZNcbYK2CPy3xc0w_MXonWAZAko2E2ZtQpCvg5Gz470ZPfJoQoMXqqEsvGCPfEYpj2-s2IQ-UeOsDgbcBweTA7Xb7_0HvuOLKpm_p_3uncJtmb4du7zGZwV_bqLpeM5SzLu-iOdzaCmUPOPTRR5X10a96Z5QFaOQQFuwgKRggKHIICj6AAEBTsIijoEBR0CHqIVu9Ol_Oz0CfaCEUSkyYUEmsqSJLHESfUivrzGGtOqck_TzO72q5TLSSw3YjBywyEh1GVKixPBMxQh2i_rEr1CAUsUxnOo5RxRUnMJeepPKGpxCTRcBNN0auukzbCq9CbZCjbjd0NkWSbBV4sbYfOp-hF3_bSaa_c2Oqo6-uNB_vVBmpwxmKGyRQ976uhc81yGC9V1Zo2QPep4eBTdAg26p8xmPTxnyqeoNsDtI_QflO36imw0yZ_5rHzC0K0lAs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali+metal-modified+crystalline+carbon+nitride+for+photocatalytic+nitrogen+fixation&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Li%2C+Yang&rft.au=Wang%2C+Baibing&rft.au=Xiang%2C+Quan-Jun&rft.au=Zhang%2C+Qin&rft.date=2022-11-08&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=51&rft.issue=43&rft.spage=16527&rft.epage=16535&rft_id=info:doi/10.1039%2Fd2dt02731c&rft.externalDocID=d2dt02731c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon