A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection–diffusion problems

We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform converg...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied mathematics & computing Vol. 70; no. 6; pp. 5645 - 5668
Main Authors Kumar, Shashikant, Kumar, Sunil, Ramos, Higinio, Kuldeep
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1598-5865
1865-2085
DOI10.1007/s12190-024-02178-1

Cover

Abstract We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper.
AbstractList We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper.
Author Kumar, Shashikant
Kuldeep
Ramos, Higinio
Kumar, Sunil
Author_xml – sequence: 1
  givenname: Shashikant
  surname: Kumar
  fullname: Kumar, Shashikant
  organization: Department of Mathematics, Indian Institute of Technology Delhi
– sequence: 2
  givenname: Sunil
  surname: Kumar
  fullname: Kumar, Sunil
  organization: Department of Mathematical Sciences, Indian Institute of Technology (BHU)
– sequence: 3
  givenname: Higinio
  orcidid: 0000-0003-2791-6230
  surname: Ramos
  fullname: Ramos, Higinio
  email: higra@usal.es
  organization: Scientific Computing Group, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Campus Viriato
– sequence: 4
  surname: Kuldeep
  fullname: Kuldeep
  organization: Department of Mathematical Sciences, Indian Institute of Technology (BHU)
BookMark eNp9UL1u2zAQJgoHaJzkBTIR6KyGR4oSNbpBmxQI0CWZCYo82XIlUiUlA966Z8wb5knCxgW6dTjc4e77wX1rsvLBIyHXwD4DY_VNAg4NKxgvc0GtCvhAzkFVsuBMyVWeZaMKmRcfyTqlPWNV3bDmnDxv6GSiGXHGSBffdyGO1C8jxt6ageb9LjgaPDX0i_m5O5ghHOh8nDCf0o5mOE293y6DicORThjnJbboqMMteoxmxnf9Ngy9pTb4A9q5D_7194vru25JeaZTDO2AY7okZ50ZEl797Rfk6dvXx9v74uHH3ffbzUNhBZRzYduGW3CNA1ZXwlSVbPM7SrWyU5i_l0KVKATrGsXAgnWgOMeyroA56SQXF-TTSTcb_1owzXofluizpRYgSsErwVRG8RPKxpBSxE5PsR9NPGpg-k_o-hS6zqHr99A1ZJI4kVIG-y3Gf9L_Yb0BrhqJuw
Cites_doi 10.1016/j.matcom.2019.03.007
10.1553/etna_vol51s315
10.1016/j.aml.2023.108755
10.1007/s40314-022-02090-z
10.1016/j.camwa.2014.09.004
10.1016/j.cam.2020.113273
10.30755/NSJOM.07880
10.1002/num.20574
10.1016/j.apm.2011.10.012
10.1007/s40314-014-0171-6
10.1016/S0377-0427(02)00861-0
10.1016/S0168-9274(98)00014-2
10.1016/j.cnsns.2010.07.020
10.1007/s40819-017-0380-y
10.1002/num.22420
10.1142/2933
10.2478/cmam-2003-0023
10.1002/num.22930
10.1201/9781482285727
10.1016/j.matcom.2018.12.010
10.2989/16073606.2014.981708
10.1007/s00211-007-0083-0
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s12190-024-02178-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1865-2085
EndPage 5668
ExternalDocumentID 10_1007_s12190_024_02178_1
GrantInformation_xml – fundername: Universidad de Salamanca
– fundername: Science and Engineering Research Board INDIA
  grantid: CRG/2023/003228
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c314t-cb92c1d9d10763a665b00688b5f8e0215384e330f9801c1cd1822e47610d5d523
IEDL.DBID U2A
ISSN 1598-5865
IngestDate Fri Jul 25 19:18:25 EDT 2025
Tue Jul 01 04:08:06 EDT 2025
Fri Feb 21 02:38:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Uniform convergence
65M15
Singular perturbation
65M06
Bakhvalov mesh
65M55
65M12
Upwind scheme
Degenerate parabolic problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-cb92c1d9d10763a665b00688b5f8e0215384e330f9801c1cd1822e47610d5d523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2791-6230
OpenAccessLink https://link.springer.com/10.1007/s12190-024-02178-1
PQID 3134326308
PQPubID 54415
PageCount 24
ParticipantIDs proquest_journals_3134326308
crossref_primary_10_1007_s12190_024_02178_1
springer_journals_10_1007_s12190_024_02178_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of applied mathematics & computing
PublicationTitleAbbrev J. Appl. Math. Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Munyakazi, Patidar (CR21) 2015; 38
Linß (CR16) 2009
Zhang, Liu (CR30) 2023; 39
Mbroh, Munyakazi (CR18) 2019; 165
Kadalbajoo, Gupta (CR11) 2010; 217
Munyakazi, Patidar, Sayi (CR22) 2019; 35
Gupta, Kadalbajoo (CR9) 2011; 27
Andreev, Kopteva (CR1) 1999; 34
Nhan, Vulanovic (CR24) 2018; 48
Gupta, Kadalbajoo (CR10) 2011; 16
Liao, Liu, Ye, Liu (CR15) 2023; 145
Bakhvalov (CR3) 1969; 9
Clavero, Jorge, Lisbona, Shishkin (CR6) 1998; 27
Munyakazi (CR20) 2015; 34
Kumar, Kumar (CR13) 2014; 68
Toprakseven (CR28) 2022; 41
Munyakazi, Patidar, Sayi (CR23) 2019; 160
Roos, Stynes, Tobiska (CR27) 2008
Miller, O’Riordan, Shishkin (CR19) 1996
Rao, Kumar (CR26) 2012; 219
Andreev, Savin (CR2) 1995; 35
Farrell, Hegarty, Miller, O’Riordan, Shishkin (CR8) 2000
Clavero, Jorge, Lisbona (CR5) 2003; 154
Vulanovic (CR29) 1983; 13
Kumar, Kumar (CR12) 2012; 36
Majumdar, Natesan (CR17) 2017; 3
Bujanda, Clavero, Gracia, Jorge (CR4) 2007; 107
Dunne, O’Riordan, Shishkin (CR7) 2003; 3
Kumar, Vigo-Aguiar (CR14) 2022; 404
Nhan, Vulanovic (CR25) 2019; 51
JB Munyakazi (2178_CR21) 2015; 38
V Gupta (2178_CR10) 2011; 16
VB Andreev (2178_CR1) 1999; 34
C Clavero (2178_CR6) 1998; 27
SCS Rao (2178_CR26) 2012; 219
NA Mbroh (2178_CR18) 2019; 165
S Kumar (2178_CR14) 2022; 404
M Kumar (2178_CR12) 2012; 36
B Bujanda (2178_CR4) 2007; 107
V Gupta (2178_CR9) 2011; 27
S Kumar (2178_CR13) 2014; 68
JJH Miller (2178_CR19) 1996
MK Kadalbajoo (2178_CR11) 2010; 217
TA Nhan (2178_CR24) 2018; 48
VB Andreev (2178_CR2) 1995; 35
HG Roos (2178_CR27) 2008
JB Munyakazi (2178_CR20) 2015; 34
JB Munyakazi (2178_CR22) 2019; 35
JB Munyakazi (2178_CR23) 2019; 160
Y Liao (2178_CR15) 2023; 145
T Linß (2178_CR16) 2009
R Vulanovic (2178_CR29) 1983; 13
TA Nhan (2178_CR25) 2019; 51
P Farrell (2178_CR8) 2000
RK Dunne (2178_CR7) 2003; 3
Suayip Toprakseven (2178_CR28) 2022; 41
J Zhang (2178_CR30) 2023; 39
C Clavero (2178_CR5) 2003; 154
A Majumdar (2178_CR17) 2017; 3
NS Bakhvalov (2178_CR3) 1969; 9
References_xml – volume: 35
  start-page: 581
  year: 1995
  end-page: 591
  ident: CR2
  article-title: On the convergence, uniform with respect to the small parameter, of A. A. Samarskii’s monotone scheme and its modifications
  publication-title: Comput. Math. Phys.
– year: 2008
  ident: CR27
  publication-title: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems
– volume: 165
  start-page: 156
  year: 2019
  end-page: 171
  ident: CR18
  article-title: A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.03.007
– volume: 51
  start-page: 315
  year: 2019
  end-page: 330
  ident: CR25
  article-title: Analysis of the truncation error and barrier-function technique for a Bakhvalov-type mesh
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol51s315
– volume: 145
  year: 2023
  ident: CR15
  article-title: Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2023.108755
– volume: 34
  start-page: 921
  year: 1999
  end-page: 929
  ident: CR1
  article-title: On the convergence, uniform with respect to a small parameter, of monotone three-point finite difference approximations
  publication-title: Differ. Equ.
– volume: 41
  start-page: 377
  year: 2022
  ident: CR28
  article-title: Optimal order uniform convergence in energy and balanced norms of weak Galerkin finite element method on Bakhvalov-type meshes for nonlinear singularly perturbed problems
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-022-02090-z
– volume: 13
  start-page: 187
  issue: 13
  year: 1983
  end-page: 201
  ident: CR29
  article-title: On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh
  publication-title: Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat.
– volume: 68
  start-page: 1355
  issue: 10
  year: 2014
  end-page: 1367
  ident: CR13
  article-title: High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.09.004
– volume: 404
  year: 2022
  ident: CR14
  article-title: A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection–diffusion problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113273
– volume: 48
  start-page: 141
  issue: 2
  year: 2018
  end-page: 150
  ident: CR24
  article-title: A note on a generalized Shishkin-type mesh
  publication-title: Novi Sad J. Math.
  doi: 10.30755/NSJOM.07880
– volume: 217
  start-page: 3641
  issue: 8
  year: 2010
  end-page: 3716
  ident: CR11
  article-title: A brief survey on numerical methods for solving singularly perturbed problems
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 1143
  issue: 5
  year: 2011
  end-page: 1164
  ident: CR9
  article-title: A layer adaptive B-spline collocation method for singularly perturbed one-dimensional parabolic problem with a boundary turning point
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20574
– volume: 36
  start-page: 3570
  issue: 8
  year: 2012
  end-page: 3579
  ident: CR12
  article-title: High order robust approximations for singularly perturbed semilinear systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.10.012
– volume: 34
  start-page: 1153
  issue: 3
  year: 2015
  end-page: 1165
  ident: CR20
  article-title: A uniformly convergent nonstandard finite difference scheme for a system of convection–diffusion equations
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-014-0171-6
– volume: 154
  start-page: 415
  issue: 2
  year: 2003
  end-page: 429
  ident: CR5
  article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00861-0
– volume: 27
  start-page: 211
  issue: 3
  year: 1998
  end-page: 231
  ident: CR6
  article-title: A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection–diffusion problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00014-2
– volume: 16
  start-page: 1825
  issue: 4
  year: 2011
  end-page: 1844
  ident: CR10
  article-title: A singular perturbation approach to solve Burgers-Huxley equation via monotone finite difference scheme on layer-adaptive mesh
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.07.020
– volume: 3
  start-page: 31
  issue: 1
  year: 2017
  end-page: 53
  ident: CR17
  article-title: Second-order uniformly convergent Richardson extrapolation method for singularly perturbed degenerate parabolic PDEs
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-017-0380-y
– volume: 35
  start-page: 2407
  issue: 6
  year: 2019
  end-page: 2422
  ident: CR22
  article-title: A fitted numerical method for parabolic turning point singularly perturbed problems with an interior layer
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22420
– year: 2009
  ident: CR16
  publication-title: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems
– year: 1996
  ident: CR19
  publication-title: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions
  doi: 10.1142/2933
– volume: 3
  start-page: 361
  issue: 3
  year: 2003
  end-page: 372
  ident: CR7
  article-title: A fitted mesh method for a class of singularly perturbed parabolic problems with a boundary turning point
  publication-title: Comput. Methods Appl. Math.
  doi: 10.2478/cmam-2003-0023
– volume: 219
  start-page: 3740
  issue: 8
  year: 2012
  end-page: 3753
  ident: CR26
  article-title: Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 1201
  issue: 2
  year: 2023
  end-page: 1219
  ident: CR30
  article-title: Convergence of a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection–diffusion equation in 2D
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22930
– year: 2000
  ident: CR8
  publication-title: Robust Computational Techniques for Boundary Layers
  doi: 10.1201/9781482285727
– volume: 160
  start-page: 155
  year: 2019
  end-page: 167
  ident: CR23
  article-title: A robust fitted operator finite difference method for singularly perturbed problems whose solution has an interior layer
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2018.12.010
– volume: 38
  start-page: 121
  issue: 1
  year: 2015
  end-page: 138
  ident: CR21
  article-title: A new fitted operator finite difference method to solve systems of evolutionary reaction–diffusion equations
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2014.981708
– volume: 107
  start-page: 1
  issue: 1
  year: 2007
  end-page: 25
  ident: CR4
  article-title: A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0083-0
– volume: 9
  start-page: 841
  issue: 4
  year: 1969
  end-page: 859
  ident: CR3
  article-title: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer
  publication-title: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
– volume: 145
  year: 2023
  ident: 2178_CR15
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2023.108755
– volume: 27
  start-page: 1143
  issue: 5
  year: 2011
  ident: 2178_CR9
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20574
– volume: 41
  start-page: 377
  year: 2022
  ident: 2178_CR28
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-022-02090-z
– volume: 39
  start-page: 1201
  issue: 2
  year: 2023
  ident: 2178_CR30
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22930
– volume: 34
  start-page: 921
  year: 1999
  ident: 2178_CR1
  publication-title: Differ. Equ.
– volume-title: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems
  year: 2008
  ident: 2178_CR27
– volume: 35
  start-page: 2407
  issue: 6
  year: 2019
  ident: 2178_CR22
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22420
– volume: 217
  start-page: 3641
  issue: 8
  year: 2010
  ident: 2178_CR11
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 211
  issue: 3
  year: 1998
  ident: 2178_CR6
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00014-2
– volume: 68
  start-page: 1355
  issue: 10
  year: 2014
  ident: 2178_CR13
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.09.004
– volume: 165
  start-page: 156
  year: 2019
  ident: 2178_CR18
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.03.007
– volume: 34
  start-page: 1153
  issue: 3
  year: 2015
  ident: 2178_CR20
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-014-0171-6
– volume-title: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems
  year: 2009
  ident: 2178_CR16
– volume: 35
  start-page: 581
  year: 1995
  ident: 2178_CR2
  publication-title: Comput. Math. Phys.
– volume: 219
  start-page: 3740
  issue: 8
  year: 2012
  ident: 2178_CR26
  publication-title: Appl. Math. Comput.
– volume: 160
  start-page: 155
  year: 2019
  ident: 2178_CR23
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2018.12.010
– volume: 48
  start-page: 141
  issue: 2
  year: 2018
  ident: 2178_CR24
  publication-title: Novi Sad J. Math.
  doi: 10.30755/NSJOM.07880
– volume-title: Robust Computational Techniques for Boundary Layers
  year: 2000
  ident: 2178_CR8
  doi: 10.1201/9781482285727
– volume: 154
  start-page: 415
  issue: 2
  year: 2003
  ident: 2178_CR5
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00861-0
– volume: 36
  start-page: 3570
  issue: 8
  year: 2012
  ident: 2178_CR12
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.10.012
– volume-title: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions
  year: 1996
  ident: 2178_CR19
  doi: 10.1142/2933
– volume: 107
  start-page: 1
  issue: 1
  year: 2007
  ident: 2178_CR4
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0083-0
– volume: 404
  year: 2022
  ident: 2178_CR14
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113273
– volume: 38
  start-page: 121
  issue: 1
  year: 2015
  ident: 2178_CR21
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2014.981708
– volume: 13
  start-page: 187
  issue: 13
  year: 1983
  ident: 2178_CR29
  publication-title: Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat.
– volume: 9
  start-page: 841
  issue: 4
  year: 1969
  ident: 2178_CR3
  publication-title: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
– volume: 3
  start-page: 31
  issue: 1
  year: 2017
  ident: 2178_CR17
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-017-0380-y
– volume: 3
  start-page: 361
  issue: 3
  year: 2003
  ident: 2178_CR7
  publication-title: Comput. Methods Appl. Math.
  doi: 10.2478/cmam-2003-0023
– volume: 16
  start-page: 1825
  issue: 4
  year: 2011
  ident: 2178_CR10
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.07.020
– volume: 51
  start-page: 315
  year: 2019
  ident: 2178_CR25
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol51s315
SSID ssj0067909
Score 2.3324883
Snippet We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5645
SubjectTerms Boundary layers
Computational Mathematics and Numerical Analysis
Convection
Convergence
Diffusion barriers
Diffusion layers
Error analysis
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical methods
Original Research
Singular perturbation
Theory of Computation
Truncation errors
Title A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection–diffusion problems
URI https://link.springer.com/article/10.1007/s12190-024-02178-1
https://www.proquest.com/docview/3134326308
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZou8CAeIpCqTywQaQmcZxkbKuWCtROVCpTFD9CJUpaNSkSGzsj_5Bfwp2bUIFgYMpg64acz_ed7747Qi4Y10L5TmAlIuEWS1qBJXzbsyROmIyF9EKTwR-O-GDMbibepCCFZWW1e5mSNDf1huzmIO0ZfIqFOBpinwqpeRC7ozmOnXZ5_3I_NIUd4KeRU8S9girzu4zv7miDMX-kRY236e-R3QIm0vZar_tkS6cHZGf41WM1OyRvbYp9u5-wnoWuUmRYPdF0tc7AzOh6NDSdpzSmnfhxCidq_kzxxRWWsimF7RTfCbAMdfZCF3oJzkdoRZV-MK2oc23kC2wcTE1xuqFAfLy-41CVFb6y0WIcTXZExv3eXXdgFaMVLOnaLLekCB1pq1BB9MfdmHMPzS8IhJcEGmGAGzDtuq0kBA8mbakgDHE08wFsKU9B8HpMquk81SeECgcgiyMhcmMBA3ADtydTMobtysd2bnVyWf7haLHuoBFteiWjPiLQR2T0Edl10iiVEBXWlEWujfRX7rZA2FWpmM3y39JO_7f9jGw7eDZMtUqDVPPlSp8D5shFk9Ta_U5nhN_r-9tek1S6vNs0B-8T4ObTEA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh7YIFKTOE4yFkRVoO3USt2i-CMg0aZV0yCxsTPyD_kl3LkJEQgGZls35BzfO9-9d4ScM66F8p3ASkTCLZY0A0v4tmdJnDAZC-mFpoLf6_POkN2NvFFBCsvKbveyJGlu6ors5iDtGWKKhTgacp9VsgZgIMC5BUOnVd6_3A9NYwfEaeQUca-gyvxu43s4qjDmj7KoiTbtbbJVwETaWvp1h6zodJds9r40VrM98taiqNs9wX4WmqfIsJrQNF9WYMZ0ORqaTlMa06v46RFO1PSZ4osrLGWPFLZTfCfANtTxC53pOQQfoRVV-sFIUS-0sS9QOJia5nRDgfh4fcehKjm-stFiHE22T4btm8F1xypGK1jStdnCkiJ0pK1CBdkfd2POPfz9gkB4SaARBrgB067bTEKIYNKWCtIQRzMfwJbyFCSvB6SWTlN9SKhwALI4EjI3FjAAN3B7MiVj2K58lHOrk4vyC0ezpYJGVGkloz8i8Edk_BHZddIonRAVf1MWuTbSX7nbBGOXpWOq5b-tHf1v-xlZ7wx63ah7278_JhsOnhPTudIgtcU81yeAPxbi1By3T9LY0hY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgg4gmcZxkLIWqPFoxUKlbFD8CEjSt2hSJjZ2Rf8gv4c5JKCAYmG3dkHN83_nu-46QQ8a1UL4TWIlIuMWSemAJ3_YsiRMmYyG90FTwO13e7rHLvtf_wuI33e5lSTLnNKBKU5qdjFRyMiO-OUiBhvhiIaaGPGieLDAMfViu5c3yLuZ-aJo8IGYjv4h7BW3mdxvfQ9MMb_4okZrI01olKwVkpI3cx2tkTqfrZLnzqbc62SCvDYoa3gPsbaHTFNlWA5pO82rMI83HRNNhSmN6Gj_cw-kaPlF8fYWlyT2F7RTfDLAl9fGZjvQYApHQiip9Z2SpM23sCxQRpqZR3dAh3l_ecMDKFF_caDGaZrJJeq3z22bbKsYsWNK1WWZJETrSVqGCTJC7Mece_opBILwk0AgJ3IBp160nIUQzaUsFKYmjmQ_AS3kKEtktUkmHqd4mVDgAXxwJWRwLGAAduEmZkjFsVz5Ku1XJUfmFo1GuphHNdJPRHxH4IzL-iOwqqZVOiIo_axK5NlJhuVsHY8elY2bLf1vb-d_2A7J4c9aKri-6V7tkycFjYppYaqSSjad6D6BIJvbNafsA85jWPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parameter+uniform+numerical+method+on+a+Bakhvalov+type+mesh+for+singularly+perturbed+degenerate+parabolic+convection%E2%80%93diffusion+problems&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Kumar%2C+Shashikant&rft.au=Kumar%2C+Sunil&rft.au=Ramos%2C+Higinio&rft.au=Kuldeep&rft.date=2024-12-01&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=70&rft.issue=6&rft.spage=5645&rft.epage=5668&rft_id=info:doi/10.1007%2Fs12190-024-02178-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12190_024_02178_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon