A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection–diffusion problems
We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform converg...
Saved in:
Published in | Journal of applied mathematics & computing Vol. 70; no. 6; pp. 5645 - 5668 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5865 1865-2085 |
DOI | 10.1007/s12190-024-02178-1 |
Cover
Abstract | We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper. |
---|---|
AbstractList | We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer. The discretization and analysis of the problem are done in two steps. In the first step, we discretize in time and prove its uniform convergence using an auxiliary problem. In the second step, we discretize in space using an upwind scheme on a Bakhvalov-type mesh and prove its uniform convergence using the truncation error and barrier function approach, wherein several bounds derived for the mesh step sizes are used. Numerical results for a couple of examples are presented to support the theoretical bounds derived in the paper. |
Author | Kumar, Shashikant Kuldeep Ramos, Higinio Kumar, Sunil |
Author_xml | – sequence: 1 givenname: Shashikant surname: Kumar fullname: Kumar, Shashikant organization: Department of Mathematics, Indian Institute of Technology Delhi – sequence: 2 givenname: Sunil surname: Kumar fullname: Kumar, Sunil organization: Department of Mathematical Sciences, Indian Institute of Technology (BHU) – sequence: 3 givenname: Higinio orcidid: 0000-0003-2791-6230 surname: Ramos fullname: Ramos, Higinio email: higra@usal.es organization: Scientific Computing Group, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Campus Viriato – sequence: 4 surname: Kuldeep fullname: Kuldeep organization: Department of Mathematical Sciences, Indian Institute of Technology (BHU) |
BookMark | eNp9UL1u2zAQJgoHaJzkBTIR6KyGR4oSNbpBmxQI0CWZCYo82XIlUiUlA966Z8wb5knCxgW6dTjc4e77wX1rsvLBIyHXwD4DY_VNAg4NKxgvc0GtCvhAzkFVsuBMyVWeZaMKmRcfyTqlPWNV3bDmnDxv6GSiGXHGSBffdyGO1C8jxt6ageb9LjgaPDX0i_m5O5ghHOh8nDCf0o5mOE293y6DicORThjnJbboqMMteoxmxnf9Ngy9pTb4A9q5D_7194vru25JeaZTDO2AY7okZ50ZEl797Rfk6dvXx9v74uHH3ffbzUNhBZRzYduGW3CNA1ZXwlSVbPM7SrWyU5i_l0KVKATrGsXAgnWgOMeyroA56SQXF-TTSTcb_1owzXofluizpRYgSsErwVRG8RPKxpBSxE5PsR9NPGpg-k_o-hS6zqHr99A1ZJI4kVIG-y3Gf9L_Yb0BrhqJuw |
Cites_doi | 10.1016/j.matcom.2019.03.007 10.1553/etna_vol51s315 10.1016/j.aml.2023.108755 10.1007/s40314-022-02090-z 10.1016/j.camwa.2014.09.004 10.1016/j.cam.2020.113273 10.30755/NSJOM.07880 10.1002/num.20574 10.1016/j.apm.2011.10.012 10.1007/s40314-014-0171-6 10.1016/S0377-0427(02)00861-0 10.1016/S0168-9274(98)00014-2 10.1016/j.cnsns.2010.07.020 10.1007/s40819-017-0380-y 10.1002/num.22420 10.1142/2933 10.2478/cmam-2003-0023 10.1002/num.22930 10.1201/9781482285727 10.1016/j.matcom.2018.12.010 10.2989/16073606.2014.981708 10.1007/s00211-007-0083-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s12190-024-02178-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1865-2085 |
EndPage | 5668 |
ExternalDocumentID | 10_1007_s12190_024_02178_1 |
GrantInformation_xml | – fundername: Universidad de Salamanca – fundername: Science and Engineering Research Board INDIA grantid: CRG/2023/003228 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IZQ I~X J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KOV L6V LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZWQNP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c314t-cb92c1d9d10763a665b00688b5f8e0215384e330f9801c1cd1822e47610d5d523 |
IEDL.DBID | U2A |
ISSN | 1598-5865 |
IngestDate | Fri Jul 25 19:18:25 EDT 2025 Tue Jul 01 04:08:06 EDT 2025 Fri Feb 21 02:38:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Uniform convergence 65M15 Singular perturbation 65M06 Bakhvalov mesh 65M55 65M12 Upwind scheme Degenerate parabolic problem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-cb92c1d9d10763a665b00688b5f8e0215384e330f9801c1cd1822e47610d5d523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2791-6230 |
OpenAccessLink | https://link.springer.com/10.1007/s12190-024-02178-1 |
PQID | 3134326308 |
PQPubID | 54415 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3134326308 crossref_primary_10_1007_s12190_024_02178_1 springer_journals_10_1007_s12190_024_02178_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of applied mathematics & computing |
PublicationTitleAbbrev | J. Appl. Math. Comput |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Munyakazi, Patidar (CR21) 2015; 38 Linß (CR16) 2009 Zhang, Liu (CR30) 2023; 39 Mbroh, Munyakazi (CR18) 2019; 165 Kadalbajoo, Gupta (CR11) 2010; 217 Munyakazi, Patidar, Sayi (CR22) 2019; 35 Gupta, Kadalbajoo (CR9) 2011; 27 Andreev, Kopteva (CR1) 1999; 34 Nhan, Vulanovic (CR24) 2018; 48 Gupta, Kadalbajoo (CR10) 2011; 16 Liao, Liu, Ye, Liu (CR15) 2023; 145 Bakhvalov (CR3) 1969; 9 Clavero, Jorge, Lisbona, Shishkin (CR6) 1998; 27 Munyakazi (CR20) 2015; 34 Kumar, Kumar (CR13) 2014; 68 Toprakseven (CR28) 2022; 41 Munyakazi, Patidar, Sayi (CR23) 2019; 160 Roos, Stynes, Tobiska (CR27) 2008 Miller, O’Riordan, Shishkin (CR19) 1996 Rao, Kumar (CR26) 2012; 219 Andreev, Savin (CR2) 1995; 35 Farrell, Hegarty, Miller, O’Riordan, Shishkin (CR8) 2000 Clavero, Jorge, Lisbona (CR5) 2003; 154 Vulanovic (CR29) 1983; 13 Kumar, Kumar (CR12) 2012; 36 Majumdar, Natesan (CR17) 2017; 3 Bujanda, Clavero, Gracia, Jorge (CR4) 2007; 107 Dunne, O’Riordan, Shishkin (CR7) 2003; 3 Kumar, Vigo-Aguiar (CR14) 2022; 404 Nhan, Vulanovic (CR25) 2019; 51 JB Munyakazi (2178_CR21) 2015; 38 V Gupta (2178_CR10) 2011; 16 VB Andreev (2178_CR1) 1999; 34 C Clavero (2178_CR6) 1998; 27 SCS Rao (2178_CR26) 2012; 219 NA Mbroh (2178_CR18) 2019; 165 S Kumar (2178_CR14) 2022; 404 M Kumar (2178_CR12) 2012; 36 B Bujanda (2178_CR4) 2007; 107 V Gupta (2178_CR9) 2011; 27 S Kumar (2178_CR13) 2014; 68 JJH Miller (2178_CR19) 1996 MK Kadalbajoo (2178_CR11) 2010; 217 TA Nhan (2178_CR24) 2018; 48 VB Andreev (2178_CR2) 1995; 35 HG Roos (2178_CR27) 2008 JB Munyakazi (2178_CR20) 2015; 34 JB Munyakazi (2178_CR22) 2019; 35 JB Munyakazi (2178_CR23) 2019; 160 Y Liao (2178_CR15) 2023; 145 T Linß (2178_CR16) 2009 R Vulanovic (2178_CR29) 1983; 13 TA Nhan (2178_CR25) 2019; 51 P Farrell (2178_CR8) 2000 RK Dunne (2178_CR7) 2003; 3 Suayip Toprakseven (2178_CR28) 2022; 41 J Zhang (2178_CR30) 2023; 39 C Clavero (2178_CR5) 2003; 154 A Majumdar (2178_CR17) 2017; 3 NS Bakhvalov (2178_CR3) 1969; 9 |
References_xml | – volume: 35 start-page: 581 year: 1995 end-page: 591 ident: CR2 article-title: On the convergence, uniform with respect to the small parameter, of A. A. Samarskii’s monotone scheme and its modifications publication-title: Comput. Math. Phys. – year: 2008 ident: CR27 publication-title: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems – volume: 165 start-page: 156 year: 2019 end-page: 171 ident: CR18 article-title: A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2019.03.007 – volume: 51 start-page: 315 year: 2019 end-page: 330 ident: CR25 article-title: Analysis of the truncation error and barrier-function technique for a Bakhvalov-type mesh publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol51s315 – volume: 145 year: 2023 ident: CR15 article-title: Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2023.108755 – volume: 34 start-page: 921 year: 1999 end-page: 929 ident: CR1 article-title: On the convergence, uniform with respect to a small parameter, of monotone three-point finite difference approximations publication-title: Differ. Equ. – volume: 41 start-page: 377 year: 2022 ident: CR28 article-title: Optimal order uniform convergence in energy and balanced norms of weak Galerkin finite element method on Bakhvalov-type meshes for nonlinear singularly perturbed problems publication-title: Comput. Appl. Math. doi: 10.1007/s40314-022-02090-z – volume: 13 start-page: 187 issue: 13 year: 1983 end-page: 201 ident: CR29 article-title: On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh publication-title: Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. – volume: 68 start-page: 1355 issue: 10 year: 2014 end-page: 1367 ident: CR13 article-title: High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.09.004 – volume: 404 year: 2022 ident: CR14 article-title: A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection–diffusion problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113273 – volume: 48 start-page: 141 issue: 2 year: 2018 end-page: 150 ident: CR24 article-title: A note on a generalized Shishkin-type mesh publication-title: Novi Sad J. Math. doi: 10.30755/NSJOM.07880 – volume: 217 start-page: 3641 issue: 8 year: 2010 end-page: 3716 ident: CR11 article-title: A brief survey on numerical methods for solving singularly perturbed problems publication-title: Appl. Math. Comput. – volume: 27 start-page: 1143 issue: 5 year: 2011 end-page: 1164 ident: CR9 article-title: A layer adaptive B-spline collocation method for singularly perturbed one-dimensional parabolic problem with a boundary turning point publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20574 – volume: 36 start-page: 3570 issue: 8 year: 2012 end-page: 3579 ident: CR12 article-title: High order robust approximations for singularly perturbed semilinear systems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.10.012 – volume: 34 start-page: 1153 issue: 3 year: 2015 end-page: 1165 ident: CR20 article-title: A uniformly convergent nonstandard finite difference scheme for a system of convection–diffusion equations publication-title: Comput. Appl. Math. doi: 10.1007/s40314-014-0171-6 – volume: 154 start-page: 415 issue: 2 year: 2003 end-page: 429 ident: CR5 article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00861-0 – volume: 27 start-page: 211 issue: 3 year: 1998 end-page: 231 ident: CR6 article-title: A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection–diffusion problems publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00014-2 – volume: 16 start-page: 1825 issue: 4 year: 2011 end-page: 1844 ident: CR10 article-title: A singular perturbation approach to solve Burgers-Huxley equation via monotone finite difference scheme on layer-adaptive mesh publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.07.020 – volume: 3 start-page: 31 issue: 1 year: 2017 end-page: 53 ident: CR17 article-title: Second-order uniformly convergent Richardson extrapolation method for singularly perturbed degenerate parabolic PDEs publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-017-0380-y – volume: 35 start-page: 2407 issue: 6 year: 2019 end-page: 2422 ident: CR22 article-title: A fitted numerical method for parabolic turning point singularly perturbed problems with an interior layer publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22420 – year: 2009 ident: CR16 publication-title: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems – year: 1996 ident: CR19 publication-title: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions doi: 10.1142/2933 – volume: 3 start-page: 361 issue: 3 year: 2003 end-page: 372 ident: CR7 article-title: A fitted mesh method for a class of singularly perturbed parabolic problems with a boundary turning point publication-title: Comput. Methods Appl. Math. doi: 10.2478/cmam-2003-0023 – volume: 219 start-page: 3740 issue: 8 year: 2012 end-page: 3753 ident: CR26 article-title: Second order global uniformly convergent numerical method for a coupled system of singularly perturbed initial value problems publication-title: Appl. Math. Comput. – volume: 39 start-page: 1201 issue: 2 year: 2023 end-page: 1219 ident: CR30 article-title: Convergence of a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection–diffusion equation in 2D publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22930 – year: 2000 ident: CR8 publication-title: Robust Computational Techniques for Boundary Layers doi: 10.1201/9781482285727 – volume: 160 start-page: 155 year: 2019 end-page: 167 ident: CR23 article-title: A robust fitted operator finite difference method for singularly perturbed problems whose solution has an interior layer publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2018.12.010 – volume: 38 start-page: 121 issue: 1 year: 2015 end-page: 138 ident: CR21 article-title: A new fitted operator finite difference method to solve systems of evolutionary reaction–diffusion equations publication-title: Quaest. Math. doi: 10.2989/16073606.2014.981708 – volume: 107 start-page: 1 issue: 1 year: 2007 end-page: 25 ident: CR4 article-title: A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems publication-title: Numer. Math. doi: 10.1007/s00211-007-0083-0 – volume: 9 start-page: 841 issue: 4 year: 1969 end-page: 859 ident: CR3 article-title: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer publication-title: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki – volume: 145 year: 2023 ident: 2178_CR15 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2023.108755 – volume: 27 start-page: 1143 issue: 5 year: 2011 ident: 2178_CR9 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20574 – volume: 41 start-page: 377 year: 2022 ident: 2178_CR28 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-022-02090-z – volume: 39 start-page: 1201 issue: 2 year: 2023 ident: 2178_CR30 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22930 – volume: 34 start-page: 921 year: 1999 ident: 2178_CR1 publication-title: Differ. Equ. – volume-title: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems year: 2008 ident: 2178_CR27 – volume: 35 start-page: 2407 issue: 6 year: 2019 ident: 2178_CR22 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22420 – volume: 217 start-page: 3641 issue: 8 year: 2010 ident: 2178_CR11 publication-title: Appl. Math. Comput. – volume: 27 start-page: 211 issue: 3 year: 1998 ident: 2178_CR6 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00014-2 – volume: 68 start-page: 1355 issue: 10 year: 2014 ident: 2178_CR13 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.09.004 – volume: 165 start-page: 156 year: 2019 ident: 2178_CR18 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2019.03.007 – volume: 34 start-page: 1153 issue: 3 year: 2015 ident: 2178_CR20 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-014-0171-6 – volume-title: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems year: 2009 ident: 2178_CR16 – volume: 35 start-page: 581 year: 1995 ident: 2178_CR2 publication-title: Comput. Math. Phys. – volume: 219 start-page: 3740 issue: 8 year: 2012 ident: 2178_CR26 publication-title: Appl. Math. Comput. – volume: 160 start-page: 155 year: 2019 ident: 2178_CR23 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2018.12.010 – volume: 48 start-page: 141 issue: 2 year: 2018 ident: 2178_CR24 publication-title: Novi Sad J. Math. doi: 10.30755/NSJOM.07880 – volume-title: Robust Computational Techniques for Boundary Layers year: 2000 ident: 2178_CR8 doi: 10.1201/9781482285727 – volume: 154 start-page: 415 issue: 2 year: 2003 ident: 2178_CR5 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00861-0 – volume: 36 start-page: 3570 issue: 8 year: 2012 ident: 2178_CR12 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.10.012 – volume-title: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions year: 1996 ident: 2178_CR19 doi: 10.1142/2933 – volume: 107 start-page: 1 issue: 1 year: 2007 ident: 2178_CR4 publication-title: Numer. Math. doi: 10.1007/s00211-007-0083-0 – volume: 404 year: 2022 ident: 2178_CR14 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113273 – volume: 38 start-page: 121 issue: 1 year: 2015 ident: 2178_CR21 publication-title: Quaest. Math. doi: 10.2989/16073606.2014.981708 – volume: 13 start-page: 187 issue: 13 year: 1983 ident: 2178_CR29 publication-title: Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. – volume: 9 start-page: 841 issue: 4 year: 1969 ident: 2178_CR3 publication-title: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki – volume: 3 start-page: 31 issue: 1 year: 2017 ident: 2178_CR17 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-017-0380-y – volume: 3 start-page: 361 issue: 3 year: 2003 ident: 2178_CR7 publication-title: Comput. Methods Appl. Math. doi: 10.2478/cmam-2003-0023 – volume: 16 start-page: 1825 issue: 4 year: 2011 ident: 2178_CR10 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.07.020 – volume: 51 start-page: 315 year: 2019 ident: 2178_CR25 publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol51s315 |
SSID | ssj0067909 |
Score | 2.3324883 |
Snippet | We are focused on the numerical treatment of a singularly perturbed degenerate parabolic convection–diffusion problem that exhibits a parabolic boundary layer.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5645 |
SubjectTerms | Boundary layers Computational Mathematics and Numerical Analysis Convection Convergence Diffusion barriers Diffusion layers Error analysis Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Numerical methods Original Research Singular perturbation Theory of Computation Truncation errors |
Title | A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection–diffusion problems |
URI | https://link.springer.com/article/10.1007/s12190-024-02178-1 https://www.proquest.com/docview/3134326308 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZou8CAeIpCqTywQaQmcZxkbKuWCtROVCpTFD9CJUpaNSkSGzsj_5Bfwp2bUIFgYMpg64acz_ed7747Qi4Y10L5TmAlIuEWS1qBJXzbsyROmIyF9EKTwR-O-GDMbibepCCFZWW1e5mSNDf1huzmIO0ZfIqFOBpinwqpeRC7ozmOnXZ5_3I_NIUd4KeRU8S9girzu4zv7miDMX-kRY236e-R3QIm0vZar_tkS6cHZGf41WM1OyRvbYp9u5-wnoWuUmRYPdF0tc7AzOh6NDSdpzSmnfhxCidq_kzxxRWWsimF7RTfCbAMdfZCF3oJzkdoRZV-MK2oc23kC2wcTE1xuqFAfLy-41CVFb6y0WIcTXZExv3eXXdgFaMVLOnaLLekCB1pq1BB9MfdmHMPzS8IhJcEGmGAGzDtuq0kBA8mbakgDHE08wFsKU9B8HpMquk81SeECgcgiyMhcmMBA3ADtydTMobtysd2bnVyWf7haLHuoBFteiWjPiLQR2T0Edl10iiVEBXWlEWujfRX7rZA2FWpmM3y39JO_7f9jGw7eDZMtUqDVPPlSp8D5shFk9Ta_U5nhN_r-9tek1S6vNs0B-8T4ObTEA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh7YIFKTOE4yFkRVoO3USt2i-CMg0aZV0yCxsTPyD_kl3LkJEQgGZls35BzfO9-9d4ScM66F8p3ASkTCLZY0A0v4tmdJnDAZC-mFpoLf6_POkN2NvFFBCsvKbveyJGlu6ors5iDtGWKKhTgacp9VsgZgIMC5BUOnVd6_3A9NYwfEaeQUca-gyvxu43s4qjDmj7KoiTbtbbJVwETaWvp1h6zodJds9r40VrM98taiqNs9wX4WmqfIsJrQNF9WYMZ0ORqaTlMa06v46RFO1PSZ4osrLGWPFLZTfCfANtTxC53pOQQfoRVV-sFIUS-0sS9QOJia5nRDgfh4fcehKjm-stFiHE22T4btm8F1xypGK1jStdnCkiJ0pK1CBdkfd2POPfz9gkB4SaARBrgB067bTEKIYNKWCtIQRzMfwJbyFCSvB6SWTlN9SKhwALI4EjI3FjAAN3B7MiVj2K58lHOrk4vyC0ezpYJGVGkloz8i8Edk_BHZddIonRAVf1MWuTbSX7nbBGOXpWOq5b-tHf1v-xlZ7wx63ah7278_JhsOnhPTudIgtcU81yeAPxbi1By3T9LY0hY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgg4gmcZxkLIWqPFoxUKlbFD8CEjSt2hSJjZ2Rf8gv4c5JKCAYmG3dkHN83_nu-46QQ8a1UL4TWIlIuMWSemAJ3_YsiRMmYyG90FTwO13e7rHLvtf_wuI33e5lSTLnNKBKU5qdjFRyMiO-OUiBhvhiIaaGPGieLDAMfViu5c3yLuZ-aJo8IGYjv4h7BW3mdxvfQ9MMb_4okZrI01olKwVkpI3cx2tkTqfrZLnzqbc62SCvDYoa3gPsbaHTFNlWA5pO82rMI83HRNNhSmN6Gj_cw-kaPlF8fYWlyT2F7RTfDLAl9fGZjvQYApHQiip9Z2SpM23sCxQRpqZR3dAh3l_ecMDKFF_caDGaZrJJeq3z22bbKsYsWNK1WWZJETrSVqGCTJC7Mece_opBILwk0AgJ3IBp160nIUQzaUsFKYmjmQ_AS3kKEtktUkmHqd4mVDgAXxwJWRwLGAAduEmZkjFsVz5Ku1XJUfmFo1GuphHNdJPRHxH4IzL-iOwqqZVOiIo_axK5NlJhuVsHY8elY2bLf1vb-d_2A7J4c9aKri-6V7tkycFjYppYaqSSjad6D6BIJvbNafsA85jWPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parameter+uniform+numerical+method+on+a+Bakhvalov+type+mesh+for+singularly+perturbed+degenerate+parabolic+convection%E2%80%93diffusion+problems&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Kumar%2C+Shashikant&rft.au=Kumar%2C+Sunil&rft.au=Ramos%2C+Higinio&rft.au=Kuldeep&rft.date=2024-12-01&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=70&rft.issue=6&rft.spage=5645&rft.epage=5668&rft_id=info:doi/10.1007%2Fs12190-024-02178-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12190_024_02178_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon |