Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting
Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen....
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 2; pp. 713 - 747 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory-structure-property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation.
The innovational strategies to design P-containing catalysts with enhanced photo-/electro-catalytic water splitting activity are reviewed with respect to phase modifying, foreign elements introducing, morphology tailoring and interface engineering. |
---|---|
AbstractList | Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory–structure–property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation. Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory-structure-property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation. The innovational strategies to design P-containing catalysts with enhanced photo-/electro-catalytic water splitting activity are reviewed with respect to phase modifying, foreign elements introducing, morphology tailoring and interface engineering. |
Author | Ren, Jin-Tao Chen, Lei Yuan, Zhong-Yong |
AuthorAffiliation | School of Materials Science and Engineering Nankai University National Institute for Advanced Materials Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
AuthorAffiliation_xml | – name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – name: National Institute for Advanced Materials – name: School of Materials Science and Engineering – name: Nankai University |
Author_xml | – sequence: 1 givenname: Lei surname: Chen fullname: Chen, Lei – sequence: 2 givenname: Jin-Tao surname: Ren fullname: Ren, Jin-Tao – sequence: 3 givenname: Zhong-Yong surname: Yuan fullname: Yuan, Zhong-Yong |
BookMark | eNptkctLAzEQxoMo-Lx4FwJeRFzNa5Pdo7S-QPCi5yWbZmtkm9RMivTqX27q2griIUwy_OabyXz7aNsHbxE6puSSEl5fTejUEK5kNdlCe1RIXtRMke3NXbJdtA_wRgilSoo99Dm24KYeQ4o62amzgEOH568B8okLKEzwSTvv_BQbnXS_hAS4C3HFpDCkkjMXw9v21qQYzKudOaN7rP0Er3NrFH_kThHDvHcpZd1DtNPpHuzRTzxAL7c3z6P74vHp7mF0_VgYTkUqjK4EZ4zLynSdZkraVqi2zJ8tpZy0VteSSNHWZdVWkhFqrKW1EG3FRKlao_gBOht05zG8LyykZubA2L7X3oYFNExyqYSqCcvo6R_0LSyiz9NlKs9Aq5KvqPOBMjEARNs18-hmOi4bSpqVHc2Y3o2-7RhnmPyBjUs6ubzeqF3_f8nJUBLBbKR_HeZfHY-bnQ |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c00449 crossref_primary_10_1016_j_gee_2022_12_005 crossref_primary_10_1016_j_mtsust_2023_100444 crossref_primary_10_1039_D4EE02365J crossref_primary_10_1016_j_ccr_2025_216558 crossref_primary_10_1002_adfm_202309330 crossref_primary_10_1016_j_jmst_2024_05_005 crossref_primary_10_26599_NR_2025_94907061 crossref_primary_10_1016_j_mssp_2023_107780 crossref_primary_10_1002_smll_202406288 crossref_primary_10_1016_j_apcatb_2023_122466 crossref_primary_10_1016_j_ijhydene_2024_09_009 crossref_primary_10_1016_j_jechem_2022_08_019 crossref_primary_10_1039_D3QI02380J crossref_primary_10_1039_D4SE00277F crossref_primary_10_1021_acs_inorgchem_4c01925 crossref_primary_10_1002_adma_202309211 crossref_primary_10_1002_chem_202403442 crossref_primary_10_1007_s40843_024_3201_3 crossref_primary_10_1016_j_ijhydene_2024_11_435 crossref_primary_10_1016_j_ccr_2024_215814 crossref_primary_10_1016_j_eurpolymj_2024_113125 crossref_primary_10_1039_D3NJ02733C crossref_primary_10_1016_j_ccr_2024_216345 crossref_primary_10_1039_D3QI02222F crossref_primary_10_1002_aenm_202203720 crossref_primary_10_1039_D2TA09588B crossref_primary_10_1039_D2GC03377A crossref_primary_10_1002_cssc_202401127 crossref_primary_10_1039_D2GC01819E crossref_primary_10_1039_D2TA03313E crossref_primary_10_1002_wene_530 crossref_primary_10_1039_D3GC02339G crossref_primary_10_1007_s40843_021_2017_y crossref_primary_10_1016_j_mssp_2024_108533 crossref_primary_10_1016_j_apsusc_2022_155201 crossref_primary_10_1016_j_jmst_2023_03_058 crossref_primary_10_1021_acs_iecr_2c03875 crossref_primary_10_1039_D3GC03371F crossref_primary_10_1016_j_ijhydene_2023_05_290 crossref_primary_10_1039_D3GC01828H crossref_primary_10_1016_j_jcis_2024_02_170 crossref_primary_10_1039_D2CY01673G crossref_primary_10_1002_smtd_202201358 crossref_primary_10_1016_j_ijhydene_2023_04_258 crossref_primary_10_1016_j_apcata_2024_120063 crossref_primary_10_18686_cest_v2i3_121 crossref_primary_10_1016_j_mattod_2025_03_003 crossref_primary_10_1021_acscatal_3c01885 crossref_primary_10_1002_aenm_202300254 crossref_primary_10_1016_j_jallcom_2022_166018 crossref_primary_10_1002_smll_202300194 crossref_primary_10_1021_acsanm_4c05950 crossref_primary_10_3390_nano14080698 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1016_j_vacuum_2023_112068 crossref_primary_10_1039_D3TA01629C crossref_primary_10_1039_D3CC02074F crossref_primary_10_1016_j_jcis_2023_10_151 crossref_primary_10_1039_D4QI01740D crossref_primary_10_1021_acsaenm_2c00127 crossref_primary_10_1039_D2NR04378E crossref_primary_10_1016_j_apcatb_2022_121546 crossref_primary_10_1016_j_mtener_2024_101737 crossref_primary_10_1021_acssuschemeng_4c08960 |
Cites_doi | 10.1002/aenm.201703290 10.1016/j.ccr.2020.213516 10.1016/j.apsusc.2018.06.027 10.1073/pnas.1800069115 10.1002/cssc.202002103 10.1039/D0CE01487G 10.1021/acsami.9b00592 10.1039/C9TA09775A 10.1016/j.jcis.2021.08.041 10.1021/acscatal.8b05081 10.1002/anie.201905281 10.1002/smll.201701875 10.1021/acsami.1c02361 10.1039/C9CC06146K 10.1002/anie.201811152 10.1021/acs.jpclett.0c03841 10.1002/anie.201712925 10.1021/acscatal.6b02849 10.1126/science.1162018 10.1002/smll.201902427 10.1002/anie.201810309 10.1016/j.apsusc.2020.145715 10.1016/j.cej.2020.126547 10.1016/j.nanoen.2017.09.017 10.1039/C6GC02825J 10.1002/cctc.202000139 10.1002/adma.201906368 10.1039/C7SC05033J 10.1021/acs.inorgchem.9b03475 10.1016/S1872-2067(20)63693-2 10.1002/chem.201904510 10.1039/D1CS00323B 10.1002/anie.201408222 10.1016/j.carbon.2019.10.018 10.1039/C7TA04434H 10.1016/S1872-2067(19)63459-5 10.1021/acsaem.9b02155 10.1021/acssuschemeng.0c08328 10.1021/acsnano.8b02849 10.1016/j.nanoen.2018.08.064 10.1016/j.nanoen.2018.06.001 10.1016/j.apcatb.2019.02.055 10.1016/j.electacta.2019.135210 10.1016/j.jcis.2021.01.083 10.1002/anie.201908760 10.1039/C9TA08361H 10.1039/C9TA07289F 10.1016/j.jcis.2019.06.063 10.1088/2053-1583/1/2/025001 10.1016/S1872-2067(19)63469-8 10.1021/jacs.9b00154 10.1021/acs.chemrev.9b00201 10.1002/adma.201602852 10.1039/C7TA10404A 10.1039/C8NR03350A 10.1016/j.ijhydene.2019.10.126 10.1021/acs.chemmater.5b04343 10.1016/j.inoche.2020.108123 10.1039/C9TA13487E 10.1016/j.jcis.2020.12.112 10.1039/D0TA05797E 10.1002/sstr.202000148 10.1021/ie2027469 10.1002/anie.201603331 10.1016/j.jcis.2018.06.078 10.1021/acsami.8b20958 10.1021/acsami.6b16319 10.1016/j.cej.2020.126803 10.1016/j.ijhydene.2020.09.101 10.1039/C9TA03944A 10.1016/j.chemosphere.2021.129793 10.1039/D0TA06527G 10.1088/2053-1583/2/3/031002 10.1016/j.cej.2019.123337 10.1021/acssuschemeng.9b07252 10.1021/acsami.9b03965 10.1021/acsnano.8b06671 10.1021/jacs.7b08474 10.1016/j.jelechem.2020.114031 10.1002/anie.201911503 10.1039/C5CP06796K 10.1002/adfm.201800548 10.1016/j.ijhydene.2019.11.227 10.1002/anie.201900292 10.1016/j.cej.2020.127331 10.1002/aenm.201700020 10.1016/j.cattod.2020.02.031 10.1016/j.micromeso.2021.110921 10.1002/smll.201804546 10.1002/aenm.201700396 10.1016/j.apcatb.2011.10.028 10.1016/j.cej.2020.125537 10.1021/acsaem.9b00299 10.1103/PhysRevB.94.184428 10.1021/acs.nanolett.7b01334 10.1016/j.jmst.2020.07.010 10.1002/adfm.201706120 10.1016/j.jallcom.2018.03.294 10.1002/adma.201900813 10.1002/adfm.202003261 10.1002/cctc.201801482 10.1016/j.jcis.2014.05.020 10.1039/D0CY01447H 10.1002/anie.201808929 10.1039/C8QI01026A 10.1002/adfm.201910830 10.1021/acsami.9b11594 10.1039/C7TA11342K 10.1021/acsami.8b19623 10.1039/C9EE00752K 10.1002/adfm.201805311 10.1016/j.ceramint.2020.10.098 10.1016/j.electacta.2017.05.032 10.1002/anie.201906683 10.1021/acssuschemeng.9b03217 10.1016/j.jpowsour.2019.05.063 10.1016/j.matlet.2018.10.116 10.1002/adma.201605776 10.1002/adfm.201805975 10.1039/C9TA03256H 10.1039/C5TA02105G 10.1016/j.ceramint.2021.02.215 10.1016/j.jechem.2021.08.038 10.1002/cctc.201901944 10.1021/acsami.5b04947 10.1039/D1NJ03439A 10.1016/j.apcatb.2020.118844 10.1016/j.mtadv.2020.100081 10.1021/acscatal.7b03167 10.1021/acsnano.7b09146 10.1016/j.apcatb.2018.11.001 10.1016/j.mtnano.2021.100124 10.1021/acs.chemmater.8b03908 10.1016/j.apcatb.2019.118555 10.1039/D0QI01097A 10.1016/j.jhazmat.2021.125400 10.1002/anie.201912552 10.1016/j.scitotenv.2019.134239 10.1039/C8CS00664D 10.1021/acs.chemmater.7b03627 10.1039/C9NR09122J 10.1016/j.cej.2020.124408 10.1002/adfm.201703484 10.1021/acsmaterialslett.0c00095 10.1088/0957-4484/27/21/215602 10.1002/aesr.202000071 10.1021/acssuschemeng.9b02556 10.1016/j.cej.2020.125245 10.1016/j.apsusc.2020.146623 10.1002/smll.202005304 10.1039/D0TA07616C 10.1002/aenm.201502409 10.1039/C7TA02297B 10.1016/j.jechem.2020.01.017 10.1039/C9TA04583J 10.1002/smll.201600345 10.1039/C8DT04731F 10.1038/nmat2780 10.1002/aenm.201900516 10.1016/j.matt.2020.04.002 10.1021/jacs.6b08491 10.1002/smll.201906766 10.1021/acscatal.5b02193 10.1021/jp200287n 10.1016/j.jechem.2020.03.072 10.1002/adma.201800128 10.1016/j.apsusc.2016.08.002 10.1021/acsami.1c00038 10.1002/adfm.202004009 10.1021/acssuschemeng.9b01263 10.1016/j.ijhydene.2020.06.185 10.1016/j.apcatb.2019.118352 10.1021/nl501658d 10.1002/chem.201904594 10.1021/acscatal.6b02203 10.1016/j.joule.2018.08.001 10.1016/j.ijhydene.2018.12.159 10.1002/adma.201803590 10.1039/C8CC02822B 10.1002/smtd.202000719 10.1016/j.apcatb.2018.09.035 10.1021/acssuschemeng.8b00873 10.1016/S1872-2067(19)63454-6 10.1039/C9CS00607A 10.1002/anie.201906416 10.1016/j.cej.2019.02.083 10.1002/cssc.202002454 10.1016/j.nanoen.2021.105748 10.1016/j.nanoen.2018.11.090 10.1021/acsnano.7b05020 10.1021/acsami.9b17960 10.1002/smll.201802755 10.1039/C8SC03877E 10.1016/j.ijhydene.2020.11.030 10.1039/D0TA08704A 10.1002/advs.202001431 10.1039/C8NR03846E 10.1039/C7TA03669H 10.1021/acscatal.5b00349 10.1016/j.jpowsour.2014.12.095 10.1039/C7CY02323E 10.1016/j.cej.2020.124164 10.1016/j.electacta.2020.137567 10.1016/j.ijhydene.2020.09.028 10.1039/D0NR01748E 10.1021/ja403440e 10.1002/aenm.202003545 10.1021/acs.chemmater.5b01284 10.1002/anie.201612315 10.1002/adma.202005815 10.1002/cssc.202000104 10.1016/j.electacta.2019.05.030 10.1021/acssuschemeng.7b04403 10.1039/C8TA01320A 10.1002/aenm.201802615 10.1016/j.ces.2020.116069 10.1021/acssuschemeng.0c01293 10.1016/j.apsusc.2019.144099 10.1002/cssc.202000416 10.1016/j.ijhydene.2020.09.146 10.1016/S1872-2067(20)63740-8 10.1002/smll.201900550 10.1039/C7TA10884B 10.1039/D0TA09752G 10.3390/nano11010013 10.1007/s11705-021-2102-6 10.1039/D0EE02577A 10.1002/anie.201911696 10.1002/aenm.201802319 10.1021/acscatal.6b02520 10.1002/cctc.202000360 10.1002/admi.202100294 10.1016/j.apcatb.2018.09.100 10.1002/aenm.201801690 10.1002/aenm.201902104 10.1016/j.jpowsour.2020.228003 10.1016/j.cej.2018.08.221 10.1016/j.jpowsour.2010.12.055 10.1021/jacs.7b12968 10.1039/D1TA00044F 10.1016/j.jallcom.2014.06.003 10.1016/j.apsusc.2015.09.009 10.1039/C6SC05687C 10.1016/j.jechem.2020.03.046 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
DOI | 10.1039/d1gc03768d |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 747 |
ExternalDocumentID | 10_1039_D1GC03768D d1gc03768d |
GroupedDBID | 0-7 0R 1TJ 29I 4.4 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-ca84322368cffa276eb47b5376566dbea96064b958b86201cee1944b82457bc73 |
ISSN | 1463-9262 1463-9270 |
IngestDate | Thu Jul 10 17:31:07 EDT 2025 Mon Jun 30 12:02:19 EDT 2025 Tue Jul 01 01:41:32 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jan 25 04:31:02 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-ca84322368cffa276eb47b5376566dbea96064b958b86201cee1944b82457bc73 |
Notes | Jin-Tao Ren received his Ph.D. degree from Nankai University in 2020 under the supervision of Prof. Zhong-Yong Yuan. He is currently a postdoctoral fellow at Nankai University. His research interests focus on advanced nanomaterials for applications in electrocatalysis, metal-air batteries, fuel cells and as editorial board member of several journals. His research interests are mainly focused on the self-assembly of hierarchically nanoporous and nanostructured materials for energy and environmental applications. etc Lei Chen received her BEng degree from Northeast Forestry University in 2017 and obtained her MEng degree from Nankai University in 2020. She is currently a PhD candidate under the supervision of Prof. Zhong-Yong Yuan at Nankai University. Her current research focuses on the fabrication of nanostructured materials for energy-related applications. RSC Advances . Zhong-Yong Yuan received his PhD degree from Nankai University in 1999. After his postdoctoral research at the Institute of Physics, Chinese Academy of Sciences, he joined the Laboratory of Inorganic Materials Chemistry at the University of Namur, Belgium in 2001. In 2005, he was appointed Professor in Nankai University. In 2006, he was awarded the "Program for New Century Excellent Talents in University" by the Ministry of Education. In 2016, he was elected as a fellow of the Royal Society of Chemistry. He is currently serving as an Associate Editor of ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3790-8181 |
PQID | 2622318532 |
PQPubID | 2047490 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_2636747902 crossref_citationtrail_10_1039_D1GC03768D crossref_primary_10_1039_D1GC03768D rsc_primary_d1gc03768d proquest_journals_2622318532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-24 |
PublicationDateYYYYMMDD | 2022-01-24 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sun (D1GC03768D/cit131/1) 2017; 29 Wang (D1GC03768D/cit149/1) 2021; 33 Rekha (D1GC03768D/cit35/1) 2021; 47 Cheng (D1GC03768D/cit165/1) 2019; 44 Qiu (D1GC03768D/cit69/1) 2020; 119 Bu (D1GC03768D/cit231/1) 2019; 11 Yu (D1GC03768D/cit147/1) 2019; 7 Di (D1GC03768D/cit51/1) 2016; 389 Bhanja (D1GC03768D/cit52/1) 2020; 396 Oliveira (D1GC03768D/cit146/1) 2021; 8 Wang (D1GC03768D/cit36/1) 2022; 66 Shao (D1GC03768D/cit94/1) 2018; 6 Zhang (D1GC03768D/cit234/1) 2018; 8 Zhu (D1GC03768D/cit20/1) 2020; 2 Ren (D1GC03768D/cit196/1) 2020; 263 Nagao (D1GC03768D/cit68/1) 2011; 196 Liu (D1GC03768D/cit108/1) 2017; 7 Wang (D1GC03768D/cit218/1) 2012; 51 Shifa (D1GC03768D/cit91/1) 2018; 28 Yu (D1GC03768D/cit208/1) 2021; 23 Wang (D1GC03768D/cit244/1) 2021; 15 Zhao (D1GC03768D/cit180/1) 2021; 45 Li (D1GC03768D/cit227/1) 2019; 7 Liu (D1GC03768D/cit89/1) 2018; 30 Chen (D1GC03768D/cit139/1) 2020; 50 Feng (D1GC03768D/cit232/1) 2018; 140 Ding (D1GC03768D/cit237/1) 2019; 11 Yi (D1GC03768D/cit221/1) 2010; 9 Yin (D1GC03768D/cit6/1) 2020; 7 Bhanja (D1GC03768D/cit197/1) 2021; 405 Pu (D1GC03768D/cit46/1) 2020; 30 Wu (D1GC03768D/cit73/1) 2018; 8 Saad (D1GC03768D/cit239/1) 2020; 3 Zhang (D1GC03768D/cit164/1) 2017; 5 Song (D1GC03768D/cit1/1) 2020; 49 Hu (D1GC03768D/cit66/1) 2016; 55 Lei (D1GC03768D/cit105/1) 2016; 6 Li (D1GC03768D/cit19/1) 2019; 366 Zhang (D1GC03768D/cit72/1) 2017; 8 Ren (D1GC03768D/cit54/1) 2018; 10 Rabiei Baboukani (D1GC03768D/cit144/1) 2021; 2 Chen (D1GC03768D/cit15/1) 2020; 12 Li (D1GC03768D/cit151/1) 2019; 15 Chen (D1GC03768D/cit130/1) 2021; 315 Ai (D1GC03768D/cit202/1) 2017; 242 Du (D1GC03768D/cit123/1) 2019; 48 Xiao (D1GC03768D/cit162/1) 2020; 41 Bai (D1GC03768D/cit242/1) 2020; 456 Lv (D1GC03768D/cit113/1) 2020; 30 Zhang (D1GC03768D/cit39/1) 2019; 58 Wang (D1GC03768D/cit84/1) 2020; 48 Oliveira (D1GC03768D/cit12/1) 2021; 13 Mingshan Zhu (D1GC03768D/cit210/1) 2017; 56 Chen (D1GC03768D/cit61/1) 2020; 387 Tian (D1GC03768D/cit122/1) 2019; 7 He (D1GC03768D/cit198/1) 2019; 58 Dong (D1GC03768D/cit32/1) 2020; 5 Feng (D1GC03768D/cit53/1) 2020; 698 Lian (D1GC03768D/cit134/1) 2019; 10 Chakraborty (D1GC03768D/cit118/1) 2020; 12 Meng (D1GC03768D/cit212/1) 2021; 413 Yu (D1GC03768D/cit187/1) 2019; 44 Li (D1GC03768D/cit209/1) 2021; 229 Kosmala (D1GC03768D/cit161/1) 2021; 8 Liu (D1GC03768D/cit224/1) 2018; 8 Zhang (D1GC03768D/cit63/1) 2021; 2 Zeng (D1GC03768D/cit163/1) 2019; 11 Kanan (D1GC03768D/cit18/1) 2008; 321 Zhao (D1GC03768D/cit195/1) 2020; 59 Li (D1GC03768D/cit201/1) 2020; 358 Wang (D1GC03768D/cit170/1) 2018; 10 You (D1GC03768D/cit207/1) 2015; 6 Huang (D1GC03768D/cit27/1) 2019; 553 Samal (D1GC03768D/cit24/1) 2021; 9 Li (D1GC03768D/cit186/1) 2019; 11 Lu (D1GC03768D/cit226/1) 2019; 7 Wang (D1GC03768D/cit158/1) 2017; 40 Xiu (D1GC03768D/cit229/1) 2018; 12 Zhu (D1GC03768D/cit23/1) 2020; 32 Du (D1GC03768D/cit80/1) 2019; 431 Khalid (D1GC03768D/cit190/1) 2018; 6 Du (D1GC03768D/cit140/1) 2015; 278 Ryu (D1GC03768D/cit85/1) 2015; 5 Li (D1GC03768D/cit110/1) 2020; 45 Zhou (D1GC03768D/cit189/1) 2020; 10 Wang (D1GC03768D/cit14/1) 2012; 111–112 Xu (D1GC03768D/cit8/1) 2021; 68 Yang (D1GC03768D/cit77/1) 2017; 29 Ma (D1GC03768D/cit59/1) 2015; 357 Lei (D1GC03768D/cit211/1) 2018; 50 Castellanos-Gomez (D1GC03768D/cit143/1) 2014; 1 Hu (D1GC03768D/cit5/1) 2021; 15 Theerthagiri (D1GC03768D/cit45/1) 2021; 47 Hu (D1GC03768D/cit215/1) 2020; 269 Pandey (D1GC03768D/cit150/1) 2020; 11 Wang (D1GC03768D/cit102/1) 2020; 8 Ren (D1GC03768D/cit7/1) 2020; 424 Zhu (D1GC03768D/cit92/1) 2017; 29 Tian (D1GC03768D/cit155/1) 2018; 115 Shi (D1GC03768D/cit159/1) 2019; 55 Sanchez (D1GC03768D/cit50/1) 2021; 11 Konkena (D1GC03768D/cit199/1) 2016; 7 Xin (D1GC03768D/cit121/1) 2017; 11 Luo (D1GC03768D/cit169/1) 2020; 505 Zhang (D1GC03768D/cit133/1) 2021; 590 Ansari (D1GC03768D/cit67/1) 2016; 18 Liu (D1GC03768D/cit181/1) 2019; 58 Wang (D1GC03768D/cit104/1) 2019; 58 Gusmão (D1GC03768D/cit154/1) 2019; 29 Hong (D1GC03768D/cit42/1) 2021; 14 Geng (D1GC03768D/cit126/1) 2021; 9 Anjum (D1GC03768D/cit97/1) 2018; 30 Xu (D1GC03768D/cit114/1) 2018; 9 Li (D1GC03768D/cit120/1) 2018; 455 Liu (D1GC03768D/cit206/1) 2020; 862 Che (D1GC03768D/cit205/1) 2020; 51 Callejas (D1GC03768D/cit82/1) 2015; 27 Maitani (D1GC03768D/cit172/1) 2017; 9 Ji (D1GC03768D/cit194/1) 2020; 12 Liu (D1GC03768D/cit142/1) 2016; 12 Weng (D1GC03768D/cit31/1) 2020; 13 Lv (D1GC03768D/cit13/1) 2021; 17 Wu (D1GC03768D/cit40/1) 2021; 274 Yang (D1GC03768D/cit222/1) 2020; 16 Sun (D1GC03768D/cit65/1) 2019; 236 Li (D1GC03768D/cit4/1) 2021; 42 Ren (D1GC03768D/cit193/1) 2018; 6 Wen (D1GC03768D/cit167/1) 2020; 8 Shen (D1GC03768D/cit184/1) 2018; 6 Qi (D1GC03768D/cit216/1) 2020; 41 Li (D1GC03768D/cit156/1) 2015; 2 Bu (D1GC03768D/cit79/1) 2019; 355 Jing (D1GC03768D/cit178/1) 2017; 27 Wu (D1GC03768D/cit87/1) 2020; 16 Zhang (D1GC03768D/cit101/1) 2020; 512 Rahman (D1GC03768D/cit58/1) 2018; 6 Zhang (D1GC03768D/cit203/1) 2021; 367 Li (D1GC03768D/cit21/1) 2018; 57 Zhou (D1GC03768D/cit57/1) 2021; 83 Hu (D1GC03768D/cit148/1) 2018; 28 Kondori (D1GC03768D/cit10/1) 2019; 9 Hua (D1GC03768D/cit214/1) 2020; 8 Lv (D1GC03768D/cit88/1) 2019; 7 Zhu (D1GC03768D/cit38/1) 2020; 12 Sun (D1GC03768D/cit182/1) 2015; 3 Zheng (D1GC03768D/cit55/1) 2014; 615 He (D1GC03768D/cit168/1) 2019; 249 Xue (D1GC03768D/cit241/1) 2018; 12 Li (D1GC03768D/cit137/1) 2020; 13 Hu (D1GC03768D/cit93/1) 2017; 139 Mandari (D1GC03768D/cit171/1) 2018; 750 Sendeku (D1GC03768D/cit25/1) 2021; 13 Li (D1GC03768D/cit233/1) 2019; 12 Tian (D1GC03768D/cit191/1) 2020; 8 Li (D1GC03768D/cit34/1) 2021; 46 Wang (D1GC03768D/cit37/1) 2020; 59 Kibsgaard (D1GC03768D/cit98/1) 2014; 53 Han (D1GC03768D/cit220/1) 2018; 8 Xi (D1GC03768D/cit75/1) 2016; 28 Yan (D1GC03768D/cit106/1) 2020; 265 Song (D1GC03768D/cit183/1) 2020; 384 Zhao (D1GC03768D/cit33/1) 2021; 14 Guo (D1GC03768D/cit99/1) 2020; 45 Liu (D1GC03768D/cit176/1) 2020; 26 Yang (D1GC03768D/cit16/1) 2021; 405 Chittari (D1GC03768D/cit49/1) 2016; 94 Zhu (D1GC03768D/cit64/1) 2020; 59 Yang (D1GC03768D/cit86/1) 2019; 15 Zhu (D1GC03768D/cit60/1) 2015; 7 Liu (D1GC03768D/cit109/1) 2016; 7 Mei (D1GC03768D/cit129/1) 2018; 2 Kim (D1GC03768D/cit141/1) 2021; 408 Yan (D1GC03768D/cit185/1) 2020; 45 Qin (D1GC03768D/cit175/1) 2017; 5 Prasannachandran (D1GC03768D/cit95/1) 2018; 12 Zhang (D1GC03768D/cit127/1) 2016; 6 Gao (D1GC03768D/cit243/1) 2022; 606 Zhao (D1GC03768D/cit115/1) 2020; 398 Xing (D1GC03768D/cit117/1) 2020; 59 Ren (D1GC03768D/cit153/1) 2017; 7 Zhang (D1GC03768D/cit217/1) 2020; 41 Li (D1GC03768D/cit43/1) 2019; 10 Yuan (D1GC03768D/cit213/1) 2019; 242 Liu (D1GC03768D/cit230/1) 2020; 8 Indra (D1GC03768D/cit78/1) 2020; 8 Jothi (D1GC03768D/cit223/1) 2018; 8 Gao (D1GC03768D/cit30/1) 2021; 589 Du (D1GC03768D/cit138/1) 2017; 5 Daulbayev (D1GC03768D/cit29/1) 2020; 45 Sial (D1GC03768D/cit116/1) 2018; 10 Gusmao (D1GC03768D/cit48/1) 2019; 58 Liu (D1GC03768D/cit136/1) 2019; 11 Raeisi-Kheirabadi (D1GC03768D/cit188/1) 2020; 45 Anandhababu (D1GC03768D/cit132/1) 2018; 28 Popczun (D1GC03768D/cit71/1) 2013; 135 Chandrasekaran (D1GC03768D/cit3/1) 2019; 48 Peng (D1GC03768D/cit124/1) 2020; 8 Chen (D1GC03768D/cit90/1) 2019; 7 Chen (D1GC03768D/cit174/1) 2020; 59 Peng (D1GC03768D/cit56/1) 2011; 115 Wu (D1GC03768D/cit112/1) 2018; 57 Zhang (D1GC03768D/cit160/1) 2020; 30 Liu (D1GC03768D/cit235/1) 2018; 14 Sun (D1GC03768D/cit228/1) 2020; 26 Shi (D1GC03768D/cit44/1) 2020; 13 Song (D1GC03768D/cit225/1) 2018; 8 Elbanna (D1GC03768D/cit177/1) 2019; 9 Puziy (D1GC03768D/cit26/1) 2020; 157 Ran (D1GC03768D/cit179/1) 2018; 30 Chen (D1GC03768D/cit103/1) 2021; 9 Yuan (D1GC03768D/cit192/1) 2019; 141 Wang (D1GC03768D/cit28/1) 2020; 120 Lu (D1GC03768D/cit238/1) 2020; 330 Liu (D1GC03768D/cit135/1) 2017; 13 Wang (D1GC03768D/cit125/1) 2020; 2 Zhang (D1GC03768D/cit70/1) 2019; 56 Li (D1GC03768D/cit62/1) 2021; 50 Guo (D1GC03768D/cit74/1) 2021; 42 Zhang (D1GC03768D/cit100/1) 2016; 138 Xu (D1GC03768D/cit166/1) 2019; 241 Anjum (D1GC03768D/cit96/1) 2018; 53 Ren (D1GC03768D/cit111/1) 2020; 389 He (D1GC03768D/cit200/1) 2017; 17 Ray (D1GC03768D/cit47/1) 2020; 8 Ramos-Garcés (D1GC03768D/cit145/1) 2019; 2 Smith (D1GC03768D/cit157/1) 2016; 27 Liang (D1GC03768D/cit152/1) 2020; 12 Beltrán-Suito (D1GC03768D/cit81/1) 2019; 7 Rong (D1GC03768D/cit204/1) 2019; 313 You (D1GC03768D/cit236/1) 2019; 58 Yu (D1GC03768D/cit17/1) 2021; 12 Han (D1GC03768D/cit41/1) 2014; 14 Li (D1GC03768D/cit83/1) 2019; 31 Zhang (D1GC03768D/cit128/1) 2018; 6 Li (D1GC03768D/cit2/1) 2020; 8 Wang (D1GC03768D/cit22/1) 2018; 54 Zhu (D1GC03768D/cit219/1) 2018; 530 Hu (D1GC03768D/cit9/1) 2017; 19 Xie (D1GC03768D/cit119/1) 2014; 430 Huang (D1GC03768D/cit240/1) 2020; 525 Lv (D1GC03768D/cit107/1) 2019; 6 Vo (D1GC03768D/cit173/1) 2019; 243 Zhao (D1GC03768D/cit11/1) 2020; 12 Han (D1GC03768D/cit76/1) 2020; 8 |
References_xml | – volume: 8 start-page: 1703290 year: 2018 ident: D1GC03768D/cit224/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703290 – volume: 424 start-page: 213516 year: 2020 ident: D1GC03768D/cit7/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213516 – volume: 455 start-page: 1137 year: 2018 ident: D1GC03768D/cit120/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.027 – volume: 115 start-page: 4345 year: 2018 ident: D1GC03768D/cit155/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800069115 – volume: 14 start-page: 130 year: 2021 ident: D1GC03768D/cit33/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002103 – volume: 23 start-page: 591 year: 2021 ident: D1GC03768D/cit208/1 publication-title: CrystEngComm doi: 10.1039/D0CE01487G – volume: 11 start-page: 15528 year: 2019 ident: D1GC03768D/cit136/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00592 – volume: 8 start-page: 2637 year: 2020 ident: D1GC03768D/cit78/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09775A – volume: 606 start-page: 544 year: 2022 ident: D1GC03768D/cit243/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.041 – volume: 9 start-page: 3618 year: 2019 ident: D1GC03768D/cit177/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b05081 – volume: 58 start-page: 11903 year: 2019 ident: D1GC03768D/cit198/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905281 – volume: 13 start-page: 1701875 year: 2017 ident: D1GC03768D/cit135/1 publication-title: Small doi: 10.1002/smll.201701875 – volume: 13 start-page: 23638 year: 2021 ident: D1GC03768D/cit12/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02361 – volume: 55 start-page: 12531 year: 2019 ident: D1GC03768D/cit159/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06146K – volume: 58 start-page: 1659 year: 2019 ident: D1GC03768D/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811152 – volume: 12 start-page: 2464 year: 2021 ident: D1GC03768D/cit17/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03841 – volume: 57 start-page: 3222 year: 2018 ident: D1GC03768D/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712925 – volume: 7 start-page: 98 year: 2016 ident: D1GC03768D/cit109/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02849 – volume: 321 start-page: 1072 year: 2008 ident: D1GC03768D/cit18/1 publication-title: Science doi: 10.1126/science.1162018 – volume: 15 start-page: 1902427 year: 2019 ident: D1GC03768D/cit151/1 publication-title: Small doi: 10.1002/smll.201902427 – volume: 58 start-page: 9326 year: 2019 ident: D1GC03768D/cit48/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810309 – volume: 512 start-page: 145715 year: 2020 ident: D1GC03768D/cit101/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145715 – volume: 405 start-page: 126547 year: 2021 ident: D1GC03768D/cit16/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126547 – volume: 40 start-page: 673 year: 2017 ident: D1GC03768D/cit158/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.017 – volume: 19 start-page: 588 year: 2017 ident: D1GC03768D/cit9/1 publication-title: Green Chem. doi: 10.1039/C6GC02825J – volume: 12 start-page: 2840 year: 2020 ident: D1GC03768D/cit152/1 publication-title: ChemCatChem doi: 10.1002/cctc.202000139 – volume: 32 start-page: 1906368 year: 2020 ident: D1GC03768D/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906368 – volume: 9 start-page: 3470 year: 2018 ident: D1GC03768D/cit114/1 publication-title: Chem. Sci. doi: 10.1039/C7SC05033J – volume: 59 start-page: 1566 year: 2020 ident: D1GC03768D/cit174/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03475 – volume: 42 start-page: 511 year: 2021 ident: D1GC03768D/cit4/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63693-2 – volume: 26 start-page: 2793 year: 2020 ident: D1GC03768D/cit228/1 publication-title: Chemistry doi: 10.1002/chem.201904510 – volume: 50 start-page: 7539 year: 2021 ident: D1GC03768D/cit62/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00323B – volume: 53 start-page: 14433 year: 2014 ident: D1GC03768D/cit98/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408222 – volume: 157 start-page: 796 year: 2020 ident: D1GC03768D/cit26/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.10.018 – volume: 5 start-page: 19025 year: 2017 ident: D1GC03768D/cit175/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04434H – volume: 41 start-page: 114 year: 2020 ident: D1GC03768D/cit216/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63459-5 – volume: 3 start-page: 1684 year: 2020 ident: D1GC03768D/cit239/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02155 – volume: 9 start-page: 1856 year: 2021 ident: D1GC03768D/cit103/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c08328 – volume: 12 start-page: 8017 year: 2018 ident: D1GC03768D/cit229/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b02849 – volume: 53 start-page: 286 year: 2018 ident: D1GC03768D/cit96/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.064 – volume: 50 start-page: 552 year: 2018 ident: D1GC03768D/cit211/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.001 – volume: 249 start-page: 246 year: 2019 ident: D1GC03768D/cit168/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.02.055 – volume: 330 start-page: 135210 year: 2020 ident: D1GC03768D/cit238/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135210 – volume: 590 start-page: 632 year: 2021 ident: D1GC03768D/cit133/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.01.083 – volume: 59 start-page: 8982 year: 2020 ident: D1GC03768D/cit195/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908760 – volume: 8 start-page: 2995 year: 2020 ident: D1GC03768D/cit167/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08361H – volume: 7 start-page: 20658 year: 2019 ident: D1GC03768D/cit227/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07289F – volume: 553 start-page: 647 year: 2019 ident: D1GC03768D/cit27/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.06.063 – volume: 1 start-page: 025001 year: 2014 ident: D1GC03768D/cit143/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/1/2/025001 – volume: 41 start-page: 642 year: 2020 ident: D1GC03768D/cit162/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63469-8 – volume: 141 start-page: 4972 year: 2019 ident: D1GC03768D/cit192/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00154 – volume: 120 start-page: 919 year: 2020 ident: D1GC03768D/cit28/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 29 start-page: 1602852 year: 2017 ident: D1GC03768D/cit77/1 publication-title: Adv. Mater. doi: 10.1002/adma.201602852 – volume: 6 start-page: 1305 year: 2018 ident: D1GC03768D/cit58/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10404A – volume: 10 start-page: 12975 year: 2018 ident: D1GC03768D/cit116/1 publication-title: Nanoscale doi: 10.1039/C8NR03350A – volume: 44 start-page: 31832 year: 2019 ident: D1GC03768D/cit187/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.126 – volume: 28 start-page: 1355 year: 2016 ident: D1GC03768D/cit75/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04343 – volume: 119 start-page: 108123 year: 2020 ident: D1GC03768D/cit69/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2020.108123 – volume: 8 start-page: 4647 year: 2020 ident: D1GC03768D/cit191/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13487E – volume: 589 start-page: 25 year: 2021 ident: D1GC03768D/cit30/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.112 – volume: 8 start-page: 19196 year: 2020 ident: D1GC03768D/cit47/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05797E – volume: 2 start-page: 2000148 year: 2021 ident: D1GC03768D/cit144/1 publication-title: Small Struct. doi: 10.1002/sstr.202000148 – volume: 51 start-page: 9945 year: 2012 ident: D1GC03768D/cit218/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2027469 – volume: 55 start-page: 9580 year: 2016 ident: D1GC03768D/cit66/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603331 – volume: 530 start-page: 256 year: 2018 ident: D1GC03768D/cit219/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.06.078 – volume: 11 start-page: 5651 year: 2019 ident: D1GC03768D/cit163/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20958 – volume: 9 start-page: 10349 year: 2017 ident: D1GC03768D/cit172/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16319 – volume: 405 start-page: 126803 year: 2021 ident: D1GC03768D/cit197/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126803 – volume: 45 start-page: 33325 year: 2020 ident: D1GC03768D/cit29/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.101 – volume: 7 start-page: 16859 year: 2019 ident: D1GC03768D/cit226/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03944A – volume: 274 start-page: 129793 year: 2021 ident: D1GC03768D/cit40/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129793 – volume: 8 start-page: 18232 year: 2020 ident: D1GC03768D/cit76/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06527G – volume: 2 start-page: 031002 year: 2015 ident: D1GC03768D/cit156/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/031002 – volume: 384 start-page: 123337 year: 2020 ident: D1GC03768D/cit183/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123337 – volume: 8 start-page: 2919 year: 2020 ident: D1GC03768D/cit214/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b07252 – volume: 11 start-page: 22297 year: 2019 ident: D1GC03768D/cit186/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03965 – volume: 12 start-page: 11511 year: 2018 ident: D1GC03768D/cit95/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b06671 – volume: 139 start-page: 15429 year: 2017 ident: D1GC03768D/cit93/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08474 – volume: 862 start-page: 114031 year: 2020 ident: D1GC03768D/cit206/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114031 – volume: 59 start-page: 868 year: 2020 ident: D1GC03768D/cit64/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911503 – volume: 18 start-page: 3921 year: 2016 ident: D1GC03768D/cit67/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06796K – volume: 28 start-page: 1800548 year: 2018 ident: D1GC03768D/cit91/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800548 – volume: 45 start-page: 2578 year: 2020 ident: D1GC03768D/cit185/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.227 – volume: 59 start-page: 136 year: 2020 ident: D1GC03768D/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900292 – volume: 408 start-page: 127331 year: 2021 ident: D1GC03768D/cit141/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127331 – volume: 7 start-page: 1700020 year: 2017 ident: D1GC03768D/cit108/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700020 – volume: 358 start-page: 215 year: 2020 ident: D1GC03768D/cit201/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.02.031 – volume: 315 start-page: 110921 year: 2021 ident: D1GC03768D/cit130/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.110921 – volume: 15 start-page: 1804546 year: 2019 ident: D1GC03768D/cit86/1 publication-title: Small doi: 10.1002/smll.201804546 – volume: 7 start-page: 1700396 year: 2017 ident: D1GC03768D/cit153/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700396 – volume: 111–112 start-page: 409 year: 2012 ident: D1GC03768D/cit14/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.10.028 – volume: 398 start-page: 125537 year: 2020 ident: D1GC03768D/cit115/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125537 – volume: 2 start-page: 3561 year: 2019 ident: D1GC03768D/cit145/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00299 – volume: 94 start-page: 184428 year: 2016 ident: D1GC03768D/cit49/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.184428 – volume: 17 start-page: 4311 year: 2017 ident: D1GC03768D/cit200/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01334 – volume: 68 start-page: 1 year: 2021 ident: D1GC03768D/cit8/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.07.010 – volume: 28 start-page: 1706120 year: 2018 ident: D1GC03768D/cit132/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706120 – volume: 750 start-page: 292 year: 2018 ident: D1GC03768D/cit171/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.294 – volume: 31 start-page: 1900813 year: 2019 ident: D1GC03768D/cit83/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900813 – volume: 30 start-page: 2003261 year: 2020 ident: D1GC03768D/cit160/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003261 – volume: 10 start-page: 5297 year: 2018 ident: D1GC03768D/cit54/1 publication-title: ChemCatChem doi: 10.1002/cctc.201801482 – volume: 430 start-page: 1 year: 2014 ident: D1GC03768D/cit119/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.05.020 – volume: 10 start-page: 7661 year: 2020 ident: D1GC03768D/cit189/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY01447H – volume: 57 start-page: 15445 year: 2018 ident: D1GC03768D/cit112/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808929 – volume: 6 start-page: 74 year: 2019 ident: D1GC03768D/cit107/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI01026A – volume: 30 start-page: 1910830 year: 2020 ident: D1GC03768D/cit113/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910830 – volume: 11 start-page: 38633 year: 2019 ident: D1GC03768D/cit231/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11594 – volume: 6 start-page: 3141 year: 2018 ident: D1GC03768D/cit190/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11342K – volume: 11 start-page: 7936 year: 2019 ident: D1GC03768D/cit237/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19623 – volume: 12 start-page: 2298 year: 2019 ident: D1GC03768D/cit233/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00752K – volume: 28 start-page: 1805311 year: 2018 ident: D1GC03768D/cit148/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805311 – volume: 47 start-page: 4404 year: 2021 ident: D1GC03768D/cit45/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.098 – volume: 242 start-page: 355 year: 2017 ident: D1GC03768D/cit202/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.032 – volume: 58 start-page: 11796 year: 2019 ident: D1GC03768D/cit236/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906683 – volume: 7 start-page: 13559 year: 2019 ident: D1GC03768D/cit90/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03217 – volume: 431 start-page: 182 year: 2019 ident: D1GC03768D/cit80/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.05.063 – volume: 236 start-page: 542 year: 2019 ident: D1GC03768D/cit65/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.10.116 – volume: 29 start-page: 1605776 year: 2017 ident: D1GC03768D/cit92/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605776 – volume: 29 start-page: 1805975 year: 2019 ident: D1GC03768D/cit154/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805975 – volume: 7 start-page: 13928 year: 2019 ident: D1GC03768D/cit147/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03256H – volume: 3 start-page: 10243 year: 2015 ident: D1GC03768D/cit182/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02105G – volume: 47 start-page: 16385 year: 2021 ident: D1GC03768D/cit35/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.02.215 – volume: 66 start-page: 529 year: 2022 ident: D1GC03768D/cit36/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.08.038 – volume: 12 start-page: 1504 year: 2020 ident: D1GC03768D/cit118/1 publication-title: ChemCatChem doi: 10.1002/cctc.201901944 – volume: 7 start-page: 16850 year: 2015 ident: D1GC03768D/cit60/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04947 – volume: 45 start-page: 19876 year: 2021 ident: D1GC03768D/cit180/1 publication-title: New J. Chem. doi: 10.1039/D1NJ03439A – volume: 269 start-page: 118844 year: 2020 ident: D1GC03768D/cit215/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118844 – volume: 8 start-page: 100081 year: 2020 ident: D1GC03768D/cit124/1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2020.100081 – volume: 8 start-page: 1143 year: 2018 ident: D1GC03768D/cit73/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03167 – volume: 12 start-page: 5297 year: 2018 ident: D1GC03768D/cit241/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b09146 – volume: 243 start-page: 657 year: 2019 ident: D1GC03768D/cit173/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.001 – volume: 15 start-page: 100124 year: 2021 ident: D1GC03768D/cit5/1 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2021.100124 – volume: 30 start-page: 8861 year: 2018 ident: D1GC03768D/cit97/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03908 – volume: 265 start-page: 118555 year: 2020 ident: D1GC03768D/cit106/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118555 – volume: 8 start-page: 684 year: 2021 ident: D1GC03768D/cit161/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01097A – volume: 413 start-page: 125400 year: 2021 ident: D1GC03768D/cit212/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125400 – volume: 59 start-page: 1171 year: 2020 ident: D1GC03768D/cit117/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912552 – volume: 698 start-page: 134239 year: 2020 ident: D1GC03768D/cit53/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134239 – volume: 48 start-page: 4178 year: 2019 ident: D1GC03768D/cit3/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00664D – volume: 29 start-page: 8539 year: 2017 ident: D1GC03768D/cit131/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03627 – volume: 12 start-page: 3513 year: 2020 ident: D1GC03768D/cit15/1 publication-title: Nanoscale doi: 10.1039/C9NR09122J – volume: 389 start-page: 124408 year: 2020 ident: D1GC03768D/cit111/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124408 – volume: 27 start-page: 1703484 year: 2017 ident: D1GC03768D/cit178/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703484 – volume: 2 start-page: 582 year: 2020 ident: D1GC03768D/cit20/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00095 – volume: 27 start-page: 215602 year: 2016 ident: D1GC03768D/cit157/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/21/215602 – volume: 2 start-page: 2000071 year: 2021 ident: D1GC03768D/cit63/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202000071 – volume: 7 start-page: 14639 year: 2019 ident: D1GC03768D/cit122/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b02556 – volume: 396 start-page: 125245 year: 2020 ident: D1GC03768D/cit52/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125245 – volume: 525 start-page: 146623 year: 2020 ident: D1GC03768D/cit240/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146623 – volume: 17 start-page: 2005304 year: 2021 ident: D1GC03768D/cit13/1 publication-title: Small doi: 10.1002/smll.202005304 – volume: 8 start-page: 19254 year: 2020 ident: D1GC03768D/cit230/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07616C – volume: 6 start-page: 1502409 year: 2016 ident: D1GC03768D/cit127/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502409 – volume: 5 start-page: 12513 year: 2017 ident: D1GC03768D/cit164/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02297B – volume: 48 start-page: 241 year: 2020 ident: D1GC03768D/cit84/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.017 – volume: 7 start-page: 15749 year: 2019 ident: D1GC03768D/cit81/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04583J – volume: 12 start-page: 2969 year: 2016 ident: D1GC03768D/cit142/1 publication-title: Small doi: 10.1002/smll.201600345 – volume: 48 start-page: 1322 year: 2019 ident: D1GC03768D/cit123/1 publication-title: Dalton Trans. doi: 10.1039/C8DT04731F – volume: 9 start-page: 559 year: 2010 ident: D1GC03768D/cit221/1 publication-title: Nat. Mater. doi: 10.1038/nmat2780 – volume: 9 start-page: 1900516 year: 2019 ident: D1GC03768D/cit10/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900516 – volume: 2 start-page: 1377 year: 2020 ident: D1GC03768D/cit125/1 publication-title: Matter doi: 10.1016/j.matt.2020.04.002 – volume: 138 start-page: 14686 year: 2016 ident: D1GC03768D/cit100/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08491 – volume: 16 start-page: 1906766 year: 2020 ident: D1GC03768D/cit222/1 publication-title: Small doi: 10.1002/smll.201906766 – volume: 6 start-page: 714 year: 2015 ident: D1GC03768D/cit207/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02193 – volume: 115 start-page: 8184 year: 2011 ident: D1GC03768D/cit56/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp200287n – volume: 51 start-page: 167 year: 2020 ident: D1GC03768D/cit205/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.072 – volume: 30 start-page: 1800128 year: 2018 ident: D1GC03768D/cit179/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800128 – volume: 389 start-page: 775 year: 2016 ident: D1GC03768D/cit51/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.08.002 – volume: 13 start-page: 13392 year: 2021 ident: D1GC03768D/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00038 – volume: 30 start-page: 2004009 year: 2020 ident: D1GC03768D/cit46/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004009 – volume: 7 start-page: 8993 year: 2019 ident: D1GC03768D/cit88/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01263 – volume: 45 start-page: 22556 year: 2020 ident: D1GC03768D/cit110/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.185 – volume: 263 start-page: 118352 year: 2020 ident: D1GC03768D/cit196/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118352 – volume: 14 start-page: 4607 year: 2014 ident: D1GC03768D/cit41/1 publication-title: Nano Lett. doi: 10.1021/nl501658d – volume: 26 start-page: 4449 year: 2020 ident: D1GC03768D/cit176/1 publication-title: Chemistry doi: 10.1002/chem.201904594 – volume: 7 start-page: 229 year: 2016 ident: D1GC03768D/cit199/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02203 – volume: 2 start-page: 2289 year: 2018 ident: D1GC03768D/cit129/1 publication-title: Joule doi: 10.1016/j.joule.2018.08.001 – volume: 44 start-page: 4133 year: 2019 ident: D1GC03768D/cit165/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.159 – volume: 30 start-page: 1803590 year: 2018 ident: D1GC03768D/cit89/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803590 – volume: 54 start-page: 7195 year: 2018 ident: D1GC03768D/cit22/1 publication-title: Chem. Commun. doi: 10.1039/C8CC02822B – volume: 5 start-page: 2000719 year: 2020 ident: D1GC03768D/cit32/1 publication-title: Small Methods doi: 10.1002/smtd.202000719 – volume: 241 start-page: 178 year: 2019 ident: D1GC03768D/cit166/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.09.035 – volume: 6 start-page: 9793 year: 2018 ident: D1GC03768D/cit193/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00873 – volume: 41 start-page: 82 year: 2020 ident: D1GC03768D/cit217/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63454-6 – volume: 49 start-page: 2196 year: 2020 ident: D1GC03768D/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00607A – volume: 58 start-page: 11791 year: 2019 ident: D1GC03768D/cit181/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906416 – volume: 366 start-page: 339 year: 2019 ident: D1GC03768D/cit19/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.083 – volume: 14 start-page: 539 year: 2021 ident: D1GC03768D/cit42/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002454 – volume: 83 start-page: 105748 year: 2021 ident: D1GC03768D/cit57/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105748 – volume: 56 start-page: 813 year: 2019 ident: D1GC03768D/cit70/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.090 – volume: 11 start-page: 10303 year: 2017 ident: D1GC03768D/cit121/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b05020 – volume: 12 start-page: 727 year: 2020 ident: D1GC03768D/cit194/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17960 – volume: 14 start-page: 1802755 year: 2018 ident: D1GC03768D/cit235/1 publication-title: Small doi: 10.1002/smll.201802755 – volume: 10 start-page: 464 year: 2019 ident: D1GC03768D/cit134/1 publication-title: Chem. Sci. doi: 10.1039/C8SC03877E – volume: 46 start-page: 5131 year: 2021 ident: D1GC03768D/cit34/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.11.030 – volume: 8 start-page: 23674 year: 2020 ident: D1GC03768D/cit2/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08704A – volume: 7 start-page: 2001431 year: 2020 ident: D1GC03768D/cit6/1 publication-title: Adv. Sci. doi: 10.1002/advs.202001431 – volume: 10 start-page: 12315 year: 2018 ident: D1GC03768D/cit170/1 publication-title: Nanoscale doi: 10.1039/C8NR03846E – volume: 5 start-page: 15940 year: 2017 ident: D1GC03768D/cit138/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03669H – volume: 5 start-page: 4066 year: 2015 ident: D1GC03768D/cit85/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00349 – volume: 278 start-page: 540 year: 2015 ident: D1GC03768D/cit140/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.095 – volume: 8 start-page: 840 year: 2018 ident: D1GC03768D/cit220/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02323E – volume: 387 start-page: 124164 year: 2020 ident: D1GC03768D/cit61/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124164 – volume: 367 start-page: 137567 year: 2021 ident: D1GC03768D/cit203/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137567 – volume: 45 start-page: 33381 year: 2020 ident: D1GC03768D/cit188/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.028 – volume: 12 start-page: 13297 year: 2020 ident: D1GC03768D/cit38/1 publication-title: Nanoscale doi: 10.1039/D0NR01748E – volume: 135 start-page: 9267 year: 2013 ident: D1GC03768D/cit71/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 11 start-page: 2003545 year: 2021 ident: D1GC03768D/cit50/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003545 – volume: 27 start-page: 3769 year: 2015 ident: D1GC03768D/cit82/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01284 – volume: 56 start-page: 2064 year: 2017 ident: D1GC03768D/cit210/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201612315 – volume: 33 start-page: 2005815 year: 2021 ident: D1GC03768D/cit149/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005815 – volume: 13 start-page: 3718 year: 2020 ident: D1GC03768D/cit137/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000104 – volume: 313 start-page: 179 year: 2019 ident: D1GC03768D/cit204/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.030 – volume: 6 start-page: 4026 year: 2018 ident: D1GC03768D/cit184/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04403 – volume: 6 start-page: 8992 year: 2018 ident: D1GC03768D/cit128/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01320A – volume: 8 start-page: 1802615 year: 2018 ident: D1GC03768D/cit223/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802615 – volume: 229 start-page: 116069 year: 2021 ident: D1GC03768D/cit209/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116069 – volume: 8 start-page: 8949 year: 2020 ident: D1GC03768D/cit102/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01293 – volume: 505 start-page: 144099 year: 2020 ident: D1GC03768D/cit169/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144099 – volume: 13 start-page: 3357 year: 2020 ident: D1GC03768D/cit31/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000416 – volume: 45 start-page: 33623 year: 2020 ident: D1GC03768D/cit99/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.146 – volume: 42 start-page: 1287 year: 2021 ident: D1GC03768D/cit74/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63740-8 – volume: 16 start-page: 1900550 year: 2020 ident: D1GC03768D/cit87/1 publication-title: Small doi: 10.1002/smll.201900550 – volume: 6 start-page: 2494 year: 2018 ident: D1GC03768D/cit94/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10884B – volume: 9 start-page: 2560 year: 2021 ident: D1GC03768D/cit24/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09752G – volume: 11 start-page: 13 year: 2020 ident: D1GC03768D/cit150/1 publication-title: Nanomaterials doi: 10.3390/nano11010013 – volume: 15 start-page: 1408 year: 2021 ident: D1GC03768D/cit244/1 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-021-2102-6 – volume: 13 start-page: 4564 year: 2020 ident: D1GC03768D/cit44/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02577A – volume: 58 start-page: 19060 year: 2019 ident: D1GC03768D/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911696 – volume: 8 start-page: 1802319 year: 2018 ident: D1GC03768D/cit225/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802319 – volume: 6 start-page: 8009 year: 2016 ident: D1GC03768D/cit105/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02520 – volume: 12 start-page: 3797 year: 2020 ident: D1GC03768D/cit11/1 publication-title: ChemCatChem doi: 10.1002/cctc.202000360 – volume: 8 start-page: 2100294 year: 2021 ident: D1GC03768D/cit146/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202100294 – volume: 242 start-page: 1 year: 2019 ident: D1GC03768D/cit213/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.09.100 – volume: 8 start-page: 1801690 year: 2018 ident: D1GC03768D/cit234/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801690 – volume: 10 start-page: 1902104 year: 2019 ident: D1GC03768D/cit43/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902104 – volume: 456 start-page: 228003 year: 2020 ident: D1GC03768D/cit242/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228003 – volume: 355 start-page: 910 year: 2019 ident: D1GC03768D/cit79/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.221 – volume: 196 start-page: 6902 year: 2011 ident: D1GC03768D/cit68/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.055 – volume: 140 start-page: 5118 year: 2018 ident: D1GC03768D/cit232/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12968 – volume: 9 start-page: 8561 year: 2021 ident: D1GC03768D/cit126/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00044F – volume: 615 start-page: 79 year: 2014 ident: D1GC03768D/cit55/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.06.003 – volume: 357 start-page: 131 year: 2015 ident: D1GC03768D/cit59/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.09.009 – volume: 8 start-page: 2769 year: 2017 ident: D1GC03768D/cit72/1 publication-title: Chem. Sci. doi: 10.1039/C6SC05687C – volume: 50 start-page: 395 year: 2020 ident: D1GC03768D/cit139/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.046 |
SSID | ssj0011764 |
Score | 2.6063235 |
Snippet | Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 713 |
SubjectTerms | Catalysts Catalytic activity cost effectiveness Design Green chemistry Green hydrogen hydrogen Hydrogen production Interfaces Phosphates Phosphides Phosphonates Phosphorus Photocatalysis Physicochemical properties Renewable energy renewable energy sources Splitting Sustainable energy Transition metals Valence Water splitting |
Title | Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting |
URI | https://www.proquest.com/docview/2622318532 https://www.proquest.com/docview/2636747902 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QE4IAhEFApaBBcUDH4_jlWStqBQLo6UcrF213YaCdkodoTgyL_jXzH7tFsiBBxiRZv12vJ82Z0Zf_sNQi_tMCkIOMZWmJQQoCROaZEwLiwIFcqCUhIxIaX04SI8X_rvV8FqMPjZYy3tWvqGfd-7r-R_rAptYFe-S_YfLGsGhQb4DvaFI1gYjn9l45mgX0yaVus9CP7yVd3AZ7trLM5DlxUgJiJN861phfwC79PWsgkG5Y9ZtKiaOKwvIqDbdOfJV8J1FRtwXgVluu_dChLPhOkaciLdQCohSdFlHbVWBR98feOErXqZIM48MwncqdpCsig2hvGzqayU1BIhBuCfrupqbV0qmvHlTkFfZTVcTg-x3C6rKXMnmrgqiCnqTnpztR96Fpc7lEtZv03WItETvBp304uz5WwdyW2wauGPpPTnb2uK7XFJ1txZMxtm4zjvVk7NFrj4mJ0uF4ssna_SA3ToQsTiDtHhyTx9tzCvtJxIaJmZu9ZauV7ythv7unfUhTwHW12PRvg96T10VwUs-ESi7z4aFNUI3TIPaoTu9CQtR2g873ZOwmlq6WgeoB8SrLgDK65LvBes2IAVA1jxdbC-xvugigFN-CZUsYAqNlB9iJan83R6bqkCIBbzHL-1GIl9WHC8MGZlSdwoLKgfUS5ABEFITgvCw2-fJkFMITC3HXD4nMT3aez6QURZ5I3RsKqr4hHCcR44JAhJySX57LxMXOYwz6O571K4lnuEXukHnzGljs-LtHzOBEvDS7KZczYVRpodoRem7xepCbO317G2X6b-WU0Gdne5XoEHF3xufgaD8dd0pCrqHe_jhYDFxIY-Y7C7uUYHk8d_HvsJut39p47RsN3uiqfgO7f0mULlL6iC0EM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+strategies+of+phosphorus-containing+catalysts+for+photocatalytic%2C+photoelectrochemical+and+electrocatalytic+water+splitting&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Chen%2C+Lei&rft.au=Jin-Tao%2C+Ren&rft.au=Zhong-Yong%2C+Yuan&rft.date=2022-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=2&rft.spage=713&rft.epage=747&rft_id=info:doi/10.1039%2Fd1gc03768d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |