Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting

Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen....

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 2; pp. 713 - 747
Main Authors Chen, Lei, Ren, Jin-Tao, Yuan, Zhong-Yong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory-structure-property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation. The innovational strategies to design P-containing catalysts with enhanced photo-/electro-catalytic water splitting activity are reviewed with respect to phase modifying, foreign elements introducing, morphology tailoring and interface engineering.
AbstractList Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory–structure–property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation.
Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable energy carrier. The development of highly efficient catalysts is the key to achieving cost-effective and large-scale production of hydrogen. Recently, P-containing catalysts have gained a great deal of attention owing to their diverse chemical valence states, tunable structure and unique physicochemical properties. In this review, an overview of up-to-date progress in water splitting of P-containing photo- and electro-catalysts including elemental P, transition metal phosphides, metal phosphates/phosphonates and metal phosphorus trichalcogenides is provided. A general introduction to the water splitting mechanism and the activity origin of P-containing catalysts is briefly presented to provide rational guidance for the design of highly efficient catalysts. Notably, innovational strategies to design P-containing catalysts with enhanced catalytic activity are summarized with respect to modifying the phase, introducing foreign elements, tailoring morphology and engineering interfaces. In each section, we aim to deeply clarify the theory-structure-property relationship and provide underlying reasons behind enhanced catalytic performance. Finally, some challenges and research orientations of P-containing catalysts toward water splitting are briefly proposed from the perspectives of practical application and mechanism investigation. The innovational strategies to design P-containing catalysts with enhanced photo-/electro-catalytic water splitting activity are reviewed with respect to phase modifying, foreign elements introducing, morphology tailoring and interface engineering.
Author Ren, Jin-Tao
Chen, Lei
Yuan, Zhong-Yong
AuthorAffiliation School of Materials Science and Engineering
Nankai University
National Institute for Advanced Materials
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– name: National Institute for Advanced Materials
– name: School of Materials Science and Engineering
– name: Nankai University
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 2
  givenname: Jin-Tao
  surname: Ren
  fullname: Ren, Jin-Tao
– sequence: 3
  givenname: Zhong-Yong
  surname: Yuan
  fullname: Yuan, Zhong-Yong
BookMark eNptkctLAzEQxoMo-Lx4FwJeRFzNa5Pdo7S-QPCi5yWbZmtkm9RMivTqX27q2griIUwy_OabyXz7aNsHbxE6puSSEl5fTejUEK5kNdlCe1RIXtRMke3NXbJdtA_wRgilSoo99Dm24KYeQ4o62amzgEOH568B8okLKEzwSTvv_BQbnXS_hAS4C3HFpDCkkjMXw9v21qQYzKudOaN7rP0Er3NrFH_kThHDvHcpZd1DtNPpHuzRTzxAL7c3z6P74vHp7mF0_VgYTkUqjK4EZ4zLynSdZkraVqi2zJ8tpZy0VteSSNHWZdVWkhFqrKW1EG3FRKlao_gBOht05zG8LyykZubA2L7X3oYFNExyqYSqCcvo6R_0LSyiz9NlKs9Aq5KvqPOBMjEARNs18-hmOi4bSpqVHc2Y3o2-7RhnmPyBjUs6ubzeqF3_f8nJUBLBbKR_HeZfHY-bnQ
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c00449
crossref_primary_10_1016_j_gee_2022_12_005
crossref_primary_10_1016_j_mtsust_2023_100444
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1016_j_ccr_2025_216558
crossref_primary_10_1002_adfm_202309330
crossref_primary_10_1016_j_jmst_2024_05_005
crossref_primary_10_26599_NR_2025_94907061
crossref_primary_10_1016_j_mssp_2023_107780
crossref_primary_10_1002_smll_202406288
crossref_primary_10_1016_j_apcatb_2023_122466
crossref_primary_10_1016_j_ijhydene_2024_09_009
crossref_primary_10_1016_j_jechem_2022_08_019
crossref_primary_10_1039_D3QI02380J
crossref_primary_10_1039_D4SE00277F
crossref_primary_10_1021_acs_inorgchem_4c01925
crossref_primary_10_1002_adma_202309211
crossref_primary_10_1002_chem_202403442
crossref_primary_10_1007_s40843_024_3201_3
crossref_primary_10_1016_j_ijhydene_2024_11_435
crossref_primary_10_1016_j_ccr_2024_215814
crossref_primary_10_1016_j_eurpolymj_2024_113125
crossref_primary_10_1039_D3NJ02733C
crossref_primary_10_1016_j_ccr_2024_216345
crossref_primary_10_1039_D3QI02222F
crossref_primary_10_1002_aenm_202203720
crossref_primary_10_1039_D2TA09588B
crossref_primary_10_1039_D2GC03377A
crossref_primary_10_1002_cssc_202401127
crossref_primary_10_1039_D2GC01819E
crossref_primary_10_1039_D2TA03313E
crossref_primary_10_1002_wene_530
crossref_primary_10_1039_D3GC02339G
crossref_primary_10_1007_s40843_021_2017_y
crossref_primary_10_1016_j_mssp_2024_108533
crossref_primary_10_1016_j_apsusc_2022_155201
crossref_primary_10_1016_j_jmst_2023_03_058
crossref_primary_10_1021_acs_iecr_2c03875
crossref_primary_10_1039_D3GC03371F
crossref_primary_10_1016_j_ijhydene_2023_05_290
crossref_primary_10_1039_D3GC01828H
crossref_primary_10_1016_j_jcis_2024_02_170
crossref_primary_10_1039_D2CY01673G
crossref_primary_10_1002_smtd_202201358
crossref_primary_10_1016_j_ijhydene_2023_04_258
crossref_primary_10_1016_j_apcata_2024_120063
crossref_primary_10_18686_cest_v2i3_121
crossref_primary_10_1016_j_mattod_2025_03_003
crossref_primary_10_1021_acscatal_3c01885
crossref_primary_10_1002_aenm_202300254
crossref_primary_10_1016_j_jallcom_2022_166018
crossref_primary_10_1002_smll_202300194
crossref_primary_10_1021_acsanm_4c05950
crossref_primary_10_3390_nano14080698
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1016_j_vacuum_2023_112068
crossref_primary_10_1039_D3TA01629C
crossref_primary_10_1039_D3CC02074F
crossref_primary_10_1016_j_jcis_2023_10_151
crossref_primary_10_1039_D4QI01740D
crossref_primary_10_1021_acsaenm_2c00127
crossref_primary_10_1039_D2NR04378E
crossref_primary_10_1016_j_apcatb_2022_121546
crossref_primary_10_1016_j_mtener_2024_101737
crossref_primary_10_1021_acssuschemeng_4c08960
Cites_doi 10.1002/aenm.201703290
10.1016/j.ccr.2020.213516
10.1016/j.apsusc.2018.06.027
10.1073/pnas.1800069115
10.1002/cssc.202002103
10.1039/D0CE01487G
10.1021/acsami.9b00592
10.1039/C9TA09775A
10.1016/j.jcis.2021.08.041
10.1021/acscatal.8b05081
10.1002/anie.201905281
10.1002/smll.201701875
10.1021/acsami.1c02361
10.1039/C9CC06146K
10.1002/anie.201811152
10.1021/acs.jpclett.0c03841
10.1002/anie.201712925
10.1021/acscatal.6b02849
10.1126/science.1162018
10.1002/smll.201902427
10.1002/anie.201810309
10.1016/j.apsusc.2020.145715
10.1016/j.cej.2020.126547
10.1016/j.nanoen.2017.09.017
10.1039/C6GC02825J
10.1002/cctc.202000139
10.1002/adma.201906368
10.1039/C7SC05033J
10.1021/acs.inorgchem.9b03475
10.1016/S1872-2067(20)63693-2
10.1002/chem.201904510
10.1039/D1CS00323B
10.1002/anie.201408222
10.1016/j.carbon.2019.10.018
10.1039/C7TA04434H
10.1016/S1872-2067(19)63459-5
10.1021/acsaem.9b02155
10.1021/acssuschemeng.0c08328
10.1021/acsnano.8b02849
10.1016/j.nanoen.2018.08.064
10.1016/j.nanoen.2018.06.001
10.1016/j.apcatb.2019.02.055
10.1016/j.electacta.2019.135210
10.1016/j.jcis.2021.01.083
10.1002/anie.201908760
10.1039/C9TA08361H
10.1039/C9TA07289F
10.1016/j.jcis.2019.06.063
10.1088/2053-1583/1/2/025001
10.1016/S1872-2067(19)63469-8
10.1021/jacs.9b00154
10.1021/acs.chemrev.9b00201
10.1002/adma.201602852
10.1039/C7TA10404A
10.1039/C8NR03350A
10.1016/j.ijhydene.2019.10.126
10.1021/acs.chemmater.5b04343
10.1016/j.inoche.2020.108123
10.1039/C9TA13487E
10.1016/j.jcis.2020.12.112
10.1039/D0TA05797E
10.1002/sstr.202000148
10.1021/ie2027469
10.1002/anie.201603331
10.1016/j.jcis.2018.06.078
10.1021/acsami.8b20958
10.1021/acsami.6b16319
10.1016/j.cej.2020.126803
10.1016/j.ijhydene.2020.09.101
10.1039/C9TA03944A
10.1016/j.chemosphere.2021.129793
10.1039/D0TA06527G
10.1088/2053-1583/2/3/031002
10.1016/j.cej.2019.123337
10.1021/acssuschemeng.9b07252
10.1021/acsami.9b03965
10.1021/acsnano.8b06671
10.1021/jacs.7b08474
10.1016/j.jelechem.2020.114031
10.1002/anie.201911503
10.1039/C5CP06796K
10.1002/adfm.201800548
10.1016/j.ijhydene.2019.11.227
10.1002/anie.201900292
10.1016/j.cej.2020.127331
10.1002/aenm.201700020
10.1016/j.cattod.2020.02.031
10.1016/j.micromeso.2021.110921
10.1002/smll.201804546
10.1002/aenm.201700396
10.1016/j.apcatb.2011.10.028
10.1016/j.cej.2020.125537
10.1021/acsaem.9b00299
10.1103/PhysRevB.94.184428
10.1021/acs.nanolett.7b01334
10.1016/j.jmst.2020.07.010
10.1002/adfm.201706120
10.1016/j.jallcom.2018.03.294
10.1002/adma.201900813
10.1002/adfm.202003261
10.1002/cctc.201801482
10.1016/j.jcis.2014.05.020
10.1039/D0CY01447H
10.1002/anie.201808929
10.1039/C8QI01026A
10.1002/adfm.201910830
10.1021/acsami.9b11594
10.1039/C7TA11342K
10.1021/acsami.8b19623
10.1039/C9EE00752K
10.1002/adfm.201805311
10.1016/j.ceramint.2020.10.098
10.1016/j.electacta.2017.05.032
10.1002/anie.201906683
10.1021/acssuschemeng.9b03217
10.1016/j.jpowsour.2019.05.063
10.1016/j.matlet.2018.10.116
10.1002/adma.201605776
10.1002/adfm.201805975
10.1039/C9TA03256H
10.1039/C5TA02105G
10.1016/j.ceramint.2021.02.215
10.1016/j.jechem.2021.08.038
10.1002/cctc.201901944
10.1021/acsami.5b04947
10.1039/D1NJ03439A
10.1016/j.apcatb.2020.118844
10.1016/j.mtadv.2020.100081
10.1021/acscatal.7b03167
10.1021/acsnano.7b09146
10.1016/j.apcatb.2018.11.001
10.1016/j.mtnano.2021.100124
10.1021/acs.chemmater.8b03908
10.1016/j.apcatb.2019.118555
10.1039/D0QI01097A
10.1016/j.jhazmat.2021.125400
10.1002/anie.201912552
10.1016/j.scitotenv.2019.134239
10.1039/C8CS00664D
10.1021/acs.chemmater.7b03627
10.1039/C9NR09122J
10.1016/j.cej.2020.124408
10.1002/adfm.201703484
10.1021/acsmaterialslett.0c00095
10.1088/0957-4484/27/21/215602
10.1002/aesr.202000071
10.1021/acssuschemeng.9b02556
10.1016/j.cej.2020.125245
10.1016/j.apsusc.2020.146623
10.1002/smll.202005304
10.1039/D0TA07616C
10.1002/aenm.201502409
10.1039/C7TA02297B
10.1016/j.jechem.2020.01.017
10.1039/C9TA04583J
10.1002/smll.201600345
10.1039/C8DT04731F
10.1038/nmat2780
10.1002/aenm.201900516
10.1016/j.matt.2020.04.002
10.1021/jacs.6b08491
10.1002/smll.201906766
10.1021/acscatal.5b02193
10.1021/jp200287n
10.1016/j.jechem.2020.03.072
10.1002/adma.201800128
10.1016/j.apsusc.2016.08.002
10.1021/acsami.1c00038
10.1002/adfm.202004009
10.1021/acssuschemeng.9b01263
10.1016/j.ijhydene.2020.06.185
10.1016/j.apcatb.2019.118352
10.1021/nl501658d
10.1002/chem.201904594
10.1021/acscatal.6b02203
10.1016/j.joule.2018.08.001
10.1016/j.ijhydene.2018.12.159
10.1002/adma.201803590
10.1039/C8CC02822B
10.1002/smtd.202000719
10.1016/j.apcatb.2018.09.035
10.1021/acssuschemeng.8b00873
10.1016/S1872-2067(19)63454-6
10.1039/C9CS00607A
10.1002/anie.201906416
10.1016/j.cej.2019.02.083
10.1002/cssc.202002454
10.1016/j.nanoen.2021.105748
10.1016/j.nanoen.2018.11.090
10.1021/acsnano.7b05020
10.1021/acsami.9b17960
10.1002/smll.201802755
10.1039/C8SC03877E
10.1016/j.ijhydene.2020.11.030
10.1039/D0TA08704A
10.1002/advs.202001431
10.1039/C8NR03846E
10.1039/C7TA03669H
10.1021/acscatal.5b00349
10.1016/j.jpowsour.2014.12.095
10.1039/C7CY02323E
10.1016/j.cej.2020.124164
10.1016/j.electacta.2020.137567
10.1016/j.ijhydene.2020.09.028
10.1039/D0NR01748E
10.1021/ja403440e
10.1002/aenm.202003545
10.1021/acs.chemmater.5b01284
10.1002/anie.201612315
10.1002/adma.202005815
10.1002/cssc.202000104
10.1016/j.electacta.2019.05.030
10.1021/acssuschemeng.7b04403
10.1039/C8TA01320A
10.1002/aenm.201802615
10.1016/j.ces.2020.116069
10.1021/acssuschemeng.0c01293
10.1016/j.apsusc.2019.144099
10.1002/cssc.202000416
10.1016/j.ijhydene.2020.09.146
10.1016/S1872-2067(20)63740-8
10.1002/smll.201900550
10.1039/C7TA10884B
10.1039/D0TA09752G
10.3390/nano11010013
10.1007/s11705-021-2102-6
10.1039/D0EE02577A
10.1002/anie.201911696
10.1002/aenm.201802319
10.1021/acscatal.6b02520
10.1002/cctc.202000360
10.1002/admi.202100294
10.1016/j.apcatb.2018.09.100
10.1002/aenm.201801690
10.1002/aenm.201902104
10.1016/j.jpowsour.2020.228003
10.1016/j.cej.2018.08.221
10.1016/j.jpowsour.2010.12.055
10.1021/jacs.7b12968
10.1039/D1TA00044F
10.1016/j.jallcom.2014.06.003
10.1016/j.apsusc.2015.09.009
10.1039/C6SC05687C
10.1016/j.jechem.2020.03.046
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
DOI 10.1039/d1gc03768d
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 747
ExternalDocumentID 10_1039_D1GC03768D
d1gc03768d
GroupedDBID 0-7
0R
1TJ
29I
4.4
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
ID FETCH-LOGICAL-c314t-ca84322368cffa276eb47b5376566dbea96064b958b86201cee1944b82457bc73
ISSN 1463-9262
1463-9270
IngestDate Thu Jul 10 17:31:07 EDT 2025
Mon Jun 30 12:02:19 EDT 2025
Tue Jul 01 01:41:32 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jan 25 04:31:02 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-ca84322368cffa276eb47b5376566dbea96064b958b86201cee1944b82457bc73
Notes Jin-Tao Ren received his Ph.D. degree from Nankai University in 2020 under the supervision of Prof. Zhong-Yong Yuan. He is currently a postdoctoral fellow at Nankai University. His research interests focus on advanced nanomaterials for applications in electrocatalysis, metal-air batteries, fuel cells
and as editorial board member of several journals. His research interests are mainly focused on the self-assembly of hierarchically nanoporous and nanostructured materials for energy and environmental applications.
etc
Lei Chen received her BEng degree from Northeast Forestry University in 2017 and obtained her MEng degree from Nankai University in 2020. She is currently a PhD candidate under the supervision of Prof. Zhong-Yong Yuan at Nankai University. Her current research focuses on the fabrication of nanostructured materials for energy-related applications.
RSC Advances
.
Zhong-Yong Yuan received his PhD degree from Nankai University in 1999. After his postdoctoral research at the Institute of Physics, Chinese Academy of Sciences, he joined the Laboratory of Inorganic Materials Chemistry at the University of Namur, Belgium in 2001. In 2005, he was appointed Professor in Nankai University. In 2006, he was awarded the "Program for New Century Excellent Talents in University" by the Ministry of Education. In 2016, he was elected as a fellow of the Royal Society of Chemistry. He is currently serving as an Associate Editor of
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3790-8181
PQID 2622318532
PQPubID 2047490
PageCount 35
ParticipantIDs proquest_miscellaneous_2636747902
crossref_citationtrail_10_1039_D1GC03768D
crossref_primary_10_1039_D1GC03768D
rsc_primary_d1gc03768d
proquest_journals_2622318532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (D1GC03768D/cit131/1) 2017; 29
Wang (D1GC03768D/cit149/1) 2021; 33
Rekha (D1GC03768D/cit35/1) 2021; 47
Cheng (D1GC03768D/cit165/1) 2019; 44
Qiu (D1GC03768D/cit69/1) 2020; 119
Bu (D1GC03768D/cit231/1) 2019; 11
Yu (D1GC03768D/cit147/1) 2019; 7
Di (D1GC03768D/cit51/1) 2016; 389
Bhanja (D1GC03768D/cit52/1) 2020; 396
Oliveira (D1GC03768D/cit146/1) 2021; 8
Wang (D1GC03768D/cit36/1) 2022; 66
Shao (D1GC03768D/cit94/1) 2018; 6
Zhang (D1GC03768D/cit234/1) 2018; 8
Zhu (D1GC03768D/cit20/1) 2020; 2
Ren (D1GC03768D/cit196/1) 2020; 263
Nagao (D1GC03768D/cit68/1) 2011; 196
Liu (D1GC03768D/cit108/1) 2017; 7
Wang (D1GC03768D/cit218/1) 2012; 51
Shifa (D1GC03768D/cit91/1) 2018; 28
Yu (D1GC03768D/cit208/1) 2021; 23
Wang (D1GC03768D/cit244/1) 2021; 15
Zhao (D1GC03768D/cit180/1) 2021; 45
Li (D1GC03768D/cit227/1) 2019; 7
Liu (D1GC03768D/cit89/1) 2018; 30
Chen (D1GC03768D/cit139/1) 2020; 50
Feng (D1GC03768D/cit232/1) 2018; 140
Ding (D1GC03768D/cit237/1) 2019; 11
Yi (D1GC03768D/cit221/1) 2010; 9
Yin (D1GC03768D/cit6/1) 2020; 7
Bhanja (D1GC03768D/cit197/1) 2021; 405
Pu (D1GC03768D/cit46/1) 2020; 30
Wu (D1GC03768D/cit73/1) 2018; 8
Saad (D1GC03768D/cit239/1) 2020; 3
Zhang (D1GC03768D/cit164/1) 2017; 5
Song (D1GC03768D/cit1/1) 2020; 49
Hu (D1GC03768D/cit66/1) 2016; 55
Lei (D1GC03768D/cit105/1) 2016; 6
Li (D1GC03768D/cit19/1) 2019; 366
Zhang (D1GC03768D/cit72/1) 2017; 8
Ren (D1GC03768D/cit54/1) 2018; 10
Rabiei Baboukani (D1GC03768D/cit144/1) 2021; 2
Chen (D1GC03768D/cit15/1) 2020; 12
Li (D1GC03768D/cit151/1) 2019; 15
Chen (D1GC03768D/cit130/1) 2021; 315
Ai (D1GC03768D/cit202/1) 2017; 242
Du (D1GC03768D/cit123/1) 2019; 48
Xiao (D1GC03768D/cit162/1) 2020; 41
Bai (D1GC03768D/cit242/1) 2020; 456
Lv (D1GC03768D/cit113/1) 2020; 30
Zhang (D1GC03768D/cit39/1) 2019; 58
Wang (D1GC03768D/cit84/1) 2020; 48
Oliveira (D1GC03768D/cit12/1) 2021; 13
Mingshan Zhu (D1GC03768D/cit210/1) 2017; 56
Chen (D1GC03768D/cit61/1) 2020; 387
Tian (D1GC03768D/cit122/1) 2019; 7
He (D1GC03768D/cit198/1) 2019; 58
Dong (D1GC03768D/cit32/1) 2020; 5
Feng (D1GC03768D/cit53/1) 2020; 698
Lian (D1GC03768D/cit134/1) 2019; 10
Chakraborty (D1GC03768D/cit118/1) 2020; 12
Meng (D1GC03768D/cit212/1) 2021; 413
Yu (D1GC03768D/cit187/1) 2019; 44
Li (D1GC03768D/cit209/1) 2021; 229
Kosmala (D1GC03768D/cit161/1) 2021; 8
Liu (D1GC03768D/cit224/1) 2018; 8
Zhang (D1GC03768D/cit63/1) 2021; 2
Zeng (D1GC03768D/cit163/1) 2019; 11
Kanan (D1GC03768D/cit18/1) 2008; 321
Zhao (D1GC03768D/cit195/1) 2020; 59
Li (D1GC03768D/cit201/1) 2020; 358
Wang (D1GC03768D/cit170/1) 2018; 10
You (D1GC03768D/cit207/1) 2015; 6
Huang (D1GC03768D/cit27/1) 2019; 553
Samal (D1GC03768D/cit24/1) 2021; 9
Li (D1GC03768D/cit186/1) 2019; 11
Lu (D1GC03768D/cit226/1) 2019; 7
Wang (D1GC03768D/cit158/1) 2017; 40
Xiu (D1GC03768D/cit229/1) 2018; 12
Zhu (D1GC03768D/cit23/1) 2020; 32
Du (D1GC03768D/cit80/1) 2019; 431
Khalid (D1GC03768D/cit190/1) 2018; 6
Du (D1GC03768D/cit140/1) 2015; 278
Ryu (D1GC03768D/cit85/1) 2015; 5
Li (D1GC03768D/cit110/1) 2020; 45
Zhou (D1GC03768D/cit189/1) 2020; 10
Wang (D1GC03768D/cit14/1) 2012; 111–112
Xu (D1GC03768D/cit8/1) 2021; 68
Yang (D1GC03768D/cit77/1) 2017; 29
Ma (D1GC03768D/cit59/1) 2015; 357
Lei (D1GC03768D/cit211/1) 2018; 50
Castellanos-Gomez (D1GC03768D/cit143/1) 2014; 1
Hu (D1GC03768D/cit5/1) 2021; 15
Theerthagiri (D1GC03768D/cit45/1) 2021; 47
Hu (D1GC03768D/cit215/1) 2020; 269
Pandey (D1GC03768D/cit150/1) 2020; 11
Wang (D1GC03768D/cit102/1) 2020; 8
Ren (D1GC03768D/cit7/1) 2020; 424
Zhu (D1GC03768D/cit92/1) 2017; 29
Tian (D1GC03768D/cit155/1) 2018; 115
Shi (D1GC03768D/cit159/1) 2019; 55
Sanchez (D1GC03768D/cit50/1) 2021; 11
Konkena (D1GC03768D/cit199/1) 2016; 7
Xin (D1GC03768D/cit121/1) 2017; 11
Luo (D1GC03768D/cit169/1) 2020; 505
Zhang (D1GC03768D/cit133/1) 2021; 590
Ansari (D1GC03768D/cit67/1) 2016; 18
Liu (D1GC03768D/cit181/1) 2019; 58
Wang (D1GC03768D/cit104/1) 2019; 58
Gusmão (D1GC03768D/cit154/1) 2019; 29
Hong (D1GC03768D/cit42/1) 2021; 14
Geng (D1GC03768D/cit126/1) 2021; 9
Anjum (D1GC03768D/cit97/1) 2018; 30
Xu (D1GC03768D/cit114/1) 2018; 9
Li (D1GC03768D/cit120/1) 2018; 455
Liu (D1GC03768D/cit206/1) 2020; 862
Che (D1GC03768D/cit205/1) 2020; 51
Callejas (D1GC03768D/cit82/1) 2015; 27
Maitani (D1GC03768D/cit172/1) 2017; 9
Ji (D1GC03768D/cit194/1) 2020; 12
Liu (D1GC03768D/cit142/1) 2016; 12
Weng (D1GC03768D/cit31/1) 2020; 13
Lv (D1GC03768D/cit13/1) 2021; 17
Wu (D1GC03768D/cit40/1) 2021; 274
Yang (D1GC03768D/cit222/1) 2020; 16
Sun (D1GC03768D/cit65/1) 2019; 236
Li (D1GC03768D/cit4/1) 2021; 42
Ren (D1GC03768D/cit193/1) 2018; 6
Wen (D1GC03768D/cit167/1) 2020; 8
Shen (D1GC03768D/cit184/1) 2018; 6
Qi (D1GC03768D/cit216/1) 2020; 41
Li (D1GC03768D/cit156/1) 2015; 2
Bu (D1GC03768D/cit79/1) 2019; 355
Jing (D1GC03768D/cit178/1) 2017; 27
Wu (D1GC03768D/cit87/1) 2020; 16
Zhang (D1GC03768D/cit101/1) 2020; 512
Rahman (D1GC03768D/cit58/1) 2018; 6
Zhang (D1GC03768D/cit203/1) 2021; 367
Li (D1GC03768D/cit21/1) 2018; 57
Zhou (D1GC03768D/cit57/1) 2021; 83
Hu (D1GC03768D/cit148/1) 2018; 28
Kondori (D1GC03768D/cit10/1) 2019; 9
Hua (D1GC03768D/cit214/1) 2020; 8
Lv (D1GC03768D/cit88/1) 2019; 7
Zhu (D1GC03768D/cit38/1) 2020; 12
Sun (D1GC03768D/cit182/1) 2015; 3
Zheng (D1GC03768D/cit55/1) 2014; 615
He (D1GC03768D/cit168/1) 2019; 249
Xue (D1GC03768D/cit241/1) 2018; 12
Li (D1GC03768D/cit137/1) 2020; 13
Hu (D1GC03768D/cit93/1) 2017; 139
Mandari (D1GC03768D/cit171/1) 2018; 750
Sendeku (D1GC03768D/cit25/1) 2021; 13
Li (D1GC03768D/cit233/1) 2019; 12
Tian (D1GC03768D/cit191/1) 2020; 8
Li (D1GC03768D/cit34/1) 2021; 46
Wang (D1GC03768D/cit37/1) 2020; 59
Kibsgaard (D1GC03768D/cit98/1) 2014; 53
Han (D1GC03768D/cit220/1) 2018; 8
Xi (D1GC03768D/cit75/1) 2016; 28
Yan (D1GC03768D/cit106/1) 2020; 265
Song (D1GC03768D/cit183/1) 2020; 384
Zhao (D1GC03768D/cit33/1) 2021; 14
Guo (D1GC03768D/cit99/1) 2020; 45
Liu (D1GC03768D/cit176/1) 2020; 26
Yang (D1GC03768D/cit16/1) 2021; 405
Chittari (D1GC03768D/cit49/1) 2016; 94
Zhu (D1GC03768D/cit64/1) 2020; 59
Yang (D1GC03768D/cit86/1) 2019; 15
Zhu (D1GC03768D/cit60/1) 2015; 7
Liu (D1GC03768D/cit109/1) 2016; 7
Mei (D1GC03768D/cit129/1) 2018; 2
Kim (D1GC03768D/cit141/1) 2021; 408
Yan (D1GC03768D/cit185/1) 2020; 45
Qin (D1GC03768D/cit175/1) 2017; 5
Prasannachandran (D1GC03768D/cit95/1) 2018; 12
Zhang (D1GC03768D/cit127/1) 2016; 6
Gao (D1GC03768D/cit243/1) 2022; 606
Zhao (D1GC03768D/cit115/1) 2020; 398
Xing (D1GC03768D/cit117/1) 2020; 59
Ren (D1GC03768D/cit153/1) 2017; 7
Zhang (D1GC03768D/cit217/1) 2020; 41
Li (D1GC03768D/cit43/1) 2019; 10
Yuan (D1GC03768D/cit213/1) 2019; 242
Liu (D1GC03768D/cit230/1) 2020; 8
Indra (D1GC03768D/cit78/1) 2020; 8
Jothi (D1GC03768D/cit223/1) 2018; 8
Gao (D1GC03768D/cit30/1) 2021; 589
Du (D1GC03768D/cit138/1) 2017; 5
Daulbayev (D1GC03768D/cit29/1) 2020; 45
Sial (D1GC03768D/cit116/1) 2018; 10
Gusmao (D1GC03768D/cit48/1) 2019; 58
Liu (D1GC03768D/cit136/1) 2019; 11
Raeisi-Kheirabadi (D1GC03768D/cit188/1) 2020; 45
Anandhababu (D1GC03768D/cit132/1) 2018; 28
Popczun (D1GC03768D/cit71/1) 2013; 135
Chandrasekaran (D1GC03768D/cit3/1) 2019; 48
Peng (D1GC03768D/cit124/1) 2020; 8
Chen (D1GC03768D/cit90/1) 2019; 7
Chen (D1GC03768D/cit174/1) 2020; 59
Peng (D1GC03768D/cit56/1) 2011; 115
Wu (D1GC03768D/cit112/1) 2018; 57
Zhang (D1GC03768D/cit160/1) 2020; 30
Liu (D1GC03768D/cit235/1) 2018; 14
Sun (D1GC03768D/cit228/1) 2020; 26
Shi (D1GC03768D/cit44/1) 2020; 13
Song (D1GC03768D/cit225/1) 2018; 8
Elbanna (D1GC03768D/cit177/1) 2019; 9
Puziy (D1GC03768D/cit26/1) 2020; 157
Ran (D1GC03768D/cit179/1) 2018; 30
Chen (D1GC03768D/cit103/1) 2021; 9
Yuan (D1GC03768D/cit192/1) 2019; 141
Wang (D1GC03768D/cit28/1) 2020; 120
Lu (D1GC03768D/cit238/1) 2020; 330
Liu (D1GC03768D/cit135/1) 2017; 13
Wang (D1GC03768D/cit125/1) 2020; 2
Zhang (D1GC03768D/cit70/1) 2019; 56
Li (D1GC03768D/cit62/1) 2021; 50
Guo (D1GC03768D/cit74/1) 2021; 42
Zhang (D1GC03768D/cit100/1) 2016; 138
Xu (D1GC03768D/cit166/1) 2019; 241
Anjum (D1GC03768D/cit96/1) 2018; 53
Ren (D1GC03768D/cit111/1) 2020; 389
He (D1GC03768D/cit200/1) 2017; 17
Ray (D1GC03768D/cit47/1) 2020; 8
Ramos-Garcés (D1GC03768D/cit145/1) 2019; 2
Smith (D1GC03768D/cit157/1) 2016; 27
Liang (D1GC03768D/cit152/1) 2020; 12
Beltrán-Suito (D1GC03768D/cit81/1) 2019; 7
Rong (D1GC03768D/cit204/1) 2019; 313
You (D1GC03768D/cit236/1) 2019; 58
Yu (D1GC03768D/cit17/1) 2021; 12
Han (D1GC03768D/cit41/1) 2014; 14
Li (D1GC03768D/cit83/1) 2019; 31
Zhang (D1GC03768D/cit128/1) 2018; 6
Li (D1GC03768D/cit2/1) 2020; 8
Wang (D1GC03768D/cit22/1) 2018; 54
Zhu (D1GC03768D/cit219/1) 2018; 530
Hu (D1GC03768D/cit9/1) 2017; 19
Xie (D1GC03768D/cit119/1) 2014; 430
Huang (D1GC03768D/cit240/1) 2020; 525
Lv (D1GC03768D/cit107/1) 2019; 6
Vo (D1GC03768D/cit173/1) 2019; 243
Zhao (D1GC03768D/cit11/1) 2020; 12
Han (D1GC03768D/cit76/1) 2020; 8
References_xml – volume: 8
  start-page: 1703290
  year: 2018
  ident: D1GC03768D/cit224/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703290
– volume: 424
  start-page: 213516
  year: 2020
  ident: D1GC03768D/cit7/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213516
– volume: 455
  start-page: 1137
  year: 2018
  ident: D1GC03768D/cit120/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.027
– volume: 115
  start-page: 4345
  year: 2018
  ident: D1GC03768D/cit155/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800069115
– volume: 14
  start-page: 130
  year: 2021
  ident: D1GC03768D/cit33/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002103
– volume: 23
  start-page: 591
  year: 2021
  ident: D1GC03768D/cit208/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01487G
– volume: 11
  start-page: 15528
  year: 2019
  ident: D1GC03768D/cit136/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00592
– volume: 8
  start-page: 2637
  year: 2020
  ident: D1GC03768D/cit78/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09775A
– volume: 606
  start-page: 544
  year: 2022
  ident: D1GC03768D/cit243/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.041
– volume: 9
  start-page: 3618
  year: 2019
  ident: D1GC03768D/cit177/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05081
– volume: 58
  start-page: 11903
  year: 2019
  ident: D1GC03768D/cit198/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905281
– volume: 13
  start-page: 1701875
  year: 2017
  ident: D1GC03768D/cit135/1
  publication-title: Small
  doi: 10.1002/smll.201701875
– volume: 13
  start-page: 23638
  year: 2021
  ident: D1GC03768D/cit12/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02361
– volume: 55
  start-page: 12531
  year: 2019
  ident: D1GC03768D/cit159/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06146K
– volume: 58
  start-page: 1659
  year: 2019
  ident: D1GC03768D/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811152
– volume: 12
  start-page: 2464
  year: 2021
  ident: D1GC03768D/cit17/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03841
– volume: 57
  start-page: 3222
  year: 2018
  ident: D1GC03768D/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712925
– volume: 7
  start-page: 98
  year: 2016
  ident: D1GC03768D/cit109/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02849
– volume: 321
  start-page: 1072
  year: 2008
  ident: D1GC03768D/cit18/1
  publication-title: Science
  doi: 10.1126/science.1162018
– volume: 15
  start-page: 1902427
  year: 2019
  ident: D1GC03768D/cit151/1
  publication-title: Small
  doi: 10.1002/smll.201902427
– volume: 58
  start-page: 9326
  year: 2019
  ident: D1GC03768D/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810309
– volume: 512
  start-page: 145715
  year: 2020
  ident: D1GC03768D/cit101/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145715
– volume: 405
  start-page: 126547
  year: 2021
  ident: D1GC03768D/cit16/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126547
– volume: 40
  start-page: 673
  year: 2017
  ident: D1GC03768D/cit158/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.017
– volume: 19
  start-page: 588
  year: 2017
  ident: D1GC03768D/cit9/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC02825J
– volume: 12
  start-page: 2840
  year: 2020
  ident: D1GC03768D/cit152/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000139
– volume: 32
  start-page: 1906368
  year: 2020
  ident: D1GC03768D/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906368
– volume: 9
  start-page: 3470
  year: 2018
  ident: D1GC03768D/cit114/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05033J
– volume: 59
  start-page: 1566
  year: 2020
  ident: D1GC03768D/cit174/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03475
– volume: 42
  start-page: 511
  year: 2021
  ident: D1GC03768D/cit4/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63693-2
– volume: 26
  start-page: 2793
  year: 2020
  ident: D1GC03768D/cit228/1
  publication-title: Chemistry
  doi: 10.1002/chem.201904510
– volume: 50
  start-page: 7539
  year: 2021
  ident: D1GC03768D/cit62/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00323B
– volume: 53
  start-page: 14433
  year: 2014
  ident: D1GC03768D/cit98/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408222
– volume: 157
  start-page: 796
  year: 2020
  ident: D1GC03768D/cit26/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.018
– volume: 5
  start-page: 19025
  year: 2017
  ident: D1GC03768D/cit175/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04434H
– volume: 41
  start-page: 114
  year: 2020
  ident: D1GC03768D/cit216/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63459-5
– volume: 3
  start-page: 1684
  year: 2020
  ident: D1GC03768D/cit239/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02155
– volume: 9
  start-page: 1856
  year: 2021
  ident: D1GC03768D/cit103/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08328
– volume: 12
  start-page: 8017
  year: 2018
  ident: D1GC03768D/cit229/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02849
– volume: 53
  start-page: 286
  year: 2018
  ident: D1GC03768D/cit96/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.064
– volume: 50
  start-page: 552
  year: 2018
  ident: D1GC03768D/cit211/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.001
– volume: 249
  start-page: 246
  year: 2019
  ident: D1GC03768D/cit168/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.02.055
– volume: 330
  start-page: 135210
  year: 2020
  ident: D1GC03768D/cit238/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135210
– volume: 590
  start-page: 632
  year: 2021
  ident: D1GC03768D/cit133/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.01.083
– volume: 59
  start-page: 8982
  year: 2020
  ident: D1GC03768D/cit195/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908760
– volume: 8
  start-page: 2995
  year: 2020
  ident: D1GC03768D/cit167/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08361H
– volume: 7
  start-page: 20658
  year: 2019
  ident: D1GC03768D/cit227/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07289F
– volume: 553
  start-page: 647
  year: 2019
  ident: D1GC03768D/cit27/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.06.063
– volume: 1
  start-page: 025001
  year: 2014
  ident: D1GC03768D/cit143/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/1/2/025001
– volume: 41
  start-page: 642
  year: 2020
  ident: D1GC03768D/cit162/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63469-8
– volume: 141
  start-page: 4972
  year: 2019
  ident: D1GC03768D/cit192/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00154
– volume: 120
  start-page: 919
  year: 2020
  ident: D1GC03768D/cit28/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 29
  start-page: 1602852
  year: 2017
  ident: D1GC03768D/cit77/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602852
– volume: 6
  start-page: 1305
  year: 2018
  ident: D1GC03768D/cit58/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10404A
– volume: 10
  start-page: 12975
  year: 2018
  ident: D1GC03768D/cit116/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR03350A
– volume: 44
  start-page: 31832
  year: 2019
  ident: D1GC03768D/cit187/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.126
– volume: 28
  start-page: 1355
  year: 2016
  ident: D1GC03768D/cit75/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04343
– volume: 119
  start-page: 108123
  year: 2020
  ident: D1GC03768D/cit69/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.108123
– volume: 8
  start-page: 4647
  year: 2020
  ident: D1GC03768D/cit191/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13487E
– volume: 589
  start-page: 25
  year: 2021
  ident: D1GC03768D/cit30/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.112
– volume: 8
  start-page: 19196
  year: 2020
  ident: D1GC03768D/cit47/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05797E
– volume: 2
  start-page: 2000148
  year: 2021
  ident: D1GC03768D/cit144/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202000148
– volume: 51
  start-page: 9945
  year: 2012
  ident: D1GC03768D/cit218/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2027469
– volume: 55
  start-page: 9580
  year: 2016
  ident: D1GC03768D/cit66/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603331
– volume: 530
  start-page: 256
  year: 2018
  ident: D1GC03768D/cit219/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.06.078
– volume: 11
  start-page: 5651
  year: 2019
  ident: D1GC03768D/cit163/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20958
– volume: 9
  start-page: 10349
  year: 2017
  ident: D1GC03768D/cit172/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16319
– volume: 405
  start-page: 126803
  year: 2021
  ident: D1GC03768D/cit197/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126803
– volume: 45
  start-page: 33325
  year: 2020
  ident: D1GC03768D/cit29/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.101
– volume: 7
  start-page: 16859
  year: 2019
  ident: D1GC03768D/cit226/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03944A
– volume: 274
  start-page: 129793
  year: 2021
  ident: D1GC03768D/cit40/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129793
– volume: 8
  start-page: 18232
  year: 2020
  ident: D1GC03768D/cit76/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06527G
– volume: 2
  start-page: 031002
  year: 2015
  ident: D1GC03768D/cit156/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/3/031002
– volume: 384
  start-page: 123337
  year: 2020
  ident: D1GC03768D/cit183/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123337
– volume: 8
  start-page: 2919
  year: 2020
  ident: D1GC03768D/cit214/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07252
– volume: 11
  start-page: 22297
  year: 2019
  ident: D1GC03768D/cit186/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03965
– volume: 12
  start-page: 11511
  year: 2018
  ident: D1GC03768D/cit95/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06671
– volume: 139
  start-page: 15429
  year: 2017
  ident: D1GC03768D/cit93/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08474
– volume: 862
  start-page: 114031
  year: 2020
  ident: D1GC03768D/cit206/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114031
– volume: 59
  start-page: 868
  year: 2020
  ident: D1GC03768D/cit64/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911503
– volume: 18
  start-page: 3921
  year: 2016
  ident: D1GC03768D/cit67/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06796K
– volume: 28
  start-page: 1800548
  year: 2018
  ident: D1GC03768D/cit91/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800548
– volume: 45
  start-page: 2578
  year: 2020
  ident: D1GC03768D/cit185/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.227
– volume: 59
  start-page: 136
  year: 2020
  ident: D1GC03768D/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900292
– volume: 408
  start-page: 127331
  year: 2021
  ident: D1GC03768D/cit141/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127331
– volume: 7
  start-page: 1700020
  year: 2017
  ident: D1GC03768D/cit108/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700020
– volume: 358
  start-page: 215
  year: 2020
  ident: D1GC03768D/cit201/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.02.031
– volume: 315
  start-page: 110921
  year: 2021
  ident: D1GC03768D/cit130/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.110921
– volume: 15
  start-page: 1804546
  year: 2019
  ident: D1GC03768D/cit86/1
  publication-title: Small
  doi: 10.1002/smll.201804546
– volume: 7
  start-page: 1700396
  year: 2017
  ident: D1GC03768D/cit153/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700396
– volume: 111–112
  start-page: 409
  year: 2012
  ident: D1GC03768D/cit14/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.10.028
– volume: 398
  start-page: 125537
  year: 2020
  ident: D1GC03768D/cit115/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125537
– volume: 2
  start-page: 3561
  year: 2019
  ident: D1GC03768D/cit145/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00299
– volume: 94
  start-page: 184428
  year: 2016
  ident: D1GC03768D/cit49/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.184428
– volume: 17
  start-page: 4311
  year: 2017
  ident: D1GC03768D/cit200/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01334
– volume: 68
  start-page: 1
  year: 2021
  ident: D1GC03768D/cit8/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.07.010
– volume: 28
  start-page: 1706120
  year: 2018
  ident: D1GC03768D/cit132/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706120
– volume: 750
  start-page: 292
  year: 2018
  ident: D1GC03768D/cit171/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.294
– volume: 31
  start-page: 1900813
  year: 2019
  ident: D1GC03768D/cit83/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900813
– volume: 30
  start-page: 2003261
  year: 2020
  ident: D1GC03768D/cit160/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003261
– volume: 10
  start-page: 5297
  year: 2018
  ident: D1GC03768D/cit54/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801482
– volume: 430
  start-page: 1
  year: 2014
  ident: D1GC03768D/cit119/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.05.020
– volume: 10
  start-page: 7661
  year: 2020
  ident: D1GC03768D/cit189/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY01447H
– volume: 57
  start-page: 15445
  year: 2018
  ident: D1GC03768D/cit112/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808929
– volume: 6
  start-page: 74
  year: 2019
  ident: D1GC03768D/cit107/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI01026A
– volume: 30
  start-page: 1910830
  year: 2020
  ident: D1GC03768D/cit113/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910830
– volume: 11
  start-page: 38633
  year: 2019
  ident: D1GC03768D/cit231/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11594
– volume: 6
  start-page: 3141
  year: 2018
  ident: D1GC03768D/cit190/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11342K
– volume: 11
  start-page: 7936
  year: 2019
  ident: D1GC03768D/cit237/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19623
– volume: 12
  start-page: 2298
  year: 2019
  ident: D1GC03768D/cit233/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00752K
– volume: 28
  start-page: 1805311
  year: 2018
  ident: D1GC03768D/cit148/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805311
– volume: 47
  start-page: 4404
  year: 2021
  ident: D1GC03768D/cit45/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.098
– volume: 242
  start-page: 355
  year: 2017
  ident: D1GC03768D/cit202/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.032
– volume: 58
  start-page: 11796
  year: 2019
  ident: D1GC03768D/cit236/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906683
– volume: 7
  start-page: 13559
  year: 2019
  ident: D1GC03768D/cit90/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03217
– volume: 431
  start-page: 182
  year: 2019
  ident: D1GC03768D/cit80/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.05.063
– volume: 236
  start-page: 542
  year: 2019
  ident: D1GC03768D/cit65/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.10.116
– volume: 29
  start-page: 1605776
  year: 2017
  ident: D1GC03768D/cit92/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605776
– volume: 29
  start-page: 1805975
  year: 2019
  ident: D1GC03768D/cit154/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805975
– volume: 7
  start-page: 13928
  year: 2019
  ident: D1GC03768D/cit147/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03256H
– volume: 3
  start-page: 10243
  year: 2015
  ident: D1GC03768D/cit182/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02105G
– volume: 47
  start-page: 16385
  year: 2021
  ident: D1GC03768D/cit35/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.02.215
– volume: 66
  start-page: 529
  year: 2022
  ident: D1GC03768D/cit36/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.08.038
– volume: 12
  start-page: 1504
  year: 2020
  ident: D1GC03768D/cit118/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901944
– volume: 7
  start-page: 16850
  year: 2015
  ident: D1GC03768D/cit60/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04947
– volume: 45
  start-page: 19876
  year: 2021
  ident: D1GC03768D/cit180/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ03439A
– volume: 269
  start-page: 118844
  year: 2020
  ident: D1GC03768D/cit215/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118844
– volume: 8
  start-page: 100081
  year: 2020
  ident: D1GC03768D/cit124/1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2020.100081
– volume: 8
  start-page: 1143
  year: 2018
  ident: D1GC03768D/cit73/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03167
– volume: 12
  start-page: 5297
  year: 2018
  ident: D1GC03768D/cit241/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09146
– volume: 243
  start-page: 657
  year: 2019
  ident: D1GC03768D/cit173/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.001
– volume: 15
  start-page: 100124
  year: 2021
  ident: D1GC03768D/cit5/1
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2021.100124
– volume: 30
  start-page: 8861
  year: 2018
  ident: D1GC03768D/cit97/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03908
– volume: 265
  start-page: 118555
  year: 2020
  ident: D1GC03768D/cit106/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118555
– volume: 8
  start-page: 684
  year: 2021
  ident: D1GC03768D/cit161/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01097A
– volume: 413
  start-page: 125400
  year: 2021
  ident: D1GC03768D/cit212/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125400
– volume: 59
  start-page: 1171
  year: 2020
  ident: D1GC03768D/cit117/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912552
– volume: 698
  start-page: 134239
  year: 2020
  ident: D1GC03768D/cit53/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134239
– volume: 48
  start-page: 4178
  year: 2019
  ident: D1GC03768D/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00664D
– volume: 29
  start-page: 8539
  year: 2017
  ident: D1GC03768D/cit131/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03627
– volume: 12
  start-page: 3513
  year: 2020
  ident: D1GC03768D/cit15/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR09122J
– volume: 389
  start-page: 124408
  year: 2020
  ident: D1GC03768D/cit111/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124408
– volume: 27
  start-page: 1703484
  year: 2017
  ident: D1GC03768D/cit178/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703484
– volume: 2
  start-page: 582
  year: 2020
  ident: D1GC03768D/cit20/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00095
– volume: 27
  start-page: 215602
  year: 2016
  ident: D1GC03768D/cit157/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/21/215602
– volume: 2
  start-page: 2000071
  year: 2021
  ident: D1GC03768D/cit63/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202000071
– volume: 7
  start-page: 14639
  year: 2019
  ident: D1GC03768D/cit122/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02556
– volume: 396
  start-page: 125245
  year: 2020
  ident: D1GC03768D/cit52/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125245
– volume: 525
  start-page: 146623
  year: 2020
  ident: D1GC03768D/cit240/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146623
– volume: 17
  start-page: 2005304
  year: 2021
  ident: D1GC03768D/cit13/1
  publication-title: Small
  doi: 10.1002/smll.202005304
– volume: 8
  start-page: 19254
  year: 2020
  ident: D1GC03768D/cit230/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07616C
– volume: 6
  start-page: 1502409
  year: 2016
  ident: D1GC03768D/cit127/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502409
– volume: 5
  start-page: 12513
  year: 2017
  ident: D1GC03768D/cit164/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02297B
– volume: 48
  start-page: 241
  year: 2020
  ident: D1GC03768D/cit84/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.01.017
– volume: 7
  start-page: 15749
  year: 2019
  ident: D1GC03768D/cit81/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04583J
– volume: 12
  start-page: 2969
  year: 2016
  ident: D1GC03768D/cit142/1
  publication-title: Small
  doi: 10.1002/smll.201600345
– volume: 48
  start-page: 1322
  year: 2019
  ident: D1GC03768D/cit123/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04731F
– volume: 9
  start-page: 559
  year: 2010
  ident: D1GC03768D/cit221/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2780
– volume: 9
  start-page: 1900516
  year: 2019
  ident: D1GC03768D/cit10/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900516
– volume: 2
  start-page: 1377
  year: 2020
  ident: D1GC03768D/cit125/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.04.002
– volume: 138
  start-page: 14686
  year: 2016
  ident: D1GC03768D/cit100/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08491
– volume: 16
  start-page: 1906766
  year: 2020
  ident: D1GC03768D/cit222/1
  publication-title: Small
  doi: 10.1002/smll.201906766
– volume: 6
  start-page: 714
  year: 2015
  ident: D1GC03768D/cit207/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02193
– volume: 115
  start-page: 8184
  year: 2011
  ident: D1GC03768D/cit56/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200287n
– volume: 51
  start-page: 167
  year: 2020
  ident: D1GC03768D/cit205/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.072
– volume: 30
  start-page: 1800128
  year: 2018
  ident: D1GC03768D/cit179/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800128
– volume: 389
  start-page: 775
  year: 2016
  ident: D1GC03768D/cit51/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.08.002
– volume: 13
  start-page: 13392
  year: 2021
  ident: D1GC03768D/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00038
– volume: 30
  start-page: 2004009
  year: 2020
  ident: D1GC03768D/cit46/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004009
– volume: 7
  start-page: 8993
  year: 2019
  ident: D1GC03768D/cit88/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01263
– volume: 45
  start-page: 22556
  year: 2020
  ident: D1GC03768D/cit110/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.185
– volume: 263
  start-page: 118352
  year: 2020
  ident: D1GC03768D/cit196/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118352
– volume: 14
  start-page: 4607
  year: 2014
  ident: D1GC03768D/cit41/1
  publication-title: Nano Lett.
  doi: 10.1021/nl501658d
– volume: 26
  start-page: 4449
  year: 2020
  ident: D1GC03768D/cit176/1
  publication-title: Chemistry
  doi: 10.1002/chem.201904594
– volume: 7
  start-page: 229
  year: 2016
  ident: D1GC03768D/cit199/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02203
– volume: 2
  start-page: 2289
  year: 2018
  ident: D1GC03768D/cit129/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.001
– volume: 44
  start-page: 4133
  year: 2019
  ident: D1GC03768D/cit165/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.159
– volume: 30
  start-page: 1803590
  year: 2018
  ident: D1GC03768D/cit89/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803590
– volume: 54
  start-page: 7195
  year: 2018
  ident: D1GC03768D/cit22/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02822B
– volume: 5
  start-page: 2000719
  year: 2020
  ident: D1GC03768D/cit32/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202000719
– volume: 241
  start-page: 178
  year: 2019
  ident: D1GC03768D/cit166/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.035
– volume: 6
  start-page: 9793
  year: 2018
  ident: D1GC03768D/cit193/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00873
– volume: 41
  start-page: 82
  year: 2020
  ident: D1GC03768D/cit217/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63454-6
– volume: 49
  start-page: 2196
  year: 2020
  ident: D1GC03768D/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00607A
– volume: 58
  start-page: 11791
  year: 2019
  ident: D1GC03768D/cit181/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906416
– volume: 366
  start-page: 339
  year: 2019
  ident: D1GC03768D/cit19/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.083
– volume: 14
  start-page: 539
  year: 2021
  ident: D1GC03768D/cit42/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002454
– volume: 83
  start-page: 105748
  year: 2021
  ident: D1GC03768D/cit57/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105748
– volume: 56
  start-page: 813
  year: 2019
  ident: D1GC03768D/cit70/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.090
– volume: 11
  start-page: 10303
  year: 2017
  ident: D1GC03768D/cit121/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05020
– volume: 12
  start-page: 727
  year: 2020
  ident: D1GC03768D/cit194/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b17960
– volume: 14
  start-page: 1802755
  year: 2018
  ident: D1GC03768D/cit235/1
  publication-title: Small
  doi: 10.1002/smll.201802755
– volume: 10
  start-page: 464
  year: 2019
  ident: D1GC03768D/cit134/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03877E
– volume: 46
  start-page: 5131
  year: 2021
  ident: D1GC03768D/cit34/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.11.030
– volume: 8
  start-page: 23674
  year: 2020
  ident: D1GC03768D/cit2/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08704A
– volume: 7
  start-page: 2001431
  year: 2020
  ident: D1GC03768D/cit6/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001431
– volume: 10
  start-page: 12315
  year: 2018
  ident: D1GC03768D/cit170/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR03846E
– volume: 5
  start-page: 15940
  year: 2017
  ident: D1GC03768D/cit138/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03669H
– volume: 5
  start-page: 4066
  year: 2015
  ident: D1GC03768D/cit85/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00349
– volume: 278
  start-page: 540
  year: 2015
  ident: D1GC03768D/cit140/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.095
– volume: 8
  start-page: 840
  year: 2018
  ident: D1GC03768D/cit220/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02323E
– volume: 387
  start-page: 124164
  year: 2020
  ident: D1GC03768D/cit61/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124164
– volume: 367
  start-page: 137567
  year: 2021
  ident: D1GC03768D/cit203/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137567
– volume: 45
  start-page: 33381
  year: 2020
  ident: D1GC03768D/cit188/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.028
– volume: 12
  start-page: 13297
  year: 2020
  ident: D1GC03768D/cit38/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR01748E
– volume: 135
  start-page: 9267
  year: 2013
  ident: D1GC03768D/cit71/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 11
  start-page: 2003545
  year: 2021
  ident: D1GC03768D/cit50/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003545
– volume: 27
  start-page: 3769
  year: 2015
  ident: D1GC03768D/cit82/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01284
– volume: 56
  start-page: 2064
  year: 2017
  ident: D1GC03768D/cit210/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612315
– volume: 33
  start-page: 2005815
  year: 2021
  ident: D1GC03768D/cit149/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005815
– volume: 13
  start-page: 3718
  year: 2020
  ident: D1GC03768D/cit137/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000104
– volume: 313
  start-page: 179
  year: 2019
  ident: D1GC03768D/cit204/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.030
– volume: 6
  start-page: 4026
  year: 2018
  ident: D1GC03768D/cit184/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04403
– volume: 6
  start-page: 8992
  year: 2018
  ident: D1GC03768D/cit128/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01320A
– volume: 8
  start-page: 1802615
  year: 2018
  ident: D1GC03768D/cit223/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802615
– volume: 229
  start-page: 116069
  year: 2021
  ident: D1GC03768D/cit209/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116069
– volume: 8
  start-page: 8949
  year: 2020
  ident: D1GC03768D/cit102/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01293
– volume: 505
  start-page: 144099
  year: 2020
  ident: D1GC03768D/cit169/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144099
– volume: 13
  start-page: 3357
  year: 2020
  ident: D1GC03768D/cit31/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000416
– volume: 45
  start-page: 33623
  year: 2020
  ident: D1GC03768D/cit99/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.146
– volume: 42
  start-page: 1287
  year: 2021
  ident: D1GC03768D/cit74/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63740-8
– volume: 16
  start-page: 1900550
  year: 2020
  ident: D1GC03768D/cit87/1
  publication-title: Small
  doi: 10.1002/smll.201900550
– volume: 6
  start-page: 2494
  year: 2018
  ident: D1GC03768D/cit94/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10884B
– volume: 9
  start-page: 2560
  year: 2021
  ident: D1GC03768D/cit24/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09752G
– volume: 11
  start-page: 13
  year: 2020
  ident: D1GC03768D/cit150/1
  publication-title: Nanomaterials
  doi: 10.3390/nano11010013
– volume: 15
  start-page: 1408
  year: 2021
  ident: D1GC03768D/cit244/1
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-021-2102-6
– volume: 13
  start-page: 4564
  year: 2020
  ident: D1GC03768D/cit44/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02577A
– volume: 58
  start-page: 19060
  year: 2019
  ident: D1GC03768D/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911696
– volume: 8
  start-page: 1802319
  year: 2018
  ident: D1GC03768D/cit225/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802319
– volume: 6
  start-page: 8009
  year: 2016
  ident: D1GC03768D/cit105/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02520
– volume: 12
  start-page: 3797
  year: 2020
  ident: D1GC03768D/cit11/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000360
– volume: 8
  start-page: 2100294
  year: 2021
  ident: D1GC03768D/cit146/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202100294
– volume: 242
  start-page: 1
  year: 2019
  ident: D1GC03768D/cit213/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.100
– volume: 8
  start-page: 1801690
  year: 2018
  ident: D1GC03768D/cit234/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801690
– volume: 10
  start-page: 1902104
  year: 2019
  ident: D1GC03768D/cit43/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902104
– volume: 456
  start-page: 228003
  year: 2020
  ident: D1GC03768D/cit242/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228003
– volume: 355
  start-page: 910
  year: 2019
  ident: D1GC03768D/cit79/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.221
– volume: 196
  start-page: 6902
  year: 2011
  ident: D1GC03768D/cit68/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.055
– volume: 140
  start-page: 5118
  year: 2018
  ident: D1GC03768D/cit232/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12968
– volume: 9
  start-page: 8561
  year: 2021
  ident: D1GC03768D/cit126/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00044F
– volume: 615
  start-page: 79
  year: 2014
  ident: D1GC03768D/cit55/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.06.003
– volume: 357
  start-page: 131
  year: 2015
  ident: D1GC03768D/cit59/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.09.009
– volume: 8
  start-page: 2769
  year: 2017
  ident: D1GC03768D/cit72/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05687C
– volume: 50
  start-page: 395
  year: 2020
  ident: D1GC03768D/cit139/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.046
SSID ssj0011764
Score 2.6063235
Snippet Photocatalytic, photoelectrochemical and electrocatalytic water splitting provide advanced approaches to produce green hydrogen as a sustainable and renewable...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms Catalysts
Catalytic activity
cost effectiveness
Design
Green chemistry
Green hydrogen
hydrogen
Hydrogen production
Interfaces
Phosphates
Phosphides
Phosphonates
Phosphorus
Photocatalysis
Physicochemical properties
Renewable energy
renewable energy sources
Splitting
Sustainable energy
Transition metals
Valence
Water splitting
Title Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting
URI https://www.proquest.com/docview/2622318532
https://www.proquest.com/docview/2636747902
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QE4IAhEFApaBBcUDH4_jlWStqBQLo6UcrF213YaCdkodoTgyL_jXzH7tFsiBBxiRZv12vJ82Z0Zf_sNQi_tMCkIOMZWmJQQoCROaZEwLiwIFcqCUhIxIaX04SI8X_rvV8FqMPjZYy3tWvqGfd-7r-R_rAptYFe-S_YfLGsGhQb4DvaFI1gYjn9l45mgX0yaVus9CP7yVd3AZ7trLM5DlxUgJiJN861phfwC79PWsgkG5Y9ZtKiaOKwvIqDbdOfJV8J1FRtwXgVluu_dChLPhOkaciLdQCohSdFlHbVWBR98feOErXqZIM48MwncqdpCsig2hvGzqayU1BIhBuCfrupqbV0qmvHlTkFfZTVcTg-x3C6rKXMnmrgqiCnqTnpztR96Fpc7lEtZv03WItETvBp304uz5WwdyW2wauGPpPTnb2uK7XFJ1txZMxtm4zjvVk7NFrj4mJ0uF4ssna_SA3ToQsTiDtHhyTx9tzCvtJxIaJmZu9ZauV7ythv7unfUhTwHW12PRvg96T10VwUs-ESi7z4aFNUI3TIPaoTu9CQtR2g873ZOwmlq6WgeoB8SrLgDK65LvBes2IAVA1jxdbC-xvugigFN-CZUsYAqNlB9iJan83R6bqkCIBbzHL-1GIl9WHC8MGZlSdwoLKgfUS5ABEFITgvCw2-fJkFMITC3HXD4nMT3aez6QURZ5I3RsKqr4hHCcR44JAhJySX57LxMXOYwz6O571K4lnuEXukHnzGljs-LtHzOBEvDS7KZczYVRpodoRem7xepCbO317G2X6b-WU0Gdne5XoEHF3xufgaD8dd0pCrqHe_jhYDFxIY-Y7C7uUYHk8d_HvsJut39p47RsN3uiqfgO7f0mULlL6iC0EM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+strategies+of+phosphorus-containing+catalysts+for+photocatalytic%2C+photoelectrochemical+and+electrocatalytic+water+splitting&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Chen%2C+Lei&rft.au=Jin-Tao%2C+Ren&rft.au=Zhong-Yong%2C+Yuan&rft.date=2022-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=2&rft.spage=713&rft.epage=747&rft_id=info:doi/10.1039%2Fd1gc03768d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon