On Exponential Splitting Methods for Semilinear Abstract Cauchy problems
Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part i...
Saved in:
Published in | Integral equations and operator theory Vol. 95; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0378-620X 1420-8989 |
DOI | 10.1007/s00020-023-02735-6 |
Cover
Loading…
Abstract | Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than
π
2
(meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the
L
p
-
L
r
-smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies. |
---|---|
AbstractList | Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than
π
2
(meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the
L
p
-
L
r
-smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies. Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than $$\frac{\pi }{2}$$ π 2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the $$\textrm{L}^p$$ L p - $$\textrm{L}^r$$ L r -smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies. Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than π2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the Lp - Lr-smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies. |
ArticleNumber | 15 |
Author | Jacob, Birgit Schmitz, Merlin Farkas, Bálint |
Author_xml | – sequence: 1 givenname: Bálint surname: Farkas fullname: Farkas, Bálint organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal – sequence: 2 givenname: Birgit surname: Jacob fullname: Jacob, Birgit organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal – sequence: 3 givenname: Merlin orcidid: 0000-0002-5522-6512 surname: Schmitz fullname: Schmitz, Merlin email: meschmitz@uni-wuppertal.de organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal |
BookMark | eNp9kFFLwzAUhYNMcJv-AZ8CPldvkrZJH8eYTpjsYQq-hTRNt44urUkG7t8vs4JvPlwu3Pudc-BM0Mh21iB0T-CRAPAnDwAUEqAsDmdZkl-hMUnjSRSiGKExMC6SnMLnDZp4v4805TQfo-Xa4sV3H91saFSLN33bhNDYLX4zYddVHtedwxtzaNrGGuXwrPTBKR3wXB317oR715WtOfhbdF2r1pu73z1FH8-L9_kyWa1fXuezVaIZSUOiM5bqIq0UZ9QIQyrO6wxSVQiiTSUydvlBzjVNa0EpIaw2mlakSEujoQQ2RQ-Dbwz-Ohof5L47OhsjJRX0UkZWZJGiA6Vd570ztexdc1DuJAnICySHxmRsTP40JvMoYoPIR9hujfuz_kd1Bq8Ub7I |
Cites_doi | 10.1007/s10543-009-0236-x 10.1007/978-3-0348-9234-6 10.1098/rsta.2020.0217 10.1007/s42985-020-00045-9 10.1006/jfan.2002.3978 10.1007/978-1-4612-5561-1 10.1007/BF02551238 10.1007/3-7643-7698-8 10.1016/j.matpur.2006.06.002 10.1016/0022-1236(91)90136-S 10.1007/978-3-0348-8765-6_21 10.1016/j.jfa.2020.108807 10.1007/BF01902205 10.1017/S0962492910000048 10.1007/s00013-005-1400-4 10.1090/S0002-9947-97-01802-3 10.1112/S0024610705006344 10.1112/jlms/jdn009 10.1016/0168-9274(95)00069-7 10.2140/pjm.1966.19.285 10.1007/s00021-010-0026-x 10.1017/S0962492902000053 10.1016/j.apnum.2004.08.005 10.1007/s00233-016-9812-y 10.1007/s10543-016-0604-2 10.1007/s00205-004-0347-0 10.2307/1970980 10.1007/BF01174182 10.1007/978-3-0348-0087-7 10.1007/978-3-030-44778-6 10.1142/9789814675772_0002 10.1016/0166-218X(87)90064-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00020-023-02735-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1420-8989 |
ExternalDocumentID | 10_1007_s00020_023_02735_6 |
GrantInformation_xml | – fundername: Bergische Universität Wuppertal (3089) |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c314t-c534c94da732e8e1d77f504a981ced85394da067c24f822113fec2d194bec0b03 |
IEDL.DBID | U2A |
ISSN | 0378-620X |
IngestDate | Fri Jul 25 10:54:52 EDT 2025 Tue Jul 01 01:38:45 EDT 2025 Fri Feb 21 02:43:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Convergence order 65M15 Semilinear Cauchy problems Exponential splitting methods 47N40 65J08 47D06 Scales of Banach spaces semigroups 65M12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-c534c94da732e8e1d77f504a981ced85394da067c24f822113fec2d194bec0b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5522-6512 |
OpenAccessLink | https://link.springer.com/10.1007/s00020-023-02735-6 |
PQID | 2821007595 |
PQPubID | 2043784 |
ParticipantIDs | proquest_journals_2821007595 crossref_primary_10_1007_s00020_023_02735_6 springer_journals_10_1007_s00020_023_02735_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Integral equations and operator theory |
PublicationTitleAbbrev | Integr. Equ. Oper. Theory |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Metafune, G.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(1):97–124, (2001) HochbruckMOstermannAExponential Runge–Kutta methods for parabolic problemsAppl. Numer. Math.2005532–4323339212852910.1016/j.apnum.2004.08.0051070.65099 Hochbruck., M.: A short course on exponential integrators. In Matrix functions and matrix equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pp. 28–49. Higher Ed. Press, Beijing (2015) Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, (2011) Hundertmark, D., Meyries, M., Machinek, L., Schnaubelt, R.: Operator semigroups and dispersive equations. Lecture notes, Internet Seminar. https://isem.math.kit.edu/images/b/b3/Isem16_final.pdf (2013) ClarkDSA short proof of a discrete GronwallDiscrete Appl. Math.19871627928187802710.1016/0166-218X(87)90064-30612.39004 HansenEOstermannAHigh order splitting methods for analytic semigroups existBIT2009493527542254581910.1007/s10543-009-0236-x1176.65066 HanselTOn the Navier–Stokes equations with rotating effect and prescribed outflow velocityJ. Math. Fluid Mech.2011133405419282449110.1007/s00021-010-0026-x1270.35345 HochbruckMOstermannAExponential integratorsActa Numer201019209286265278310.1017/S09624929100000481242.65109 Hundsdorfer, W., Verwer, J.G.: A note on splitting errors for advection-reaction equations. Appl. Numer. Math., 18(1-3):191–199, 1995. In: Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994) ChillRFašangováEMetafuneGPallaraDThe sector of analyticity of the Ornstein-Uhlenbeck semigroup on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measureJ. London Math. Soc.2005713703722213237910.1112/S00246107050063441123.35030 HansenEOstermannAHigh-order splitting schemes for semilinear evolution equationsBIT201656413031316357661210.1007/s10543-016-0604-21355.65071 Csomós, P., Bátkai, A., Farkas, B., Ostermann, A.: Operator semigroups for numerical analysis. Lecture notes, TULKA Internetseminar, https://www.fan.uni-wuppertal.de/fileadmin/mathe/reine_mathematik/funktionalanalysis/farkas/15ISEM-NumerSgrp.pdf (2012) LunardiAOn the Ornstein-Uhlenbeck operator in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresTrans. Amer. Math. Soc.19973491155169138978610.1090/S0002-9947-97-01802-30890.35030 Lunardi, A.: Regularity for a class of sums of noncommuting operators. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl. pp. 517–533. Birkhäuser, Basel (1999) SeidmanTIHow violent are fast controls?Math. Control Signals Syst.198811899592327810.1007/BF025512380663.49018 GeissertMHeckHHieberMWoodIThe Ornstein-Uhlenbeck semigroup in exterior domainsArch. Math. (Basel)2005856554562219166510.1007/s00013-005-1400-41114.47043 BecknerWInequalities in Fourier analysisAnn. Math.1975102115918238545610.2307/19709800338.42017 KatoTStrong Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-solutions of the Navier-Stokes equation in Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ R}^{m}$$\end{document}, with applications to weak solutionsMath. Z.1984187447148076004710.1007/BF011741820545.35073 Fornaro, S., Metafune, G., Pallara, D., Schnaubelt, R.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280(2):Paper No. 108807, 22, (2021) Lunardi, A., Metafune, G., Pallara, D.: The Ornstein–Uhlenbeck semigroup in finite dimension. Philos. Trans. Roy. Soc. A 378(2185):20200217, 15, 2020 GeissertM LunardiAInvariant measures and maximal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} regularity for nonautonomous Ornstein–Uhlenbeck equationsJ. Lond. Math. Soc.2008773719740241830110.1112/jlms/jdn0091153.47030 Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. (2013 reprint of the 1995 original) Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990) J. Zabczyk. Mathematical control theory—an introduction. Systems & Control: Foundations & Applications. Birkhäuser/Springer, Cham (2020) FarkasB LunardiAMaximal regularity for Kolmogorov operators in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresJ. Math. Pures Appl.2006864310321225784610.1016/j.matpur.2006.06.0021117.35018 BátkaiACsomósPFarkasBOperator splitting for dissipative delay equationsSemigroup Forum2017952345365371584610.1007/s00233-016-9812-y06825444 TravisCCWebbGFCosine families and abstract nonlinear second order differential equationsActa Math. Acad. Sci. Hungar.1978321–2759649958110.1007/BF019022050388.34039 Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf R}^n$$\end{document}. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133–164, 1997 KomatsuHFractional powers of operatorsPacific J. Math.19661928534620198510.2140/pjm.1966.19.2850154.16104 McLachlanRIQuispelGRWSplitting methodsActa Numer200211341434200937610.1017/S09624929020000531105.65341 BuchholzSDörichBHochbruckMOn averaged exponential integrators for semilinear wave equations with solutions of low-regularityPartial Differ. Equ. Appl.20212223429826210.1007/s42985-020-00045-91460.65055 GeissertMHeckHHieberMLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacleJ. Reine Angew. Math.2006596456222548041102.76015 HieberMSawadaOThe Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{n}$$\end{document} with linearly growing initial dataArch. Ration. Mech. Anal.20051752269285211847810.1007/s00205-004-0347-01072.35144 GigaYSohrHAbstract Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domainsJ. Funct. Anal.199110217294113883810.1016/0022-1236(91)90136-S0739.35067 Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000) Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983) Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006) HippDHochbruckMOstermannAAn exponential integrator for non-autonomous parabolic problemsElectron. Trans. Numer. Anal.20144149751132982801312.65210 MetafuneGPallaraDPriolaESpectrum of Ornstein-Uhlenbeck operators in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measuresJ. Funct. Anal.200219614060194199010.1006/jfan.2002.39781027.47036 G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{ W Beckner (2735_CR3) 1975; 102 2735_CR11 2735_CR33 2735_CR32 2735_CR31 B Farkas (2735_CR10) 2006; 86 2735_CR1 G Metafune (2735_CR36) 2002; 196 R Chill (2735_CR5) 2005; 71 H Komatsu (2735_CR28) 1966; 19 TI Seidman (2735_CR39) 1988; 1 M Geissert (2735_CR14) 2008; 77 2735_CR16 2735_CR38 2735_CR37 2735_CR35 A Bátkai (2735_CR2) 2017; 95 M Hieber (2735_CR20) 2005; 175 Y Giga (2735_CR15) 1991; 102 2735_CR9 S Buchholz (2735_CR4) 2021; 2 2735_CR8 CC Travis (2735_CR40) 1978; 32 2735_CR7 2735_CR22 2735_CR41 DS Clark (2735_CR6) 1987; 16 T Hansel (2735_CR17) 2011; 13 RI McLachlan (2735_CR34) 2002; 11 E Hansen (2735_CR19) 2016; 56 2735_CR29 A Lunardi (2735_CR30) 1997; 349 2735_CR26 2735_CR25 T Kato (2735_CR27) 1984; 187 M Hochbruck (2735_CR23) 2005; 53 M Geissert (2735_CR12) 2006; 596 M Hochbruck (2735_CR24) 2010; 19 D Hipp (2735_CR21) 2014; 41 E Hansen (2735_CR18) 2009; 49 M Geissert (2735_CR13) 2005; 85 |
References_xml | – reference: Fornaro, S., Metafune, G., Pallara, D., Schnaubelt, R.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280(2):Paper No. 108807, 22, (2021) – reference: HochbruckMOstermannAExponential integratorsActa Numer201019209286265278310.1017/S09624929100000481242.65109 – reference: Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990) – reference: J. Zabczyk. Mathematical control theory—an introduction. Systems & Control: Foundations & Applications. Birkhäuser/Springer, Cham (2020) – reference: GeissertMHeckHHieberMLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacleJ. Reine Angew. Math.2006596456222548041102.76015 – reference: HochbruckMOstermannAExponential Runge–Kutta methods for parabolic problemsAppl. Numer. Math.2005532–4323339212852910.1016/j.apnum.2004.08.0051070.65099 – reference: LunardiAOn the Ornstein-Uhlenbeck operator in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresTrans. Amer. Math. Soc.19973491155169138978610.1090/S0002-9947-97-01802-30890.35030 – reference: Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. (2013 reprint of the 1995 original) – reference: Lunardi, A.: Regularity for a class of sums of noncommuting operators. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl. pp. 517–533. Birkhäuser, Basel (1999) – reference: BátkaiACsomósPFarkasBOperator splitting for dissipative delay equationsSemigroup Forum2017952345365371584610.1007/s00233-016-9812-y06825444 – reference: McLachlanRIQuispelGRWSplitting methodsActa Numer200211341434200937610.1017/S09624929020000531105.65341 – reference: Hochbruck., M.: A short course on exponential integrators. In Matrix functions and matrix equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pp. 28–49. Higher Ed. Press, Beijing (2015) – reference: BuchholzSDörichBHochbruckMOn averaged exponential integrators for semilinear wave equations with solutions of low-regularityPartial Differ. Equ. Appl.20212223429826210.1007/s42985-020-00045-91460.65055 – reference: ChillRFašangováEMetafuneGPallaraDThe sector of analyticity of the Ornstein-Uhlenbeck semigroup on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measureJ. London Math. Soc.2005713703722213237910.1112/S00246107050063441123.35030 – reference: Csomós, P., Bátkai, A., Farkas, B., Ostermann, A.: Operator semigroups for numerical analysis. Lecture notes, TULKA Internetseminar, https://www.fan.uni-wuppertal.de/fileadmin/mathe/reine_mathematik/funktionalanalysis/farkas/15ISEM-NumerSgrp.pdf (2012) – reference: Metafune, G.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(1):97–124, (2001) – reference: HansenEOstermannAHigh order splitting methods for analytic semigroups existBIT2009493527542254581910.1007/s10543-009-0236-x1176.65066 – reference: MetafuneGPallaraDPriolaESpectrum of Ornstein-Uhlenbeck operators in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measuresJ. Funct. Anal.200219614060194199010.1006/jfan.2002.39781027.47036 – reference: Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, (2011) – reference: HansenEOstermannAHigh-order splitting schemes for semilinear evolution equationsBIT201656413031316357661210.1007/s10543-016-0604-21355.65071 – reference: Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf R}^n$$\end{document}. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133–164, 1997 – reference: Lunardi, A., Metafune, G., Pallara, D.: The Ornstein–Uhlenbeck semigroup in finite dimension. Philos. Trans. Roy. Soc. A 378(2185):20200217, 15, 2020 – reference: HieberMSawadaOThe Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{n}$$\end{document} with linearly growing initial dataArch. Ration. Mech. Anal.20051752269285211847810.1007/s00205-004-0347-01072.35144 – reference: G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1(2):471–485, 2002 – reference: ClarkDSA short proof of a discrete GronwallDiscrete Appl. Math.19871627928187802710.1016/0166-218X(87)90064-30612.39004 – reference: Hundertmark, D., Meyries, M., Machinek, L., Schnaubelt, R.: Operator semigroups and dispersive equations. Lecture notes, Internet Seminar. https://isem.math.kit.edu/images/b/b3/Isem16_final.pdf (2013) – reference: TravisCCWebbGFCosine families and abstract nonlinear second order differential equationsActa Math. Acad. Sci. Hungar.1978321–2759649958110.1007/BF019022050388.34039 – reference: Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000) – reference: SeidmanTIHow violent are fast controls?Math. Control Signals Syst.198811899592327810.1007/BF025512380663.49018 – reference: HippDHochbruckMOstermannAAn exponential integrator for non-autonomous parabolic problemsElectron. Trans. Numer. Anal.20144149751132982801312.65210 – reference: GeissertM LunardiAInvariant measures and maximal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} regularity for nonautonomous Ornstein–Uhlenbeck equationsJ. Lond. Math. Soc.2008773719740241830110.1112/jlms/jdn0091153.47030 – reference: KomatsuHFractional powers of operatorsPacific J. Math.19661928534620198510.2140/pjm.1966.19.2850154.16104 – reference: FarkasB LunardiAMaximal regularity for Kolmogorov operators in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresJ. Math. Pures Appl.2006864310321225784610.1016/j.matpur.2006.06.0021117.35018 – reference: Hundsdorfer, W., Verwer, J.G.: A note on splitting errors for advection-reaction equations. Appl. Numer. Math., 18(1-3):191–199, 1995. In: Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994) – reference: Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006) – reference: KatoTStrong Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-solutions of the Navier-Stokes equation in Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ R}^{m}$$\end{document}, with applications to weak solutionsMath. Z.1984187447148076004710.1007/BF011741820545.35073 – reference: Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983) – reference: GigaYSohrHAbstract Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domainsJ. Funct. Anal.199110217294113883810.1016/0022-1236(91)90136-S0739.35067 – reference: BecknerWInequalities in Fourier analysisAnn. Math.1975102115918238545610.2307/19709800338.42017 – reference: GeissertMHeckHHieberMWoodIThe Ornstein-Uhlenbeck semigroup in exterior domainsArch. Math. (Basel)2005856554562219166510.1007/s00013-005-1400-41114.47043 – reference: HanselTOn the Navier–Stokes equations with rotating effect and prescribed outflow velocityJ. Math. Fluid Mech.2011133405419282449110.1007/s00021-010-0026-x1270.35345 – volume: 49 start-page: 527 issue: 3 year: 2009 ident: 2735_CR18 publication-title: BIT doi: 10.1007/s10543-009-0236-x – ident: 2735_CR29 doi: 10.1007/978-3-0348-9234-6 – ident: 2735_CR7 – ident: 2735_CR9 – ident: 2735_CR33 doi: 10.1098/rsta.2020.0217 – volume: 2 start-page: 23 issue: 2 year: 2021 ident: 2735_CR4 publication-title: Partial Differ. Equ. Appl. doi: 10.1007/s42985-020-00045-9 – volume: 196 start-page: 40 issue: 1 year: 2002 ident: 2735_CR36 publication-title: J. Funct. Anal. doi: 10.1006/jfan.2002.3978 – volume: 596 start-page: 45 year: 2006 ident: 2735_CR12 publication-title: J. Reine Angew. Math. – ident: 2735_CR38 doi: 10.1007/978-1-4612-5561-1 – volume: 1 start-page: 89 issue: 1 year: 1988 ident: 2735_CR39 publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551238 – ident: 2735_CR25 – ident: 2735_CR16 doi: 10.1007/3-7643-7698-8 – volume: 86 start-page: 310 issue: 4 year: 2006 ident: 2735_CR10 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2006.06.002 – volume: 102 start-page: 72 issue: 1 year: 1991 ident: 2735_CR15 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(91)90136-S – ident: 2735_CR32 doi: 10.1007/978-3-0348-8765-6_21 – volume: 41 start-page: 497 year: 2014 ident: 2735_CR21 publication-title: Electron. Trans. Numer. Anal. – ident: 2735_CR11 doi: 10.1016/j.jfa.2020.108807 – volume: 32 start-page: 75 issue: 1–2 year: 1978 ident: 2735_CR40 publication-title: Acta Math. Acad. Sci. Hungar. doi: 10.1007/BF01902205 – volume: 19 start-page: 209 year: 2010 ident: 2735_CR24 publication-title: Acta Numer doi: 10.1017/S0962492910000048 – ident: 2735_CR35 – volume: 85 start-page: 554 issue: 6 year: 2005 ident: 2735_CR13 publication-title: Arch. Math. (Basel) doi: 10.1007/s00013-005-1400-4 – volume: 349 start-page: 155 issue: 1 year: 1997 ident: 2735_CR30 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-97-01802-3 – volume: 71 start-page: 703 issue: 3 year: 2005 ident: 2735_CR5 publication-title: J. London Math. Soc. doi: 10.1112/S0024610705006344 – volume: 77 start-page: 719 issue: 3 year: 2008 ident: 2735_CR14 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/jdn009 – ident: 2735_CR8 – ident: 2735_CR26 doi: 10.1016/0168-9274(95)00069-7 – ident: 2735_CR37 – volume: 19 start-page: 285 year: 1966 ident: 2735_CR28 publication-title: Pacific J. Math. doi: 10.2140/pjm.1966.19.285 – volume: 13 start-page: 405 issue: 3 year: 2011 ident: 2735_CR17 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-010-0026-x – volume: 11 start-page: 341 year: 2002 ident: 2735_CR34 publication-title: Acta Numer doi: 10.1017/S0962492902000053 – volume: 53 start-page: 323 issue: 2–4 year: 2005 ident: 2735_CR23 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2004.08.005 – volume: 95 start-page: 345 issue: 2 year: 2017 ident: 2735_CR2 publication-title: Semigroup Forum doi: 10.1007/s00233-016-9812-y – volume: 56 start-page: 1303 issue: 4 year: 2016 ident: 2735_CR19 publication-title: BIT doi: 10.1007/s10543-016-0604-2 – volume: 175 start-page: 269 issue: 2 year: 2005 ident: 2735_CR20 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-004-0347-0 – volume: 102 start-page: 159 issue: 1 year: 1975 ident: 2735_CR3 publication-title: Ann. Math. doi: 10.2307/1970980 – volume: 187 start-page: 471 issue: 4 year: 1984 ident: 2735_CR27 publication-title: Math. Z. doi: 10.1007/BF01174182 – ident: 2735_CR1 doi: 10.1007/978-3-0348-0087-7 – ident: 2735_CR31 – ident: 2735_CR41 doi: 10.1007/978-3-030-44778-6 – ident: 2735_CR22 doi: 10.1142/9789814675772_0002 – volume: 16 start-page: 279 year: 1987 ident: 2735_CR6 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(87)90064-3 |
SSID | ssj0022726 |
Score | 2.3020635 |
Snippet | Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Analysis Banach spaces Cauchy problems Fluid flow Interpolation Linear evolution equations Mathematical analysis Mathematics Mathematics and Statistics Navier-Stokes equations Numerical methods Operators (mathematics) Rotating bodies Semigroups Stokes flow |
Title | On Exponential Splitting Methods for Semilinear Abstract Cauchy problems |
URI | https://link.springer.com/article/10.1007/s00020-023-02735-6 https://www.proquest.com/docview/2821007595 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjB-BlRJD140yasazd6hAUkGvCAJHhatm6NHkTCRqL_va9lG2r04GlZ-pHl13bv9_q-AK6ko7VSMqHaS3zKI5ZSFAqSsoj7CumsjqUJTh5PvNGM383FvAgKy0pv99Ikaf_UVbCbtZpRlDHG7ugK6tWgIVB3N_t6xnqVmsV8trFQon7ksc68CJX5fY7v4mjLMX-YRa20GR7AfkETSW-zroewky6OYO9L8kB8G1cZV7NjGD0syOB9-bYw3j84cork0ro0k7GtEZ0RZKdkmr6-GF4ZrUgvNpccKidBtFbPH6SoLJOdwGw4eAxGtKiSQJXr8Jwq4XIleRL5Lku7qZP4vhYdHsmuo9LEAI9tKJMU4xrZgOO4OlUscSTH5evEHfcU6gv8ujMgkdYSKYKLM2nuywRPu7YFJrtdKbSIm3BdghUuN8kwwirtsYU2RGhDC23oNaFV4hkWByMLUcMz3YUUTbgpMd42_z3b-f-6X8Aus8ts7ktaUM9X6_QS6UMet6HRG_b7E_O8fboftKEWeEHb7qFP5Ja-Qg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShgAc2MGocO4nHqmop9MEAlcoUJU4sEKJUTSoBv56Lm7RQwcAY2bGcu4vvO98L4FxaWislI6qdyKU8YDFFpSApC7irEM7qUGbJyb2-0x7w26EY5klhSRHtXrgkzUk9T3YzXjOKOibzO9qCOqtQ5miDixKU69ePnebc0GIum_ko0UJyWG2YJ8v8vspPhbRAmUuOUaNvWlswKHY6CzN5uZqm4ZX6XCri-N9P2YbNHICS-kxidmAlHu3CxreyhPjUm9dyTfagfTcizffx2yiLK8I37xG2mmBp0jPdpxOCuJfcx6_PGWINJqQeZtcnKiWNYKqePkjesybZh0Gr-dBo07z_AlW2xVOqhM2V5FHg2iz2YityXS1qPJCepeIoYymOobZTjGvEGZZl61ixCFmCglELa_YBlEa4u0MggdYSwYeNK2nuygjPEW1aV3qeFFqEFbgomOCPZ2U2_HlBZUMtH6nlG2r5TgWqBZ_8_JdLfLQds-lCigpcFmRfDP-92tH_pp_BWvuh1_W7N_3OMawzw8XsVqYKpXQyjU8QpKThaS6TX-y22i4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807A1TS95HHVjXjaFOdhbaNMGfbCOtQP9956kl03RBx9L0kP5TsP5Ts4NoUtuKSUlj4lyY4-wkCYEjAInNGSeBDqrIq6Lk4cjdzBhd1NnulLFb7Ldq5BkUdOguzSleXsWq3Zd-GYiaATsjY5B2g5x19EGeCqWTuoL3KB2uahHi2gl-Eou7UzLspnfZXw3TUu--SNEaixPfxftlJQRdwsd76G1JN1H2yuNBOFpWHdfzQ7Q4DHFvY_Ze6ozgeDNMRBNk96Mh2ZedIaBqeJx8vaqOWY4x91IX3jIHAfhQr584nLKTHaIJv3eczAg5cQEIm2L5UQ6NpOcxaFn08RPrNjzlNNhIfctmcRaCbAG9klSpoAZWJatEkljizNQZSfq2EeokcLXHSMcKsWBLtggSTGPx3DylRk26fvcUU7URFcVWGJWNMYQdQtkA60AaIWBVrhN1KrwFOUhyQR4e3q7w50muq4wXi7_Le3kf9sv0ObTTV883I7uT9EWNRrX1ygt1Mjni-QMWEUenZsf5wvtncFu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Exponential+Splitting+Methods+for+Semilinear+Abstract+Cauchy+problems&rft.jtitle=Integral+equations+and+operator+theory&rft.au=Farkas%2C+B%C3%A1lint&rft.au=Jacob%2C+Birgit&rft.au=Schmitz%2C+Merlin&rft.date=2023-06-01&rft.pub=Springer+International+Publishing&rft.issn=0378-620X&rft.eissn=1420-8989&rft.volume=95&rft.issue=2&rft_id=info:doi/10.1007%2Fs00020-023-02735-6&rft.externalDocID=10_1007_s00020_023_02735_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-620X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-620X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-620X&client=summon |