On Exponential Splitting Methods for Semilinear Abstract Cauchy problems

Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part i...

Full description

Saved in:
Bibliographic Details
Published inIntegral equations and operator theory Vol. 95; no. 2
Main Authors Farkas, Bálint, Jacob, Birgit, Schmitz, Merlin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0378-620X
1420-8989
DOI10.1007/s00020-023-02735-6

Cover

Loading…
Abstract Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than π 2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the L p - L r -smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies.
AbstractList Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than π 2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the L p - L r -smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies.
Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than $$\frac{\pi }{2}$$ π 2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the $$\textrm{L}^p$$ L p - $$\textrm{L}^r$$ L r -smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies.
Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than π2 (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of Kato (Math Z 187(4):471–480, 1984) to the local solvability of the Navier–Stokes equation, where the Lp - Lr-smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann (2005), but also allows the consideration of examples, such as non-analytic Ornstein–Uhlenbeck semigroups or the Navier–Stokes flow around rotating bodies.
ArticleNumber 15
Author Jacob, Birgit
Schmitz, Merlin
Farkas, Bálint
Author_xml – sequence: 1
  givenname: Bálint
  surname: Farkas
  fullname: Farkas, Bálint
  organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal
– sequence: 2
  givenname: Birgit
  surname: Jacob
  fullname: Jacob, Birgit
  organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal
– sequence: 3
  givenname: Merlin
  orcidid: 0000-0002-5522-6512
  surname: Schmitz
  fullname: Schmitz, Merlin
  email: meschmitz@uni-wuppertal.de
  organization: School of Mathematics and Natural Sciences, IMACM, University of Wuppertal
BookMark eNp9kFFLwzAUhYNMcJv-AZ8CPldvkrZJH8eYTpjsYQq-hTRNt44urUkG7t8vs4JvPlwu3Pudc-BM0Mh21iB0T-CRAPAnDwAUEqAsDmdZkl-hMUnjSRSiGKExMC6SnMLnDZp4v4805TQfo-Xa4sV3H91saFSLN33bhNDYLX4zYddVHtedwxtzaNrGGuXwrPTBKR3wXB317oR715WtOfhbdF2r1pu73z1FH8-L9_kyWa1fXuezVaIZSUOiM5bqIq0UZ9QIQyrO6wxSVQiiTSUydvlBzjVNa0EpIaw2mlakSEujoQQ2RQ-Dbwz-Ohof5L47OhsjJRX0UkZWZJGiA6Vd570ztexdc1DuJAnICySHxmRsTP40JvMoYoPIR9hujfuz_kd1Bq8Ub7I
Cites_doi 10.1007/s10543-009-0236-x
10.1007/978-3-0348-9234-6
10.1098/rsta.2020.0217
10.1007/s42985-020-00045-9
10.1006/jfan.2002.3978
10.1007/978-1-4612-5561-1
10.1007/BF02551238
10.1007/3-7643-7698-8
10.1016/j.matpur.2006.06.002
10.1016/0022-1236(91)90136-S
10.1007/978-3-0348-8765-6_21
10.1016/j.jfa.2020.108807
10.1007/BF01902205
10.1017/S0962492910000048
10.1007/s00013-005-1400-4
10.1090/S0002-9947-97-01802-3
10.1112/S0024610705006344
10.1112/jlms/jdn009
10.1016/0168-9274(95)00069-7
10.2140/pjm.1966.19.285
10.1007/s00021-010-0026-x
10.1017/S0962492902000053
10.1016/j.apnum.2004.08.005
10.1007/s00233-016-9812-y
10.1007/s10543-016-0604-2
10.1007/s00205-004-0347-0
10.2307/1970980
10.1007/BF01174182
10.1007/978-3-0348-0087-7
10.1007/978-3-030-44778-6
10.1142/9789814675772_0002
10.1016/0166-218X(87)90064-3
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00020-023-02735-6
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1420-8989
ExternalDocumentID 10_1007_s00020_023_02735_6
GrantInformation_xml – fundername: Bergische Universität Wuppertal (3089)
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c314t-c534c94da732e8e1d77f504a981ced85394da067c24f822113fec2d194bec0b03
IEDL.DBID U2A
ISSN 0378-620X
IngestDate Fri Jul 25 10:54:52 EDT 2025
Tue Jul 01 01:38:45 EDT 2025
Fri Feb 21 02:43:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Convergence order
65M15
Semilinear Cauchy problems
Exponential splitting methods
47N40
65J08
47D06
Scales of Banach spaces
semigroups
65M12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c534c94da732e8e1d77f504a981ced85394da067c24f822113fec2d194bec0b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5522-6512
OpenAccessLink https://link.springer.com/10.1007/s00020-023-02735-6
PQID 2821007595
PQPubID 2043784
ParticipantIDs proquest_journals_2821007595
crossref_primary_10_1007_s00020_023_02735_6
springer_journals_10_1007_s00020_023_02735_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Integral equations and operator theory
PublicationTitleAbbrev Integr. Equ. Oper. Theory
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Metafune, G.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(1):97–124, (2001)
HochbruckMOstermannAExponential Runge–Kutta methods for parabolic problemsAppl. Numer. Math.2005532–4323339212852910.1016/j.apnum.2004.08.0051070.65099
Hochbruck., M.: A short course on exponential integrators. In Matrix functions and matrix equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pp. 28–49. Higher Ed. Press, Beijing (2015)
Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, (2011)
Hundertmark, D., Meyries, M., Machinek, L., Schnaubelt, R.: Operator semigroups and dispersive equations. Lecture notes, Internet Seminar. https://isem.math.kit.edu/images/b/b3/Isem16_final.pdf (2013)
ClarkDSA short proof of a discrete GronwallDiscrete Appl. Math.19871627928187802710.1016/0166-218X(87)90064-30612.39004
HansenEOstermannAHigh order splitting methods for analytic semigroups existBIT2009493527542254581910.1007/s10543-009-0236-x1176.65066
HanselTOn the Navier–Stokes equations with rotating effect and prescribed outflow velocityJ. Math. Fluid Mech.2011133405419282449110.1007/s00021-010-0026-x1270.35345
HochbruckMOstermannAExponential integratorsActa Numer201019209286265278310.1017/S09624929100000481242.65109
Hundsdorfer, W., Verwer, J.G.: A note on splitting errors for advection-reaction equations. Appl. Numer. Math., 18(1-3):191–199, 1995. In: Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994)
ChillRFašangováEMetafuneGPallaraDThe sector of analyticity of the Ornstein-Uhlenbeck semigroup on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measureJ. London Math. Soc.2005713703722213237910.1112/S00246107050063441123.35030
HansenEOstermannAHigh-order splitting schemes for semilinear evolution equationsBIT201656413031316357661210.1007/s10543-016-0604-21355.65071
Csomós, P., Bátkai, A., Farkas, B., Ostermann, A.: Operator semigroups for numerical analysis. Lecture notes, TULKA Internetseminar, https://www.fan.uni-wuppertal.de/fileadmin/mathe/reine_mathematik/funktionalanalysis/farkas/15ISEM-NumerSgrp.pdf (2012)
LunardiAOn the Ornstein-Uhlenbeck operator in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresTrans. Amer. Math. Soc.19973491155169138978610.1090/S0002-9947-97-01802-30890.35030
Lunardi, A.: Regularity for a class of sums of noncommuting operators. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl. pp. 517–533. Birkhäuser, Basel (1999)
SeidmanTIHow violent are fast controls?Math. Control Signals Syst.198811899592327810.1007/BF025512380663.49018
GeissertMHeckHHieberMWoodIThe Ornstein-Uhlenbeck semigroup in exterior domainsArch. Math. (Basel)2005856554562219166510.1007/s00013-005-1400-41114.47043
BecknerWInequalities in Fourier analysisAnn. Math.1975102115918238545610.2307/19709800338.42017
KatoTStrong Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-solutions of the Navier-Stokes equation in Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ R}^{m}$$\end{document}, with applications to weak solutionsMath. Z.1984187447148076004710.1007/BF011741820545.35073
Fornaro, S., Metafune, G., Pallara, D., Schnaubelt, R.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280(2):Paper No. 108807, 22, (2021)
Lunardi, A., Metafune, G., Pallara, D.: The Ornstein–Uhlenbeck semigroup in finite dimension. Philos. Trans. Roy. Soc. A 378(2185):20200217, 15, 2020
GeissertM LunardiAInvariant measures and maximal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} regularity for nonautonomous Ornstein–Uhlenbeck equationsJ. Lond. Math. Soc.2008773719740241830110.1112/jlms/jdn0091153.47030
Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. (2013 reprint of the 1995 original)
Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)
J. Zabczyk. Mathematical control theory—an introduction. Systems & Control: Foundations & Applications. Birkhäuser/Springer, Cham (2020)
FarkasB LunardiAMaximal regularity for Kolmogorov operators in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresJ. Math. Pures Appl.2006864310321225784610.1016/j.matpur.2006.06.0021117.35018
BátkaiACsomósPFarkasBOperator splitting for dissipative delay equationsSemigroup Forum2017952345365371584610.1007/s00233-016-9812-y06825444
TravisCCWebbGFCosine families and abstract nonlinear second order differential equationsActa Math. Acad. Sci. Hungar.1978321–2759649958110.1007/BF019022050388.34039
Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf R}^n$$\end{document}. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133–164, 1997
KomatsuHFractional powers of operatorsPacific J. Math.19661928534620198510.2140/pjm.1966.19.2850154.16104
McLachlanRIQuispelGRWSplitting methodsActa Numer200211341434200937610.1017/S09624929020000531105.65341
BuchholzSDörichBHochbruckMOn averaged exponential integrators for semilinear wave equations with solutions of low-regularityPartial Differ. Equ. Appl.20212223429826210.1007/s42985-020-00045-91460.65055
GeissertMHeckHHieberMLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacleJ. Reine Angew. Math.2006596456222548041102.76015
HieberMSawadaOThe Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{n}$$\end{document} with linearly growing initial dataArch. Ration. Mech. Anal.20051752269285211847810.1007/s00205-004-0347-01072.35144
GigaYSohrHAbstract Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domainsJ. Funct. Anal.199110217294113883810.1016/0022-1236(91)90136-S0739.35067
Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)
Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)
Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)
HippDHochbruckMOstermannAAn exponential integrator for non-autonomous parabolic problemsElectron. Trans. Numer. Anal.20144149751132982801312.65210
MetafuneGPallaraDPriolaESpectrum of Ornstein-Uhlenbeck operators in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measuresJ. Funct. Anal.200219614060194199010.1006/jfan.2002.39781027.47036
G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{
W Beckner (2735_CR3) 1975; 102
2735_CR11
2735_CR33
2735_CR32
2735_CR31
B Farkas (2735_CR10) 2006; 86
2735_CR1
G Metafune (2735_CR36) 2002; 196
R Chill (2735_CR5) 2005; 71
H Komatsu (2735_CR28) 1966; 19
TI Seidman (2735_CR39) 1988; 1
M Geissert (2735_CR14) 2008; 77
2735_CR16
2735_CR38
2735_CR37
2735_CR35
A Bátkai (2735_CR2) 2017; 95
M Hieber (2735_CR20) 2005; 175
Y Giga (2735_CR15) 1991; 102
2735_CR9
S Buchholz (2735_CR4) 2021; 2
2735_CR8
CC Travis (2735_CR40) 1978; 32
2735_CR7
2735_CR22
2735_CR41
DS Clark (2735_CR6) 1987; 16
T Hansel (2735_CR17) 2011; 13
RI McLachlan (2735_CR34) 2002; 11
E Hansen (2735_CR19) 2016; 56
2735_CR29
A Lunardi (2735_CR30) 1997; 349
2735_CR26
2735_CR25
T Kato (2735_CR27) 1984; 187
M Hochbruck (2735_CR23) 2005; 53
M Geissert (2735_CR12) 2006; 596
M Hochbruck (2735_CR24) 2010; 19
D Hipp (2735_CR21) 2014; 41
E Hansen (2735_CR18) 2009; 49
M Geissert (2735_CR13) 2005; 85
References_xml – reference: Fornaro, S., Metafune, G., Pallara, D., Schnaubelt, R.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280(2):Paper No. 108807, 22, (2021)
– reference: HochbruckMOstermannAExponential integratorsActa Numer201019209286265278310.1017/S09624929100000481242.65109
– reference: Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)
– reference: J. Zabczyk. Mathematical control theory—an introduction. Systems & Control: Foundations & Applications. Birkhäuser/Springer, Cham (2020)
– reference: GeissertMHeckHHieberMLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacleJ. Reine Angew. Math.2006596456222548041102.76015
– reference: HochbruckMOstermannAExponential Runge–Kutta methods for parabolic problemsAppl. Numer. Math.2005532–4323339212852910.1016/j.apnum.2004.08.0051070.65099
– reference: LunardiAOn the Ornstein-Uhlenbeck operator in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresTrans. Amer. Math. Soc.19973491155169138978610.1090/S0002-9947-97-01802-30890.35030
– reference: Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. (2013 reprint of the 1995 original)
– reference: Lunardi, A.: Regularity for a class of sums of noncommuting operators. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl. pp. 517–533. Birkhäuser, Basel (1999)
– reference: BátkaiACsomósPFarkasBOperator splitting for dissipative delay equationsSemigroup Forum2017952345365371584610.1007/s00233-016-9812-y06825444
– reference: McLachlanRIQuispelGRWSplitting methodsActa Numer200211341434200937610.1017/S09624929020000531105.65341
– reference: Hochbruck., M.: A short course on exponential integrators. In Matrix functions and matrix equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pp. 28–49. Higher Ed. Press, Beijing (2015)
– reference: BuchholzSDörichBHochbruckMOn averaged exponential integrators for semilinear wave equations with solutions of low-regularityPartial Differ. Equ. Appl.20212223429826210.1007/s42985-020-00045-91460.65055
– reference: ChillRFašangováEMetafuneGPallaraDThe sector of analyticity of the Ornstein-Uhlenbeck semigroup on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measureJ. London Math. Soc.2005713703722213237910.1112/S00246107050063441123.35030
– reference: Csomós, P., Bátkai, A., Farkas, B., Ostermann, A.: Operator semigroups for numerical analysis. Lecture notes, TULKA Internetseminar, https://www.fan.uni-wuppertal.de/fileadmin/mathe/reine_mathematik/funktionalanalysis/farkas/15ISEM-NumerSgrp.pdf (2012)
– reference: Metafune, G.: Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(1):97–124, (2001)
– reference: HansenEOstermannAHigh order splitting methods for analytic semigroups existBIT2009493527542254581910.1007/s10543-009-0236-x1176.65066
– reference: MetafuneGPallaraDPriolaESpectrum of Ornstein-Uhlenbeck operators in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces with respect to invariant measuresJ. Funct. Anal.200219614060194199010.1006/jfan.2002.39781027.47036
– reference: Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, (2011)
– reference: HansenEOstermannAHigh-order splitting schemes for semilinear evolution equationsBIT201656413031316357661210.1007/s10543-016-0604-21355.65071
– reference: Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf R}^n$$\end{document}. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133–164, 1997
– reference: Lunardi, A., Metafune, G., Pallara, D.: The Ornstein–Uhlenbeck semigroup in finite dimension. Philos. Trans. Roy. Soc. A 378(2185):20200217, 15, 2020
– reference: HieberMSawadaOThe Navier–Stokes equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{n}$$\end{document} with linearly growing initial dataArch. Ration. Mech. Anal.20051752269285211847810.1007/s00205-004-0347-01072.35144
– reference: G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1(2):471–485, 2002
– reference: ClarkDSA short proof of a discrete GronwallDiscrete Appl. Math.19871627928187802710.1016/0166-218X(87)90064-30612.39004
– reference: Hundertmark, D., Meyries, M., Machinek, L., Schnaubelt, R.: Operator semigroups and dispersive equations. Lecture notes, Internet Seminar. https://isem.math.kit.edu/images/b/b3/Isem16_final.pdf (2013)
– reference: TravisCCWebbGFCosine families and abstract nonlinear second order differential equationsActa Math. Acad. Sci. Hungar.1978321–2759649958110.1007/BF019022050388.34039
– reference: Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)
– reference: SeidmanTIHow violent are fast controls?Math. Control Signals Syst.198811899592327810.1007/BF025512380663.49018
– reference: HippDHochbruckMOstermannAAn exponential integrator for non-autonomous parabolic problemsElectron. Trans. Numer. Anal.20144149751132982801312.65210
– reference: GeissertM LunardiAInvariant measures and maximal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} regularity for nonautonomous Ornstein–Uhlenbeck equationsJ. Lond. Math. Soc.2008773719740241830110.1112/jlms/jdn0091153.47030
– reference: KomatsuHFractional powers of operatorsPacific J. Math.19661928534620198510.2140/pjm.1966.19.2850154.16104
– reference: FarkasB LunardiAMaximal regularity for Kolmogorov operators in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces with respect to invariant measuresJ. Math. Pures Appl.2006864310321225784610.1016/j.matpur.2006.06.0021117.35018
– reference: Hundsdorfer, W., Verwer, J.G.: A note on splitting errors for advection-reaction equations. Appl. Numer. Math., 18(1-3):191–199, 1995. In: Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994)
– reference: Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)
– reference: KatoTStrong Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-solutions of the Navier-Stokes equation in Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ R}^{m}$$\end{document}, with applications to weak solutionsMath. Z.1984187447148076004710.1007/BF011741820545.35073
– reference: Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)
– reference: GigaYSohrHAbstract Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domainsJ. Funct. Anal.199110217294113883810.1016/0022-1236(91)90136-S0739.35067
– reference: BecknerWInequalities in Fourier analysisAnn. Math.1975102115918238545610.2307/19709800338.42017
– reference: GeissertMHeckHHieberMWoodIThe Ornstein-Uhlenbeck semigroup in exterior domainsArch. Math. (Basel)2005856554562219166510.1007/s00013-005-1400-41114.47043
– reference: HanselTOn the Navier–Stokes equations with rotating effect and prescribed outflow velocityJ. Math. Fluid Mech.2011133405419282449110.1007/s00021-010-0026-x1270.35345
– volume: 49
  start-page: 527
  issue: 3
  year: 2009
  ident: 2735_CR18
  publication-title: BIT
  doi: 10.1007/s10543-009-0236-x
– ident: 2735_CR29
  doi: 10.1007/978-3-0348-9234-6
– ident: 2735_CR7
– ident: 2735_CR9
– ident: 2735_CR33
  doi: 10.1098/rsta.2020.0217
– volume: 2
  start-page: 23
  issue: 2
  year: 2021
  ident: 2735_CR4
  publication-title: Partial Differ. Equ. Appl.
  doi: 10.1007/s42985-020-00045-9
– volume: 196
  start-page: 40
  issue: 1
  year: 2002
  ident: 2735_CR36
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.2002.3978
– volume: 596
  start-page: 45
  year: 2006
  ident: 2735_CR12
  publication-title: J. Reine Angew. Math.
– ident: 2735_CR38
  doi: 10.1007/978-1-4612-5561-1
– volume: 1
  start-page: 89
  issue: 1
  year: 1988
  ident: 2735_CR39
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551238
– ident: 2735_CR25
– ident: 2735_CR16
  doi: 10.1007/3-7643-7698-8
– volume: 86
  start-page: 310
  issue: 4
  year: 2006
  ident: 2735_CR10
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2006.06.002
– volume: 102
  start-page: 72
  issue: 1
  year: 1991
  ident: 2735_CR15
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(91)90136-S
– ident: 2735_CR32
  doi: 10.1007/978-3-0348-8765-6_21
– volume: 41
  start-page: 497
  year: 2014
  ident: 2735_CR21
  publication-title: Electron. Trans. Numer. Anal.
– ident: 2735_CR11
  doi: 10.1016/j.jfa.2020.108807
– volume: 32
  start-page: 75
  issue: 1–2
  year: 1978
  ident: 2735_CR40
  publication-title: Acta Math. Acad. Sci. Hungar.
  doi: 10.1007/BF01902205
– volume: 19
  start-page: 209
  year: 2010
  ident: 2735_CR24
  publication-title: Acta Numer
  doi: 10.1017/S0962492910000048
– ident: 2735_CR35
– volume: 85
  start-page: 554
  issue: 6
  year: 2005
  ident: 2735_CR13
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-005-1400-4
– volume: 349
  start-page: 155
  issue: 1
  year: 1997
  ident: 2735_CR30
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-97-01802-3
– volume: 71
  start-page: 703
  issue: 3
  year: 2005
  ident: 2735_CR5
  publication-title: J. London Math. Soc.
  doi: 10.1112/S0024610705006344
– volume: 77
  start-page: 719
  issue: 3
  year: 2008
  ident: 2735_CR14
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/jdn009
– ident: 2735_CR8
– ident: 2735_CR26
  doi: 10.1016/0168-9274(95)00069-7
– ident: 2735_CR37
– volume: 19
  start-page: 285
  year: 1966
  ident: 2735_CR28
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1966.19.285
– volume: 13
  start-page: 405
  issue: 3
  year: 2011
  ident: 2735_CR17
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-010-0026-x
– volume: 11
  start-page: 341
  year: 2002
  ident: 2735_CR34
  publication-title: Acta Numer
  doi: 10.1017/S0962492902000053
– volume: 53
  start-page: 323
  issue: 2–4
  year: 2005
  ident: 2735_CR23
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.08.005
– volume: 95
  start-page: 345
  issue: 2
  year: 2017
  ident: 2735_CR2
  publication-title: Semigroup Forum
  doi: 10.1007/s00233-016-9812-y
– volume: 56
  start-page: 1303
  issue: 4
  year: 2016
  ident: 2735_CR19
  publication-title: BIT
  doi: 10.1007/s10543-016-0604-2
– volume: 175
  start-page: 269
  issue: 2
  year: 2005
  ident: 2735_CR20
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-004-0347-0
– volume: 102
  start-page: 159
  issue: 1
  year: 1975
  ident: 2735_CR3
  publication-title: Ann. Math.
  doi: 10.2307/1970980
– volume: 187
  start-page: 471
  issue: 4
  year: 1984
  ident: 2735_CR27
  publication-title: Math. Z.
  doi: 10.1007/BF01174182
– ident: 2735_CR1
  doi: 10.1007/978-3-0348-0087-7
– ident: 2735_CR31
– ident: 2735_CR41
  doi: 10.1007/978-3-030-44778-6
– ident: 2735_CR22
  doi: 10.1142/9789814675772_0002
– volume: 16
  start-page: 279
  year: 1987
  ident: 2735_CR6
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(87)90064-3
SSID ssj0022726
Score 2.3020635
Snippet Due to the seminal works of Hochbruck and Ostermann (Appl Numer Math 53(2–4):323–339, 2005, Acta Numer 19:209–286, 2010) exponential splittings are well...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Analysis
Banach spaces
Cauchy problems
Fluid flow
Interpolation
Linear evolution equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Numerical methods
Operators (mathematics)
Rotating bodies
Semigroups
Stokes flow
Title On Exponential Splitting Methods for Semilinear Abstract Cauchy problems
URI https://link.springer.com/article/10.1007/s00020-023-02735-6
https://www.proquest.com/docview/2821007595
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjB-BlRJD140yasazd6hAUkGvCAJHhatm6NHkTCRqL_va9lG2r04GlZ-pHl13bv9_q-AK6ko7VSMqHaS3zKI5ZSFAqSsoj7CumsjqUJTh5PvNGM383FvAgKy0pv99Ikaf_UVbCbtZpRlDHG7ugK6tWgIVB3N_t6xnqVmsV8trFQon7ksc68CJX5fY7v4mjLMX-YRa20GR7AfkETSW-zroewky6OYO9L8kB8G1cZV7NjGD0syOB9-bYw3j84cork0ro0k7GtEZ0RZKdkmr6-GF4ZrUgvNpccKidBtFbPH6SoLJOdwGw4eAxGtKiSQJXr8Jwq4XIleRL5Lku7qZP4vhYdHsmuo9LEAI9tKJMU4xrZgOO4OlUscSTH5evEHfcU6gv8ujMgkdYSKYKLM2nuywRPu7YFJrtdKbSIm3BdghUuN8kwwirtsYU2RGhDC23oNaFV4hkWByMLUcMz3YUUTbgpMd42_z3b-f-6X8Aus8ts7ktaUM9X6_QS6UMet6HRG_b7E_O8fboftKEWeEHb7qFP5Ja-Qg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShgAc2MGocO4nHqmop9MEAlcoUJU4sEKJUTSoBv56Lm7RQwcAY2bGcu4vvO98L4FxaWislI6qdyKU8YDFFpSApC7irEM7qUGbJyb2-0x7w26EY5klhSRHtXrgkzUk9T3YzXjOKOibzO9qCOqtQ5miDixKU69ePnebc0GIum_ko0UJyWG2YJ8v8vspPhbRAmUuOUaNvWlswKHY6CzN5uZqm4ZX6XCri-N9P2YbNHICS-kxidmAlHu3CxreyhPjUm9dyTfagfTcizffx2yiLK8I37xG2mmBp0jPdpxOCuJfcx6_PGWINJqQeZtcnKiWNYKqePkjesybZh0Gr-dBo07z_AlW2xVOqhM2V5FHg2iz2YityXS1qPJCepeIoYymOobZTjGvEGZZl61ixCFmCglELa_YBlEa4u0MggdYSwYeNK2nuygjPEW1aV3qeFFqEFbgomOCPZ2U2_HlBZUMtH6nlG2r5TgWqBZ_8_JdLfLQds-lCigpcFmRfDP-92tH_pp_BWvuh1_W7N_3OMawzw8XsVqYKpXQyjU8QpKThaS6TX-y22i4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807A1TS95HHVjXjaFOdhbaNMGfbCOtQP9956kl03RBx9L0kP5TsP5Ts4NoUtuKSUlj4lyY4-wkCYEjAInNGSeBDqrIq6Lk4cjdzBhd1NnulLFb7Ldq5BkUdOguzSleXsWq3Zd-GYiaATsjY5B2g5x19EGeCqWTuoL3KB2uahHi2gl-Eou7UzLspnfZXw3TUu--SNEaixPfxftlJQRdwsd76G1JN1H2yuNBOFpWHdfzQ7Q4DHFvY_Ze6ozgeDNMRBNk96Mh2ZedIaBqeJx8vaqOWY4x91IX3jIHAfhQr584nLKTHaIJv3eczAg5cQEIm2L5UQ6NpOcxaFn08RPrNjzlNNhIfctmcRaCbAG9klSpoAZWJatEkljizNQZSfq2EeokcLXHSMcKsWBLtggSTGPx3DylRk26fvcUU7URFcVWGJWNMYQdQtkA60AaIWBVrhN1KrwFOUhyQR4e3q7w50muq4wXi7_Le3kf9sv0ObTTV883I7uT9EWNRrX1ygt1Mjni-QMWEUenZsf5wvtncFu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Exponential+Splitting+Methods+for+Semilinear+Abstract+Cauchy+problems&rft.jtitle=Integral+equations+and+operator+theory&rft.au=Farkas%2C+B%C3%A1lint&rft.au=Jacob%2C+Birgit&rft.au=Schmitz%2C+Merlin&rft.date=2023-06-01&rft.pub=Springer+International+Publishing&rft.issn=0378-620X&rft.eissn=1420-8989&rft.volume=95&rft.issue=2&rft_id=info:doi/10.1007%2Fs00020-023-02735-6&rft.externalDocID=10_1007_s00020_023_02735_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-620X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-620X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-620X&client=summon