Numerical Simulation of P91 Steel Under Low-Cycle-Fatigue Loading

Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the...

Full description

Saved in:
Bibliographic Details
Published inJournal of failure analysis and prevention Vol. 23; no. 2; pp. 520 - 528
Main Authors Roslin, M. A. A., Ab Razak, N., Alang, N. A., Sazali, N.
Format Journal Article
LanguageEnglish
Published Materials Park Springer Nature B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the best selection material as it poses excellent thermal conductivity, low thermal expansion coefficient, and high corrosion resistance. However, the material component is exposed to mechanical and temperature cycling, which creates thermal gradients on the components and may generate high cyclic stress levels between the components, which may cause cracks in the structure of the components and body damage. Prolonged exposure of the material to cyclic loading may result in low-cycle fatigue which may cause thermo-mechanical fatigue failure to the components. The low-cycle fatigue test is costly and time- consuming. Therefore, the use of the finite element approach in material analysis can be helpful to examine the behavior of steel specimens when subjected to low-cycle fatigue. The cyclic stress–strain response was replicated by using the constitutive model of combination isotropic–kinematic hardening implemented in the finite element software Abaqus. The development of the material model for the numerical simulation is based on a previous study where the parameters for the experimental low-cycle fatigue tests were extracted to be used in the calculation for the simulation. The combined hardening parameters were developed, and the isotropic and kinematic hardening parameters were calculated. The simulation uses strain amplitude varying between 0.25 and 0.6% with a constant strain rate of 0.1%s-1 at room temperature. The stress amplitude of the material decreases as the number of cycles increases which shows that the material exhibits cyclic softening in cyclic loading. Cyclic softening behavior is more noticeable with higher strain amplitude as it resulted in lower fatigue life. Higher strain amplitude resulted in higher peak stress and plastic strain. The finite element analysis of the low-cycle-fatigue P91 steel is relatively like the experimental results which also can give a significant understanding of the usage of P91 steel to industrial applications.
AbstractList Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the best selection material as it poses excellent thermal conductivity, low thermal expansion coefficient, and high corrosion resistance. However, the material component is exposed to mechanical and temperature cycling, which creates thermal gradients on the components and may generate high cyclic stress levels between the components, which may cause cracks in the structure of the components and body damage. Prolonged exposure of the material to cyclic loading may result in low-cycle fatigue which may cause thermo-mechanical fatigue failure to the components. The low-cycle fatigue test is costly and time- consuming. Therefore, the use of the finite element approach in material analysis can be helpful to examine the behavior of steel specimens when subjected to low-cycle fatigue. The cyclic stress–strain response was replicated by using the constitutive model of combination isotropic–kinematic hardening implemented in the finite element software Abaqus. The development of the material model for the numerical simulation is based on a previous study where the parameters for the experimental low-cycle fatigue tests were extracted to be used in the calculation for the simulation. The combined hardening parameters were developed, and the isotropic and kinematic hardening parameters were calculated. The simulation uses strain amplitude varying between 0.25 and 0.6% with a constant strain rate of 0.1%s-1 at room temperature. The stress amplitude of the material decreases as the number of cycles increases which shows that the material exhibits cyclic softening in cyclic loading. Cyclic softening behavior is more noticeable with higher strain amplitude as it resulted in lower fatigue life. Higher strain amplitude resulted in higher peak stress and plastic strain. The finite element analysis of the low-cycle-fatigue P91 steel is relatively like the experimental results which also can give a significant understanding of the usage of P91 steel to industrial applications.
Author Roslin, M. A. A.
Alang, N. A.
Ab Razak, N.
Sazali, N.
Author_xml – sequence: 1
  givenname: M. A. A.
  surname: Roslin
  fullname: Roslin, M. A. A.
– sequence: 2
  givenname: N.
  surname: Ab Razak
  fullname: Ab Razak, N.
– sequence: 3
  givenname: N. A.
  surname: Alang
  fullname: Alang, N. A.
– sequence: 4
  givenname: N.
  surname: Sazali
  fullname: Sazali, N.
BookMark eNotkE1LAzEQhoNUsK3-AU8LnqP5TvZYilWhqFB7DskmKVu2m5rsIv33xtbLzPDyMDM8MzDpY-8BuMfoESMknzLGQiiICIEIc8mgugJTrASDmDA-KTNnEkpE6hswy3mPEOWY8ClYvI8Hn9rGdNWmPYydGdrYVzFUnzWuNoP3XbXtnU_VOv7A5anpPFwVZjf6khjX9rtbcB1Ml_3df5-D7er5a_kK1x8vb8vFGjYUs6HU4ESgxDlmsbHC2WAQcoYZqWpuZMBeMWtcg6QoP9eS1FZaJxyVnDIb6Bw8XPYeU_wefR70Po6pLyc1UUjRs4FCkQvVpJhz8kEfU3sw6aQx0n-q9EWVLqr0WZVW9BflE1za
Cites_doi 10.1016/j.ijpvp.2010.03.007
10.1016/0749-6419(86)90010-0
10.1016/j.applthermaleng.2021.116794
10.1016/j.ijfatigue.2015.02.014
10.1016/j.rser.2017.03.071
10.1016/j.jnucmat.2008.06.033
10.1016/j.ijpvp.2013.08.001
10.1016/j.ijplas.2015.10.009
10.1016/j.prostr.2016.06.396
10.1016/S1006-706X(15)30037-6
10.1016/j.msea.2006.12.183
10.1002/mawe.202100341
10.1016/j.engfailanal.2017.05.001
10.1016/j.ijfatigue.2016.02.005
10.1016/j.proeng.2013.03.234
10.1016/j.ijfatigue.2018.06.031
10.1016/j.matpr.2020.05.613
10.1007/s12666-015-0782-7
10.1016/j.engfailanal.2013.06.019
ContentType Journal Article
Copyright ASM International 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: ASM International 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s11668-022-01574-8
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Materials Business File
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-1245
EndPage 528
ExternalDocumentID 10_1007_s11668_022_01574_8
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PDBOC
PF0
PT4
PTHSS
Q2X
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~8M
~A9
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c314t-c3fd6f32dd4b1ab6dbfa00da4a7895a7f1e84badc0761249729b7bd6d37534bf3
ISSN 1547-7029
IngestDate Thu Oct 10 16:43:49 EDT 2024
Thu Sep 12 16:53:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-c3fd6f32dd4b1ab6dbfa00da4a7895a7f1e84badc0761249729b7bd6d37534bf3
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11668-022-01574-8.pdf
PQID 2808311668
PQPubID 326254
PageCount 9
ParticipantIDs proquest_journals_2808311668
crossref_primary_10_1007_s11668_022_01574_8
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Materials Park
PublicationPlace_xml – name: Materials Park
PublicationTitle Journal of failure analysis and prevention
PublicationYear 2023
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 1574_CR2
L Xu (1574_CR15) 2016; 78
S Salifu (1574_CR3) 2020
R Viswanathan (1574_CR8) 2000; 122
1574_CR21
M Sauzay (1574_CR23) 2008; 483–484
P Kubaschinski (1574_CR16) 2022; 53
AA Saad (1574_CR20) 2013; 111–112
JL Chaboche (1574_CR17) 1986; 2
N Ab Razak (1574_CR22) 2018
J Rúa (1574_CR9) 2021; 191
V Thomas Paul (1574_CR6) 2008; 378
P Verma (1574_CR4) 2016; 69
1574_CR19
M Springer (1574_CR10) 2018; 116
Z Zhang (1574_CR13) 2015; 22
NA Alang (1574_CR14) 2016; 2
G Golański (1574_CR12) 2013; 35
C Zhang (1574_CR1) 2017; 76
R Kannan (1574_CR11) 2013; 55
G Dundulis (1574_CR5) 2017; 79
CJ Hyde (1574_CR18) 2010; 87
M Li (1574_CR7) 2016; 87
References_xml – volume: 87
  start-page: 365
  issue: 6
  year: 2010
  ident: 1574_CR18
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2010.03.007
  contributor:
    fullname: CJ Hyde
– volume: 2
  start-page: 149
  issue: 2
  year: 1986
  ident: 1574_CR17
  publication-title: Int. J. Plast.
  doi: 10.1016/0749-6419(86)90010-0
  contributor:
    fullname: JL Chaboche
– volume: 191
  start-page: 116794
  year: 2021
  ident: 1574_CR9
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116794
  contributor:
    fullname: J Rúa
– ident: 1574_CR19
  doi: 10.1016/j.ijfatigue.2015.02.014
– volume: 76
  start-page: 353
  year: 2017
  ident: 1574_CR1
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.071
  contributor:
    fullname: C Zhang
– volume: 378
  start-page: 273
  issue: 3
  year: 2008
  ident: 1574_CR6
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2008.06.033
  contributor:
    fullname: V Thomas Paul
– volume: 111–112
  start-page: 246
  year: 2013
  ident: 1574_CR20
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2013.08.001
  contributor:
    fullname: AA Saad
– volume: 122
  start-page: 246
  year: 2000
  ident: 1574_CR8
  publication-title: Electr. Power Res. Inst.
  contributor:
    fullname: R Viswanathan
– volume: 78
  start-page: 44
  year: 2016
  ident: 1574_CR15
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.10.009
  contributor:
    fullname: L Xu
– volume: 2
  start-page: 3177
  year: 2016
  ident: 1574_CR14
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2016.06.396
  contributor:
    fullname: NA Alang
– ident: 1574_CR21
– volume: 22
  start-page: 534
  issue: 6
  year: 2015
  ident: 1574_CR13
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(15)30037-6
  contributor:
    fullname: Z Zhang
– volume: 483–484
  start-page: 410
  year: 2008
  ident: 1574_CR23
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.12.183
  contributor:
    fullname: M Sauzay
– volume: 53
  start-page: 422
  issue: 4
  year: 2022
  ident: 1574_CR16
  publication-title: Materwiss. Werksttech.
  doi: 10.1002/mawe.202100341
  contributor:
    fullname: P Kubaschinski
– volume: 79
  start-page: 285
  year: 2017
  ident: 1574_CR5
  publication-title: Eng. Failure Anal.
  doi: 10.1016/j.engfailanal.2017.05.001
  contributor:
    fullname: G Dundulis
– volume: 87
  start-page: 391
  year: 2016
  ident: 1574_CR7
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.02.005
  contributor:
    fullname: M Li
– volume: 55
  start-page: 149
  year: 2013
  ident: 1574_CR11
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.03.234
  contributor:
    fullname: R Kannan
– volume: 116
  start-page: 355
  year: 2018
  ident: 1574_CR10
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.06.031
  contributor:
    fullname: M Springer
– volume-title: Creep and creep-fatigue interaction in new and serviced exposed P91 steel
  year: 2018
  ident: 1574_CR22
  contributor:
    fullname: N Ab Razak
– ident: 1574_CR2
– year: 2020
  ident: 1574_CR3
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.05.613
  contributor:
    fullname: S Salifu
– volume: 69
  start-page: 331
  issue: 2
  year: 2016
  ident: 1574_CR4
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-015-0782-7
  contributor:
    fullname: P Verma
– volume: 35
  start-page: 692
  year: 2013
  ident: 1574_CR12
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2013.06.019
  contributor:
    fullname: G Golański
SSID ssj0035125
Score 2.3025298
Snippet Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 520
SubjectTerms Amplitudes
Chromium molybdenum steels
Computer simulation
Constitutive models
Corrosion resistance
Cyclic loads
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue tests
Ferritic stainless steels
Finite element method
Hardening
Heat treating
Kinematics
Mathematical models
Metal fatigue
Parameters
Plastic deformation
Power plants
Room temperature
Simulation
Softening
Strain rate
Temperature gradients
Thermal conductivity
Thermal expansion
Title Numerical Simulation of P91 Steel Under Low-Cycle-Fatigue Loading
URI https://www.proquest.com/docview/2808311668
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahsxULjOpT2UPmnatOjQ26KglbSvoxNqQml8aBLIbZFWUgm4dmlsSnPsl3e0mn0kbqEpGGGG8WDvjGdG8yTkvSlsDn6rZZpbzpSSlhnRKOaqSjRCgsW1ITRwushPLtTHy-xyMvk1qlrabsxhc_PHvpL_4SrAgK-hS_YenO2JAgDeA3_hBA7D-U88XmxjvmWZnF19xT1cbVFblYbyLbdM2rVGyaf1D3b8Ez7M5oDzZesAonujteuaen21jIkFnFiC0wSwNnJI0lzjuvfTw2QWXkMyKfmsbzTu9-mhSwxOL8a4Z4AYe7QRE2MQQo5KV1BtqoIVHGMXLsLKPExEjMMiO10be4tRpsRIcWaCj2xwFhvGd9Q7x3bnNM9LFvoQwJkpFCsHY9Yl8O_YuL7ycJjSHGjUQKNuadTlA7InQFmVU7I3mx8dLTp7LsElytqpu_gbsfUqNmDe_Sa33Zvb1r11Wc6fkMfIUDqLgvOUTNzqGXk0mkD5nMx6EaKDCNG1pyBCtBUh2ooQ3REhiiL0glzMP5wfnzDcqsEamaoNnN7mXgprlUm1ya3xmnOrlS7KKtOFT12pjLZNiHDB5RxuX6YwNrcSbrbKePmSTFfrlXtFKFy1QyJZuyIk8HleecWN8JmVTci2p_sk6R5G_S0OT6n_zoB9ctA9rxr_ZNe1KMMqvID6-l7E3pCHg6AekOnm-9a9BfdxY94hf38DedFl1A
link.rule.ids 315,783,787,27938,27939
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Simulation+of+P91+Steel+Under+Low-Cycle-Fatigue+Loading&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Roslin%2C+M.+A.+A.&rft.au=Ab+Razak%2C+N.&rft.au=Alang%2C+N.+A.&rft.au=Sazali%2C+N.&rft.date=2023-04-01&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=23&rft.issue=2&rft.spage=520&rft.epage=528&rft_id=info:doi/10.1007%2Fs11668-022-01574-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_022_01574_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon