Numerical Simulation of P91 Steel Under Low-Cycle-Fatigue Loading
Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the...
Saved in:
Published in | Journal of failure analysis and prevention Vol. 23; no. 2; pp. 520 - 528 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Materials Park
Springer Nature B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the best selection material as it poses excellent thermal conductivity, low thermal expansion coefficient, and high corrosion resistance. However, the material component is exposed to mechanical and temperature cycling, which creates thermal gradients on the components and may generate high cyclic stress levels between the components, which may cause cracks in the structure of the components and body damage. Prolonged exposure of the material to cyclic loading may result in low-cycle fatigue which may cause thermo-mechanical fatigue failure to the components. The low-cycle fatigue test is costly and time- consuming. Therefore, the use of the finite element approach in material analysis can be helpful to examine the behavior of steel specimens when subjected to low-cycle fatigue. The cyclic stress–strain response was replicated by using the constitutive model of combination isotropic–kinematic hardening implemented in the finite element software Abaqus. The development of the material model for the numerical simulation is based on a previous study where the parameters for the experimental low-cycle fatigue tests were extracted to be used in the calculation for the simulation. The combined hardening parameters were developed, and the isotropic and kinematic hardening parameters were calculated. The simulation uses strain amplitude varying between 0.25 and 0.6% with a constant strain rate of 0.1%s-1 at room temperature. The stress amplitude of the material decreases as the number of cycles increases which shows that the material exhibits cyclic softening in cyclic loading. Cyclic softening behavior is more noticeable with higher strain amplitude as it resulted in lower fatigue life. Higher strain amplitude resulted in higher peak stress and plastic strain. The finite element analysis of the low-cycle-fatigue P91 steel is relatively like the experimental results which also can give a significant understanding of the usage of P91 steel to industrial applications. |
---|---|
AbstractList | Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity from power plants, which raises their operating conditions and parameters thus requiring high-performance steel to be used. P91 steel is the best selection material as it poses excellent thermal conductivity, low thermal expansion coefficient, and high corrosion resistance. However, the material component is exposed to mechanical and temperature cycling, which creates thermal gradients on the components and may generate high cyclic stress levels between the components, which may cause cracks in the structure of the components and body damage. Prolonged exposure of the material to cyclic loading may result in low-cycle fatigue which may cause thermo-mechanical fatigue failure to the components. The low-cycle fatigue test is costly and time- consuming. Therefore, the use of the finite element approach in material analysis can be helpful to examine the behavior of steel specimens when subjected to low-cycle fatigue. The cyclic stress–strain response was replicated by using the constitutive model of combination isotropic–kinematic hardening implemented in the finite element software Abaqus. The development of the material model for the numerical simulation is based on a previous study where the parameters for the experimental low-cycle fatigue tests were extracted to be used in the calculation for the simulation. The combined hardening parameters were developed, and the isotropic and kinematic hardening parameters were calculated. The simulation uses strain amplitude varying between 0.25 and 0.6% with a constant strain rate of 0.1%s-1 at room temperature. The stress amplitude of the material decreases as the number of cycles increases which shows that the material exhibits cyclic softening in cyclic loading. Cyclic softening behavior is more noticeable with higher strain amplitude as it resulted in lower fatigue life. Higher strain amplitude resulted in higher peak stress and plastic strain. The finite element analysis of the low-cycle-fatigue P91 steel is relatively like the experimental results which also can give a significant understanding of the usage of P91 steel to industrial applications. |
Author | Roslin, M. A. A. Alang, N. A. Ab Razak, N. Sazali, N. |
Author_xml | – sequence: 1 givenname: M. A. A. surname: Roslin fullname: Roslin, M. A. A. – sequence: 2 givenname: N. surname: Ab Razak fullname: Ab Razak, N. – sequence: 3 givenname: N. A. surname: Alang fullname: Alang, N. A. – sequence: 4 givenname: N. surname: Sazali fullname: Sazali, N. |
BookMark | eNotkE1LAzEQhoNUsK3-AU8LnqP5TvZYilWhqFB7DskmKVu2m5rsIv33xtbLzPDyMDM8MzDpY-8BuMfoESMknzLGQiiICIEIc8mgugJTrASDmDA-KTNnEkpE6hswy3mPEOWY8ClYvI8Hn9rGdNWmPYydGdrYVzFUnzWuNoP3XbXtnU_VOv7A5anpPFwVZjf6khjX9rtbcB1Ml_3df5-D7er5a_kK1x8vb8vFGjYUs6HU4ESgxDlmsbHC2WAQcoYZqWpuZMBeMWtcg6QoP9eS1FZaJxyVnDIb6Bw8XPYeU_wefR70Po6pLyc1UUjRs4FCkQvVpJhz8kEfU3sw6aQx0n-q9EWVLqr0WZVW9BflE1za |
Cites_doi | 10.1016/j.ijpvp.2010.03.007 10.1016/0749-6419(86)90010-0 10.1016/j.applthermaleng.2021.116794 10.1016/j.ijfatigue.2015.02.014 10.1016/j.rser.2017.03.071 10.1016/j.jnucmat.2008.06.033 10.1016/j.ijpvp.2013.08.001 10.1016/j.ijplas.2015.10.009 10.1016/j.prostr.2016.06.396 10.1016/S1006-706X(15)30037-6 10.1016/j.msea.2006.12.183 10.1002/mawe.202100341 10.1016/j.engfailanal.2017.05.001 10.1016/j.ijfatigue.2016.02.005 10.1016/j.proeng.2013.03.234 10.1016/j.ijfatigue.2018.06.031 10.1016/j.matpr.2020.05.613 10.1007/s12666-015-0782-7 10.1016/j.engfailanal.2013.06.019 |
ContentType | Journal Article |
Copyright | ASM International 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: ASM International 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s11668-022-01574-8 |
DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Materials Business File METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-1245 |
EndPage | 528 |
ExternalDocumentID | 10_1007_s11668_022_01574_8 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF CS3 CSCUP D-I D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV L6V LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PDBOC PF0 PT4 PTHSS Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~8M ~A9 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c314t-c3fd6f32dd4b1ab6dbfa00da4a7895a7f1e84badc0761249729b7bd6d37534bf3 |
ISSN | 1547-7029 |
IngestDate | Thu Oct 10 16:43:49 EDT 2024 Thu Sep 12 16:53:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-c3fd6f32dd4b1ab6dbfa00da4a7895a7f1e84badc0761249729b7bd6d37534bf3 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11668-022-01574-8.pdf |
PQID | 2808311668 |
PQPubID | 326254 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2808311668 crossref_primary_10_1007_s11668_022_01574_8 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Materials Park |
PublicationPlace_xml | – name: Materials Park |
PublicationTitle | Journal of failure analysis and prevention |
PublicationYear | 2023 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 1574_CR2 L Xu (1574_CR15) 2016; 78 S Salifu (1574_CR3) 2020 R Viswanathan (1574_CR8) 2000; 122 1574_CR21 M Sauzay (1574_CR23) 2008; 483–484 P Kubaschinski (1574_CR16) 2022; 53 AA Saad (1574_CR20) 2013; 111–112 JL Chaboche (1574_CR17) 1986; 2 N Ab Razak (1574_CR22) 2018 J Rúa (1574_CR9) 2021; 191 V Thomas Paul (1574_CR6) 2008; 378 P Verma (1574_CR4) 2016; 69 1574_CR19 M Springer (1574_CR10) 2018; 116 Z Zhang (1574_CR13) 2015; 22 NA Alang (1574_CR14) 2016; 2 G Golański (1574_CR12) 2013; 35 C Zhang (1574_CR1) 2017; 76 R Kannan (1574_CR11) 2013; 55 G Dundulis (1574_CR5) 2017; 79 CJ Hyde (1574_CR18) 2010; 87 M Li (1574_CR7) 2016; 87 |
References_xml | – volume: 87 start-page: 365 issue: 6 year: 2010 ident: 1574_CR18 publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2010.03.007 contributor: fullname: CJ Hyde – volume: 2 start-page: 149 issue: 2 year: 1986 ident: 1574_CR17 publication-title: Int. J. Plast. doi: 10.1016/0749-6419(86)90010-0 contributor: fullname: JL Chaboche – volume: 191 start-page: 116794 year: 2021 ident: 1574_CR9 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116794 contributor: fullname: J Rúa – ident: 1574_CR19 doi: 10.1016/j.ijfatigue.2015.02.014 – volume: 76 start-page: 353 year: 2017 ident: 1574_CR1 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.071 contributor: fullname: C Zhang – volume: 378 start-page: 273 issue: 3 year: 2008 ident: 1574_CR6 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.06.033 contributor: fullname: V Thomas Paul – volume: 111–112 start-page: 246 year: 2013 ident: 1574_CR20 publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2013.08.001 contributor: fullname: AA Saad – volume: 122 start-page: 246 year: 2000 ident: 1574_CR8 publication-title: Electr. Power Res. Inst. contributor: fullname: R Viswanathan – volume: 78 start-page: 44 year: 2016 ident: 1574_CR15 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.10.009 contributor: fullname: L Xu – volume: 2 start-page: 3177 year: 2016 ident: 1574_CR14 publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2016.06.396 contributor: fullname: NA Alang – ident: 1574_CR21 – volume: 22 start-page: 534 issue: 6 year: 2015 ident: 1574_CR13 publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(15)30037-6 contributor: fullname: Z Zhang – volume: 483–484 start-page: 410 year: 2008 ident: 1574_CR23 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.12.183 contributor: fullname: M Sauzay – volume: 53 start-page: 422 issue: 4 year: 2022 ident: 1574_CR16 publication-title: Materwiss. Werksttech. doi: 10.1002/mawe.202100341 contributor: fullname: P Kubaschinski – volume: 79 start-page: 285 year: 2017 ident: 1574_CR5 publication-title: Eng. Failure Anal. doi: 10.1016/j.engfailanal.2017.05.001 contributor: fullname: G Dundulis – volume: 87 start-page: 391 year: 2016 ident: 1574_CR7 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.02.005 contributor: fullname: M Li – volume: 55 start-page: 149 year: 2013 ident: 1574_CR11 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.03.234 contributor: fullname: R Kannan – volume: 116 start-page: 355 year: 2018 ident: 1574_CR10 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.06.031 contributor: fullname: M Springer – volume-title: Creep and creep-fatigue interaction in new and serviced exposed P91 steel year: 2018 ident: 1574_CR22 contributor: fullname: N Ab Razak – ident: 1574_CR2 – year: 2020 ident: 1574_CR3 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.05.613 contributor: fullname: S Salifu – volume: 69 start-page: 331 issue: 2 year: 2016 ident: 1574_CR4 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-015-0782-7 contributor: fullname: P Verma – volume: 35 start-page: 692 year: 2013 ident: 1574_CR12 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2013.06.019 contributor: fullname: G Golański |
SSID | ssj0035125 |
Score | 2.3025298 |
Snippet | Increased worldwide power consumption in the twenty-first century reflects industry progress and economic expansion. This increases the demand for electricity... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 520 |
SubjectTerms | Amplitudes Chromium molybdenum steels Computer simulation Constitutive models Corrosion resistance Cyclic loads Fatigue cracks Fatigue failure Fatigue life Fatigue tests Ferritic stainless steels Finite element method Hardening Heat treating Kinematics Mathematical models Metal fatigue Parameters Plastic deformation Power plants Room temperature Simulation Softening Strain rate Temperature gradients Thermal conductivity Thermal expansion |
Title | Numerical Simulation of P91 Steel Under Low-Cycle-Fatigue Loading |
URI | https://www.proquest.com/docview/2808311668 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahsxULjOpT2UPmnatOjQ26KglbSvoxNqQml8aBLIbZFWUgm4dmlsSnPsl3e0mn0kbqEpGGGG8WDvjGdG8yTkvSlsDn6rZZpbzpSSlhnRKOaqSjRCgsW1ITRwushPLtTHy-xyMvk1qlrabsxhc_PHvpL_4SrAgK-hS_YenO2JAgDeA3_hBA7D-U88XmxjvmWZnF19xT1cbVFblYbyLbdM2rVGyaf1D3b8Ez7M5oDzZesAonujteuaen21jIkFnFiC0wSwNnJI0lzjuvfTw2QWXkMyKfmsbzTu9-mhSwxOL8a4Z4AYe7QRE2MQQo5KV1BtqoIVHGMXLsLKPExEjMMiO10be4tRpsRIcWaCj2xwFhvGd9Q7x3bnNM9LFvoQwJkpFCsHY9Yl8O_YuL7ycJjSHGjUQKNuadTlA7InQFmVU7I3mx8dLTp7LsElytqpu_gbsfUqNmDe_Sa33Zvb1r11Wc6fkMfIUDqLgvOUTNzqGXk0mkD5nMx6EaKDCNG1pyBCtBUh2ooQ3REhiiL0glzMP5wfnzDcqsEamaoNnN7mXgprlUm1ya3xmnOrlS7KKtOFT12pjLZNiHDB5RxuX6YwNrcSbrbKePmSTFfrlXtFKFy1QyJZuyIk8HleecWN8JmVTci2p_sk6R5G_S0OT6n_zoB9ctA9rxr_ZNe1KMMqvID6-l7E3pCHg6AekOnm-9a9BfdxY94hf38DedFl1A |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Simulation+of+P91+Steel+Under+Low-Cycle-Fatigue+Loading&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Roslin%2C+M.+A.+A.&rft.au=Ab+Razak%2C+N.&rft.au=Alang%2C+N.+A.&rft.au=Sazali%2C+N.&rft.date=2023-04-01&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=23&rft.issue=2&rft.spage=520&rft.epage=528&rft_id=info:doi/10.1007%2Fs11668-022-01574-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_022_01574_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon |