Ferrocene: an exotic building block for supramolecular assemblies
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 59; no. 98; pp. 14482 - 14496 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,
n
′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Beyond organometallics, ferrocene supports a range of noncovalent interactions for the development of host-guest assemblies, molecular receptors, supramolecular polymers, gels, metal-organic, out-of-equilibrium and metal nanoparticle assemblies. |
---|---|
AbstractList | Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host–guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular “ball bearing” property in Fc support the formation of intramolecular π–π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,
n
′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal–organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1, n ′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. Beyond organometallics, ferrocene supports a range of noncovalent interactions for the development of host-guest assemblies, molecular receptors, supramolecular polymers, gels, metal-organic, out-of-equilibrium and metal nanoparticle assemblies. Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host–guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular “ball bearing” property in Fc support the formation of intramolecular π–π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal–organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. |
Author | Suriyaa, Vembanan Sarkar, Sovik Dey Adhikari, Bimalendu Guchhait, Chandrakanta Sahu, Nihar |
AuthorAffiliation | Department of Chemistry National Institute of Technology Rourkela |
AuthorAffiliation_xml | – sequence: 0 name: Department of Chemistry – sequence: 0 name: National Institute of Technology Rourkela |
Author_xml | – sequence: 1 givenname: Chandrakanta surname: Guchhait fullname: Guchhait, Chandrakanta – sequence: 2 givenname: Vembanan surname: Suriyaa fullname: Suriyaa, Vembanan – sequence: 3 givenname: Nihar surname: Sahu fullname: Sahu, Nihar – sequence: 4 givenname: Sovik Dey surname: Sarkar fullname: Sarkar, Sovik Dey – sequence: 5 givenname: Bimalendu surname: Adhikari fullname: Adhikari, Bimalendu |
BookMark | eNpt0VFLwzAQAOAgE9ymL74LBV9EqCZN2iW-jepUGPii4FtJbxfJTJuZtKD_3s6JgpiHyz18dxx3EzJqfYuEHDN6wShXlysOQHmRK7NHxowXIs2FfB5t81ylMy7yAzKJcU2Hx3I5JvMFhuABW7xKdJvgu-8sJHVv3cq2L0ntPLwmxock9pugG-8QeqdDomPEpnYW4yHZN9pFPPr-p-RpcfNY3qXLh9v7cr5MgTPRDbGQBVWoV2hkhhRRaIBa1DIzHEGgyDKgWhZY60IxVfPZwMHkmhvJUfMpOdv13QT_1mPsqsZGQOd0i76PVSYVl1woJgZ6-oeufR_aYbqtUlkmGJsNiu4UBB9jQFOB7XRnfdsFbV3FaLXdaXXNy_Jrp4uh5PxPySbYRoeP__HJDocIP-73QPwTlaeDFQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_157875 crossref_primary_10_1016_j_poly_2024_117253 crossref_primary_10_1149_1945_7111_ad7985 crossref_primary_10_1021_acs_chemrev_4c00295 crossref_primary_10_1016_j_jorganchem_2024_123441 crossref_primary_10_1039_D5CE00076A crossref_primary_10_3390_pharmaceutics16070936 crossref_primary_10_3390_ijms252413552 |
Cites_doi | 10.1021/ja209766e 10.1021/ic9806939 10.1021/jacs.3c03385 10.1038/nature04635 10.1002/chem.202202665 10.1021/acs.macromol.5b00889 10.1021/acs.chemrev.9b00624 10.3390/ma6125742 10.1021/mz500113n 10.1002/anie.202107917 10.1021/om5000453 10.1039/c0cs00153h 10.1021/ja051344y 10.1021/om4004779 10.1021/om400962w 10.1155/2012/140284 10.1016/0022-328X(91)83100-I 10.1021/acsnano.2c08506 10.1002/chem.201900332 10.1070/RC2012v081n08ABEH004270 10.1002/anie.201310295 10.1039/C9CC03321A 10.1021/ar000174l 10.1126/science.1205962 10.1039/C5CC09569G 10.1039/D2DT00903J 10.1038/ncomms1521 10.1021/acsmacrolett.6b00450 10.1002/anie.200501564 10.1039/c3cc41903g 10.1021/ol030098x 10.1002/anie.201905724 10.1039/D2NR03852H 10.1021/ic401395d 10.1002/ejic.200400726 10.1021/ja403345p 10.1002/anie.201004745 10.1002/ajoc.201600161 10.1016/0040-4039(96)01094-5 10.1021/jacs.6b03296 10.1039/c0dt01707h 10.1021/acs.organomet.1c00661 10.1021/la203985n 10.1039/c3tb00209h 10.1126/science.1252120 10.1021/acs.chemrev.6b00166 10.1002/1521-3773(20010504)40:9<1746::AID-ANIE17460>3.0.CO;2-U 10.1002/anie.201008189 10.1021/acs.chemrev.5b00369 10.1039/C6CS00155F 10.1039/c1sc00168j 10.1039/c2cs35091b 10.1021/jacs.9b01089 10.1039/D0SC04352D 10.1039/C9SM02049G 10.1021/ja034994f 10.1039/b511332f 10.1039/C9SC02648G 10.1021/ja1105656 10.1021/acs.analchem.0c00554 10.1021/acs.accounts.8b00660 10.1038/1681039b0 10.1016/j.tetlet.2009.02.086 10.1021/cr900181u 10.1039/C2CS35436E 10.1021/acs.inorgchem.7b02503 10.1039/C2PY20849K 10.1002/chem.201501395 10.1002/adma.200703195 10.1038/s41467-018-03827-3 10.1039/C3CC49268K 10.1021/ja990330n 10.1002/ejic.201000525 10.1016/j.chempr.2017.10.006 10.1126/science.1071063 10.1002/anie.201300862 10.1002/anie.201503375 10.1021/cr0101510 10.1021/ja405014r 10.1021/acsami.2c05469 10.1039/C4CC05192K 10.1038/s41570-019-0153-8 10.1021/jo00040a012 10.1021/ja200130h 10.1021/acs.joc.8b00146 10.1021/jacs.6b05824 10.1016/0277-5387(95)00129-G 10.1039/b819218a 10.1002/anie.202103721 10.1021/cr940053x 10.1021/acs.inorgchem.2c04399 10.1021/ja0632308 10.1002/ejic.201600983 10.1021/om500032p 10.1039/c3cc46123h 10.1039/c1sm05277b 10.1021/ic0481834 10.1002/chem.201701602 10.1002/anie.201302587 10.1002/chem.202202711 10.1021/cr400195e 10.1016/j.tetlet.2012.10.094 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cc03659f |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 14496 |
ExternalDocumentID | 10_1039_D3CC03659F d3cc03659f |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-c368609eadef82e0ee4accb4b82f3ec4e422c0a86eba6919b37609cf5a3f83ea3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Thu Jul 10 19:21:59 EDT 2025 Sun Jun 29 16:10:44 EDT 2025 Tue Jul 01 04:23:12 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Dec 17 20:58:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 98 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-c368609eadef82e0ee4accb4b82f3ec4e422c0a86eba6919b37609cf5a3f83ea3 |
Notes | Chandrakanta Guchhait, Suriyaa V., Nihar Sahu and Sovik Dey Sarkar are PhD students in the Department of Chemistry at the National Institute of Technology NIT Rourkela under Dr Bimalendu Adhikari. Chandrakanta obtained his BSc in chemistry from West Bengal State University in 2019 and his MSc in chemistry from Pondicherry University in 2021. Suriyaa obtained his Bachelor's and Master's in chemistry from Gandhigram Rural Institute, Tamil Nadu, in 2020 and 2022, respectively. Nihar obtained his BSc and MSc in chemistry from Sambalpur University in 2018 and the Central University of Jharkhand in 2020, respectively. Sovik obtained his BSc in chemistry from the University of Calcutta in 2019 and his MSc in applied chemistry from Amity University, Kolkata, in 2021. Bimalendu Adhikari received his PhD from IACS (Kolkata) in 2012, working under Prof. A. Banerjee. He pursued postdoctoral research with Prof. H.-B. Kraatz at the University of Toronto and subsequently as a JSPS postdoc fellow with Prof. S. Yagai at Chiba University. He started his independent career as an Inspire Faculty at IISER Mohali in 2016. In 2020, he joined NIT Rourkela as an Assistant Professor, and his group's research focuses on supramolecular and bioorganic chemistry. He has an h-index of 23 and, in 2023, he was awarded the CRSI Young Scientist Award. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8056-8231 |
PQID | 2899224117 |
PQPubID | 2047502 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2893834914 crossref_primary_10_1039_D3CC03659F rsc_primary_d3cc03659f crossref_citationtrail_10_1039_D3CC03659F proquest_journals_2899224117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-07 |
PublicationDateYYYYMMDD | 2023-12-07 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Dong (D3CC03659F/cit84/1) 2013; 49 van Staveren (D3CC03659F/cit37/1) 2004; 104 Moriuchi (D3CC03659F/cit70/1) 2003; 5 Jain (D3CC03659F/cit40/1) 2021; 60 Yagai (D3CC03659F/cit81/1) 2019; 52 Peng (D3CC03659F/cit6/1) 2014; 50 Okamura (D3CC03659F/cit62/1) 1998; 37 Umer Lone (D3CC03659F/cit67/1) 2023; 29 Beeren (D3CC03659F/cit71/1) 2011; 2 Albada (D3CC03659F/cit21/1) 2016; 116 Štěpnička (D3CC03659F/cit19/1) 2022; 51 Yang (D3CC03659F/cit87/1) 2021; 60 Savyasachi (D3CC03659F/cit2/1) 2017; 3 Yan (D3CC03659F/cit83/1) 2013; 4 Yan (D3CC03659F/cit5/1) 2012; 41 Muraoka (D3CC03659F/cit68/1) 2003; 125 Kovačević (D3CC03659F/cit61/1) 2017; 23 Inouye (D3CC03659F/cit69/1) 2001; 40 Tremlett (D3CC03659F/cit13/1) 2023; 62 Xia (D3CC03659F/cit43/1) 2015; 48 Sui (D3CC03659F/cit3/1) 2013; 1 Ahmed (D3CC03659F/cit39/1) 2019; 10 Fukino (D3CC03659F/cit32/1) 2014; 344 Plajer (D3CC03659F/cit74/1) 2020; 11 Adhikari (D3CC03659F/cit93/1) 2015; 21 Liu (D3CC03659F/cit101/1) 1999; 121 Xia (D3CC03659F/cit46/1) 2013; 49 Ni (D3CC03659F/cit100/1) 2016; 138 Heinze (D3CC03659F/cit60/1) 2005 Adhikari (D3CC03659F/cit90/1) 2013; 32 Muraoka (D3CC03659F/cit75/1) 2006; 440 Gelin (D3CC03659F/cit30/1) 1992; 57 Liu (D3CC03659F/cit38/1) 2008; 20 Chen (D3CC03659F/cit44/1) 2011; 40 Vasdev (D3CC03659F/cit12/1) 2019; 55 Toyama (D3CC03659F/cit33/1) 2013; 54 Heinze (D3CC03659F/cit18/1) 2013; 32 Hailes (D3CC03659F/cit25/1) 2016; 45 Takai (D3CC03659F/cit53/1) 2013; 52 Wehner (D3CC03659F/cit10/1) 2020; 4 de laRica (D3CC03659F/cit102/1) 2011; 50 Lehn (D3CC03659F/cit1/1) 2002; 295 Liu (D3CC03659F/cit34/1) 2023; 29 Shoji (D3CC03659F/cit55/1) 2005; 127 Wang (D3CC03659F/cit47/1) 2018; 9 Nakahata (D3CC03659F/cit99/1) 2013; 52 Kadkin (D3CC03659F/cit36/1) 2012; 81 De Greef (D3CC03659F/cit79/1) 2009; 109 Kealy (D3CC03659F/cit16/1) 1951; 168 Das (D3CC03659F/cit11/1) 2005; 44 Martić (D3CC03659F/cit22/1) 2011; 40 Aida (D3CC03659F/cit8/1) 2012; 335 Babu (D3CC03659F/cit15/1) 2014; 114 Muraoka (D3CC03659F/cit76/1) 2006; 128 Takai (D3CC03659F/cit31/1) 2016; 138 Zuo (D3CC03659F/cit86/1) 2016; 5 Kay (D3CC03659F/cit7/1) 2015; 54 Kovač (D3CC03659F/cit91/1) 2022; 41 Scottwell (D3CC03659F/cit28/1) 2016; 52 Bin Wang (D3CC03659F/cit63/1) 2005; 44 Adelizzi (D3CC03659F/cit9/1) 2019; 141 Zhao (D3CC03659F/cit66/1) 2023; 145 Eloi (D3CC03659F/cit42/1) 2011; 133 Kwon (D3CC03659F/cit49/1) 2022; 14 Horikoshi (D3CC03659F/cit54/1) 2010 Brahma (D3CC03659F/cit78/1) 2014; 53 Takahashi (D3CC03659F/cit26/1) 2013; 6 Duan (D3CC03659F/cit89/1) 2013; 135 Harisomayajula (D3CC03659F/cit65/1) 2019; 25 Sun (D3CC03659F/cit23/1) 2014; 33 Frasconi (D3CC03659F/cit103/1) 2012; 28 Abel (D3CC03659F/cit27/1) 1991; 403 Matern (D3CC03659F/cit82/1) 2019; 58 Astruc (D3CC03659F/cit17/1) 2017 Segarra-Maset (D3CC03659F/cit4/1) 2013; 42 Beer (D3CC03659F/cit57/1) 1995; 14 Beeren (D3CC03659F/cit35/1) 2011; 133 Herrick (D3CC03659F/cit51/1) 1996; 37 Okamura (D3CC03659F/cit52/1) 1998; 37 An (D3CC03659F/cit56/1) 2022; 16 Ikeda (D3CC03659F/cit77/1) 2009; 50 Sun (D3CC03659F/cit92/1) 2013; 135 Chen (D3CC03659F/cit48/1) 2016; 5 Harada (D3CC03659F/cit45/1) 2001; 34 Yuan (D3CC03659F/cit96/1) 2014; 3 Nakahata (D3CC03659F/cit98/1) 2014; 53 Adhikari (D3CC03659F/cit94/1) 2014; 50 Hein (D3CC03659F/cit24/1) 2020; 120 Banerjee (D3CC03659F/cit14/1) 2009; 19 Huo (D3CC03659F/cit72/1) 2010; 49 Wu (D3CC03659F/cit50/1) 2020; 92 Findlay (D3CC03659F/cit73/1) 2018; 57 Krieg (D3CC03659F/cit80/1) 2016; 116 Kirin (D3CC03659F/cit29/1) 2006; 35 Iordache (D3CC03659F/cit59/1) 2012; 134 Connelly (D3CC03659F/cit41/1) 1996; 96 Gupta (D3CC03659F/cit88/1) 2023; 15 Jiang (D3CC03659F/cit85/1) 2020; 16 Maity (D3CC03659F/cit95/1) 2011; 7 Jiang (D3CC03659F/cit64/1) 2018; 83 Adhikari (D3CC03659F/cit58/1) 2014; 33 Gómez-Ruiz (D3CC03659F/cit20/1) 2012; 2012 Nakahata (D3CC03659F/cit97/1) 2011; 2 |
References_xml | – volume: 134 start-page: 2653 year: 2012 ident: D3CC03659F/cit59/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209766e – volume: 37 start-page: 6731 year: 1998 ident: D3CC03659F/cit62/1 publication-title: Inorg. Chem. doi: 10.1021/ic9806939 – volume: 145 start-page: 13920 year: 2023 ident: D3CC03659F/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03385 – volume: 440 start-page: 512 year: 2006 ident: D3CC03659F/cit75/1 publication-title: Nature doi: 10.1038/nature04635 – volume: 29 start-page: e202202665 year: 2023 ident: D3CC03659F/cit34/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202202665 – volume: 48 start-page: 4403 year: 2015 ident: D3CC03659F/cit43/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00889 – volume: 120 start-page: 1888 year: 2020 ident: D3CC03659F/cit24/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00624 – volume: 6 start-page: 5742 year: 2013 ident: D3CC03659F/cit26/1 publication-title: Materials doi: 10.3390/ma6125742 – volume: 3 start-page: 271 year: 2014 ident: D3CC03659F/cit96/1 publication-title: ACS Macro Lett. doi: 10.1021/mz500113n – volume: 60 start-page: 21062 year: 2021 ident: D3CC03659F/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107917 – volume: 33 start-page: 4560 year: 2014 ident: D3CC03659F/cit23/1 publication-title: Organometallics doi: 10.1021/om5000453 – volume: 40 start-page: 2254 year: 2011 ident: D3CC03659F/cit44/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00153h – volume: 127 start-page: 8598 year: 2005 ident: D3CC03659F/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051344y – volume: 32 start-page: 5899 year: 2013 ident: D3CC03659F/cit90/1 publication-title: Organometallics doi: 10.1021/om4004779 – volume: 32 start-page: 5623 year: 2013 ident: D3CC03659F/cit18/1 publication-title: Organometallics doi: 10.1021/om400962w – volume: 2012 start-page: 140284 year: 2012 ident: D3CC03659F/cit20/1 publication-title: Bioinorg. Chem. Appl. doi: 10.1155/2012/140284 – volume: 403 start-page: 195 year: 1991 ident: D3CC03659F/cit27/1 publication-title: J. Organomet. Chem. doi: 10.1016/0022-328X(91)83100-I – volume: 16 start-page: 19220 year: 2022 ident: D3CC03659F/cit56/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c08506 – volume: 25 start-page: 8936 year: 2019 ident: D3CC03659F/cit65/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201900332 – volume: 81 start-page: 675 year: 2012 ident: D3CC03659F/cit36/1 publication-title: Russ. Chem. Rev. doi: 10.1070/RC2012v081n08ABEH004270 – volume: 53 start-page: 3617 year: 2014 ident: D3CC03659F/cit98/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310295 – volume: 55 start-page: 7506 year: 2019 ident: D3CC03659F/cit12/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03321A – volume: 34 start-page: 456 year: 2001 ident: D3CC03659F/cit45/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar000174l – volume: 335 start-page: 813 year: 2012 ident: D3CC03659F/cit8/1 publication-title: Science doi: 10.1126/science.1205962 – volume: 52 start-page: 2451 year: 2016 ident: D3CC03659F/cit28/1 publication-title: Chem. Commun. doi: 10.1039/C5CC09569G – volume: 51 start-page: 8085 year: 2022 ident: D3CC03659F/cit19/1 publication-title: Dalton Trans. doi: 10.1039/D2DT00903J – volume: 2 start-page: 511 year: 2011 ident: D3CC03659F/cit97/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1521 – volume: 5 start-page: 873 year: 2016 ident: D3CC03659F/cit86/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.6b00450 – volume: 44 start-page: 6022 year: 2005 ident: D3CC03659F/cit63/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501564 – volume: 49 start-page: 5085 year: 2013 ident: D3CC03659F/cit46/1 publication-title: Chem. Commun. doi: 10.1039/c3cc41903g – volume: 5 start-page: 4285 year: 2003 ident: D3CC03659F/cit70/1 publication-title: Org. Lett. doi: 10.1021/ol030098x – volume: 58 start-page: 16730 year: 2019 ident: D3CC03659F/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905724 – volume: 14 start-page: 14276 year: 2022 ident: D3CC03659F/cit49/1 publication-title: Nanoscale doi: 10.1039/D2NR03852H – volume: 53 start-page: 2381 year: 2014 ident: D3CC03659F/cit78/1 publication-title: Inorg. Chem. doi: 10.1021/ic401395d – start-page: 66 year: 2005 ident: D3CC03659F/cit60/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200400726 – volume: 135 start-page: 13379 year: 2013 ident: D3CC03659F/cit92/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403345p – volume: 49 start-page: 9237 year: 2010 ident: D3CC03659F/cit72/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004745 – volume: 5 start-page: 966 year: 2016 ident: D3CC03659F/cit48/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201600161 – volume: 37 start-page: 5289 year: 1996 ident: D3CC03659F/cit51/1 publication-title: Tetrahedron Lett. doi: 10.1016/0040-4039(96)01094-5 – volume: 138 start-page: 6643 year: 2016 ident: D3CC03659F/cit100/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03296 – volume: 40 start-page: 7264 year: 2011 ident: D3CC03659F/cit22/1 publication-title: Dalton Trans. doi: 10.1039/c0dt01707h – volume: 41 start-page: 920 year: 2022 ident: D3CC03659F/cit91/1 publication-title: Organometallics doi: 10.1021/acs.organomet.1c00661 – volume: 28 start-page: 3322 year: 2012 ident: D3CC03659F/cit103/1 publication-title: Langmuir doi: 10.1021/la203985n – volume: 1 start-page: 1658 year: 2013 ident: D3CC03659F/cit3/1 publication-title: J. Mater. Chem. B doi: 10.1039/c3tb00209h – volume: 344 start-page: 499 year: 2014 ident: D3CC03659F/cit32/1 publication-title: Science doi: 10.1126/science.1252120 – volume: 116 start-page: 11797 year: 2016 ident: D3CC03659F/cit21/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00166 – volume: 40 start-page: 1746 year: 2001 ident: D3CC03659F/cit69/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010504)40:9<1746::AID-ANIE17460>3.0.CO;2-U – volume: 50 start-page: 5704 year: 2011 ident: D3CC03659F/cit102/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201008189 – volume: 116 start-page: 2414 year: 2016 ident: D3CC03659F/cit80/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00369 – volume: 45 start-page: 5358 year: 2016 ident: D3CC03659F/cit25/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00155F – volume: 2 start-page: 1560 year: 2011 ident: D3CC03659F/cit71/1 publication-title: Chem. Sci. doi: 10.1039/c1sc00168j – volume: 41 start-page: 6042 year: 2012 ident: D3CC03659F/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35091b – volume: 141 start-page: 6110 year: 2019 ident: D3CC03659F/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01089 – volume: 11 start-page: 10399 year: 2020 ident: D3CC03659F/cit74/1 publication-title: Chem. Sci. doi: 10.1039/D0SC04352D – volume: 16 start-page: 125 year: 2020 ident: D3CC03659F/cit85/1 publication-title: Soft Matter doi: 10.1039/C9SM02049G – volume: 125 start-page: 5612 year: 2003 ident: D3CC03659F/cit68/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034994f – volume: 35 start-page: 348 year: 2006 ident: D3CC03659F/cit29/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b511332f – volume: 10 start-page: 7574 year: 2019 ident: D3CC03659F/cit39/1 publication-title: Chem. Sci. doi: 10.1039/C9SC02648G – volume: 133 start-page: 8903 year: 2011 ident: D3CC03659F/cit42/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1105656 – volume: 92 start-page: 13711 year: 2020 ident: D3CC03659F/cit50/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00554 – volume: 52 start-page: 13255 year: 2019 ident: D3CC03659F/cit81/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00660 – volume: 168 start-page: 1039 year: 1951 ident: D3CC03659F/cit16/1 publication-title: Nature doi: 10.1038/1681039b0 – volume: 50 start-page: 2006 year: 2009 ident: D3CC03659F/cit77/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.02.086 – volume: 109 start-page: 5687 year: 2009 ident: D3CC03659F/cit79/1 publication-title: Chem. Rev. doi: 10.1021/cr900181u – volume: 37 start-page: 6731 year: 1998 ident: D3CC03659F/cit52/1 publication-title: Inorg. Chem. doi: 10.1021/ic9806939 – volume: 42 start-page: 7086 year: 2013 ident: D3CC03659F/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35436E – volume: 57 start-page: 3602 year: 2018 ident: D3CC03659F/cit73/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b02503 – volume: 4 start-page: 1216 year: 2013 ident: D3CC03659F/cit83/1 publication-title: Polym. Chem. doi: 10.1039/C2PY20849K – volume: 21 start-page: 11560 year: 2015 ident: D3CC03659F/cit93/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201501395 – volume: 20 start-page: 2508 year: 2008 ident: D3CC03659F/cit38/1 publication-title: Adv. Mater. doi: 10.1002/adma.200703195 – volume: 9 start-page: 1737 year: 2018 ident: D3CC03659F/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03827-3 – volume: 50 start-page: 5551 year: 2014 ident: D3CC03659F/cit94/1 publication-title: Chem. Commun. doi: 10.1039/C3CC49268K – volume: 121 start-page: 4304 year: 1999 ident: D3CC03659F/cit101/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990330n – start-page: 5355 year: 2010 ident: D3CC03659F/cit54/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201000525 – volume: 3 start-page: 764 year: 2017 ident: D3CC03659F/cit2/1 publication-title: Chem doi: 10.1016/j.chempr.2017.10.006 – volume: 295 start-page: 2400 year: 2002 ident: D3CC03659F/cit1/1 publication-title: Science doi: 10.1126/science.1071063 – volume: 52 start-page: 5731 year: 2013 ident: D3CC03659F/cit99/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300862 – volume: 54 start-page: 10080 year: 2015 ident: D3CC03659F/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503375 – volume: 104 start-page: 5931 year: 2004 ident: D3CC03659F/cit37/1 publication-title: Chem. Rev. doi: 10.1021/cr0101510 – volume: 135 start-page: 10542 year: 2013 ident: D3CC03659F/cit89/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405014r – volume: 15 start-page: 25110 year: 2023 ident: D3CC03659F/cit88/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05469 – volume: 50 start-page: 13005 year: 2014 ident: D3CC03659F/cit6/1 publication-title: Chem. Commun. doi: 10.1039/C4CC05192K – volume: 4 start-page: 38 year: 2020 ident: D3CC03659F/cit10/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0153-8 – volume: 57 start-page: 3780 year: 1992 ident: D3CC03659F/cit30/1 publication-title: J. Org. Chem. doi: 10.1021/jo00040a012 – volume: 133 start-page: 3804 year: 2011 ident: D3CC03659F/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200130h – volume: 83 start-page: 4824 year: 2018 ident: D3CC03659F/cit64/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00146 – volume: 138 start-page: 11245 year: 2016 ident: D3CC03659F/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05824 – volume: 14 start-page: 2631 year: 1995 ident: D3CC03659F/cit57/1 publication-title: Polyhedron doi: 10.1016/0277-5387(95)00129-G – volume: 19 start-page: 6649 year: 2009 ident: D3CC03659F/cit14/1 publication-title: J. Mater. Chem. doi: 10.1039/b819218a – volume: 60 start-page: 17570 year: 2021 ident: D3CC03659F/cit87/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103721 – volume: 96 start-page: 877 year: 1996 ident: D3CC03659F/cit41/1 publication-title: Chem. Rev. doi: 10.1021/cr940053x – volume: 62 start-page: 3616 year: 2023 ident: D3CC03659F/cit13/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c04399 – volume: 128 start-page: 11600 year: 2006 ident: D3CC03659F/cit76/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0632308 – start-page: 6 year: 2017 ident: D3CC03659F/cit17/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600983 – volume: 33 start-page: 4873 year: 2014 ident: D3CC03659F/cit58/1 publication-title: Organometallics doi: 10.1021/om500032p – volume: 49 start-page: 9845 year: 2013 ident: D3CC03659F/cit84/1 publication-title: Chem. Commun. doi: 10.1039/c3cc46123h – volume: 7 start-page: 5239 year: 2011 ident: D3CC03659F/cit95/1 publication-title: Soft Matter doi: 10.1039/c1sm05277b – volume: 44 start-page: 5798 year: 2005 ident: D3CC03659F/cit11/1 publication-title: Inorg. Chem. doi: 10.1021/ic0481834 – volume: 23 start-page: 10372 year: 2017 ident: D3CC03659F/cit61/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201701602 – volume: 52 start-page: 9167 year: 2013 ident: D3CC03659F/cit53/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302587 – volume: 29 start-page: e202202711 year: 2023 ident: D3CC03659F/cit67/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202202711 – volume: 114 start-page: 1973 year: 2014 ident: D3CC03659F/cit15/1 publication-title: Chem. Rev. doi: 10.1021/cr400195e – volume: 54 start-page: 66 year: 2013 ident: D3CC03659F/cit33/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2012.10.094 |
SSID | ssj0000158 |
Score | 2.4875288 |
SecondaryResourceType | review_article |
Snippet | Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14482 |
SubjectTerms | Assemblies Ball bearings Ferrocenes Gels Hydrophobicity Oxidation Supramolecular compounds Supramolecular polymers |
Title | Ferrocene: an exotic building block for supramolecular assemblies |
URI | https://www.proquest.com/docview/2899224117 https://www.proquest.com/docview/2893834914 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYd4AL4tdEx0BBcEEoI4kdJ-ZWlZWBgEs71FtlO45adUunLEEafz3PPxJnYkjAJWptt6n8vj4_O-99H0Kvo6JIscI0LBQlISmSNIRlOA-LXOSi4GWmIl2c_PUbPT0jn5fp0p8qmeqSRhzLn7fWlfyPVaEN7KqrZP_Bsv2XQgO8BvvCFSwM17-y8UzVev2pTH0513T9O82_KpzUtc5Kl1uTSHjVXtb8opPCfQsRs7oQ510CYcdU0JEHyGHViDmW7Uu7jO-0wh-DQ4SPrVyv-aZxD_CrouZbMFnv8udtvbnmJk79DjfmlcfknK9bC8k1r31jvbWZ3_Pdj80WvOL18HgiwSbVIxt4VJyyMMOWM_JYuTbABWyVlkM37IjBLdysMrVzqrDnswJFboWG91YF9zf3H2HNnlpgKWFhTlnpF7k-9dB37qH9BPYWyQjtT04Wn74MWMeMrGv_yztWW8ze-U_fjGP85mSv7pRjTISyeIDuu61FMLE4eYjuqOoRujvtFP0eo0mPl_cBrwKLlqBDS2DQEgBagptoCTxanqCz2clieho6CY1Q4pg0cKU5jZjOii_zREVKES6lICJPSqwkUSRJZMRzqgSnLGZC50gxWaYclzlWHB-gUbWr1FMU5JxkkYT4PFaMcJEJCA4LJShnBY8oo2P0ppuQlXT88lrm5Hxl8hwwW33A06mZvNkYverHXlpWlVtHHXXzunL_uquVPiDQYWecjdHLvhsmUj_o4pXatWYMzjFhMRmjA7BHfw9vvsM_dTxD9zyMj9CoqVv1HOLORrxwOPkFdbCFWA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferrocene%3A+an+exotic+building+block+for+supramolecular+assemblies&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Guchhait%2C+Chandrakanta&rft.au=Suriyaa%2C+Vembanan&rft.au=Sahu%2C+Nihar&rft.au=Sarkar%2C+Sovik+Dey&rft.date=2023-12-07&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=59&rft.issue=98&rft.spage=14482&rft.epage=14496&rft_id=info:doi/10.1039%2Fd3cc03659f&rft.externalDocID=d3cc03659f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |