Ferrocene: an exotic building block for supramolecular assemblies

Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 59; no. 98; pp. 14482 - 14496
Main Authors Guchhait, Chandrakanta, Suriyaa, Vembanan, Sahu, Nihar, Sarkar, Sovik Dey, Adhikari, Bimalendu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1, n ′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. Beyond organometallics, ferrocene supports a range of noncovalent interactions for the development of host-guest assemblies, molecular receptors, supramolecular polymers, gels, metal-organic, out-of-equilibrium and metal nanoparticle assemblies.
AbstractList Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host–guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular “ball bearing” property in Fc support the formation of intramolecular π–π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1, n ′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal–organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1, n ′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences. Beyond organometallics, ferrocene supports a range of noncovalent interactions for the development of host-guest assemblies, molecular receptors, supramolecular polymers, gels, metal-organic, out-of-equilibrium and metal nanoparticle assemblies.
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host–guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular “ball bearing” property in Fc support the formation of intramolecular π–π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n′-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal–organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Author Suriyaa, Vembanan
Sarkar, Sovik Dey
Adhikari, Bimalendu
Guchhait, Chandrakanta
Sahu, Nihar
AuthorAffiliation Department of Chemistry
National Institute of Technology Rourkela
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: National Institute of Technology Rourkela
Author_xml – sequence: 1
  givenname: Chandrakanta
  surname: Guchhait
  fullname: Guchhait, Chandrakanta
– sequence: 2
  givenname: Vembanan
  surname: Suriyaa
  fullname: Suriyaa, Vembanan
– sequence: 3
  givenname: Nihar
  surname: Sahu
  fullname: Sahu, Nihar
– sequence: 4
  givenname: Sovik Dey
  surname: Sarkar
  fullname: Sarkar, Sovik Dey
– sequence: 5
  givenname: Bimalendu
  surname: Adhikari
  fullname: Adhikari, Bimalendu
BookMark eNpt0VFLwzAQAOAgE9ymL74LBV9EqCZN2iW-jepUGPii4FtJbxfJTJuZtKD_3s6JgpiHyz18dxx3EzJqfYuEHDN6wShXlysOQHmRK7NHxowXIs2FfB5t81ylMy7yAzKJcU2Hx3I5JvMFhuABW7xKdJvgu-8sJHVv3cq2L0ntPLwmxock9pugG-8QeqdDomPEpnYW4yHZN9pFPPr-p-RpcfNY3qXLh9v7cr5MgTPRDbGQBVWoV2hkhhRRaIBa1DIzHEGgyDKgWhZY60IxVfPZwMHkmhvJUfMpOdv13QT_1mPsqsZGQOd0i76PVSYVl1woJgZ6-oeufR_aYbqtUlkmGJsNiu4UBB9jQFOB7XRnfdsFbV3FaLXdaXXNy_Jrp4uh5PxPySbYRoeP__HJDocIP-73QPwTlaeDFQ
CitedBy_id crossref_primary_10_1016_j_cej_2024_157875
crossref_primary_10_1016_j_poly_2024_117253
crossref_primary_10_1149_1945_7111_ad7985
crossref_primary_10_1021_acs_chemrev_4c00295
crossref_primary_10_1016_j_jorganchem_2024_123441
crossref_primary_10_1039_D5CE00076A
crossref_primary_10_3390_pharmaceutics16070936
crossref_primary_10_3390_ijms252413552
Cites_doi 10.1021/ja209766e
10.1021/ic9806939
10.1021/jacs.3c03385
10.1038/nature04635
10.1002/chem.202202665
10.1021/acs.macromol.5b00889
10.1021/acs.chemrev.9b00624
10.3390/ma6125742
10.1021/mz500113n
10.1002/anie.202107917
10.1021/om5000453
10.1039/c0cs00153h
10.1021/ja051344y
10.1021/om4004779
10.1021/om400962w
10.1155/2012/140284
10.1016/0022-328X(91)83100-I
10.1021/acsnano.2c08506
10.1002/chem.201900332
10.1070/RC2012v081n08ABEH004270
10.1002/anie.201310295
10.1039/C9CC03321A
10.1021/ar000174l
10.1126/science.1205962
10.1039/C5CC09569G
10.1039/D2DT00903J
10.1038/ncomms1521
10.1021/acsmacrolett.6b00450
10.1002/anie.200501564
10.1039/c3cc41903g
10.1021/ol030098x
10.1002/anie.201905724
10.1039/D2NR03852H
10.1021/ic401395d
10.1002/ejic.200400726
10.1021/ja403345p
10.1002/anie.201004745
10.1002/ajoc.201600161
10.1016/0040-4039(96)01094-5
10.1021/jacs.6b03296
10.1039/c0dt01707h
10.1021/acs.organomet.1c00661
10.1021/la203985n
10.1039/c3tb00209h
10.1126/science.1252120
10.1021/acs.chemrev.6b00166
10.1002/1521-3773(20010504)40:9<1746::AID-ANIE17460>3.0.CO;2-U
10.1002/anie.201008189
10.1021/acs.chemrev.5b00369
10.1039/C6CS00155F
10.1039/c1sc00168j
10.1039/c2cs35091b
10.1021/jacs.9b01089
10.1039/D0SC04352D
10.1039/C9SM02049G
10.1021/ja034994f
10.1039/b511332f
10.1039/C9SC02648G
10.1021/ja1105656
10.1021/acs.analchem.0c00554
10.1021/acs.accounts.8b00660
10.1038/1681039b0
10.1016/j.tetlet.2009.02.086
10.1021/cr900181u
10.1039/C2CS35436E
10.1021/acs.inorgchem.7b02503
10.1039/C2PY20849K
10.1002/chem.201501395
10.1002/adma.200703195
10.1038/s41467-018-03827-3
10.1039/C3CC49268K
10.1021/ja990330n
10.1002/ejic.201000525
10.1016/j.chempr.2017.10.006
10.1126/science.1071063
10.1002/anie.201300862
10.1002/anie.201503375
10.1021/cr0101510
10.1021/ja405014r
10.1021/acsami.2c05469
10.1039/C4CC05192K
10.1038/s41570-019-0153-8
10.1021/jo00040a012
10.1021/ja200130h
10.1021/acs.joc.8b00146
10.1021/jacs.6b05824
10.1016/0277-5387(95)00129-G
10.1039/b819218a
10.1002/anie.202103721
10.1021/cr940053x
10.1021/acs.inorgchem.2c04399
10.1021/ja0632308
10.1002/ejic.201600983
10.1021/om500032p
10.1039/c3cc46123h
10.1039/c1sm05277b
10.1021/ic0481834
10.1002/chem.201701602
10.1002/anie.201302587
10.1002/chem.202202711
10.1021/cr400195e
10.1016/j.tetlet.2012.10.094
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cc03659f
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 14496
ExternalDocumentID 10_1039_D3CC03659F
d3cc03659f
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-c368609eadef82e0ee4accb4b82f3ec4e422c0a86eba6919b37609cf5a3f83ea3
ISSN 1359-7345
1364-548X
IngestDate Thu Jul 10 19:21:59 EDT 2025
Sun Jun 29 16:10:44 EDT 2025
Tue Jul 01 04:23:12 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Dec 17 20:58:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 98
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-c368609eadef82e0ee4accb4b82f3ec4e422c0a86eba6919b37609cf5a3f83ea3
Notes Chandrakanta Guchhait, Suriyaa V., Nihar Sahu and Sovik Dey Sarkar are PhD students in the Department of Chemistry at the National Institute of Technology NIT Rourkela under Dr Bimalendu Adhikari. Chandrakanta obtained his BSc in chemistry from West Bengal State University in 2019 and his MSc in chemistry from Pondicherry University in 2021. Suriyaa obtained his Bachelor's and Master's in chemistry from Gandhigram Rural Institute, Tamil Nadu, in 2020 and 2022, respectively. Nihar obtained his BSc and MSc in chemistry from Sambalpur University in 2018 and the Central University of Jharkhand in 2020, respectively. Sovik obtained his BSc in chemistry from the University of Calcutta in 2019 and his MSc in applied chemistry from Amity University, Kolkata, in 2021.
Bimalendu Adhikari received his PhD from IACS (Kolkata) in 2012, working under Prof. A. Banerjee. He pursued postdoctoral research with Prof. H.-B. Kraatz at the University of Toronto and subsequently as a JSPS postdoc fellow with Prof. S. Yagai at Chiba University. He started his independent career as an Inspire Faculty at IISER Mohali in 2016. In 2020, he joined NIT Rourkela as an Assistant Professor, and his group's research focuses on supramolecular and bioorganic chemistry. He has an h-index of 23 and, in 2023, he was awarded the CRSI Young Scientist Award.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8056-8231
PQID 2899224117
PQPubID 2047502
PageCount 15
ParticipantIDs proquest_miscellaneous_2893834914
crossref_primary_10_1039_D3CC03659F
rsc_primary_d3cc03659f
crossref_citationtrail_10_1039_D3CC03659F
proquest_journals_2899224117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-07
PublicationDateYYYYMMDD 2023-12-07
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-07
  day: 07
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Dong (D3CC03659F/cit84/1) 2013; 49
van Staveren (D3CC03659F/cit37/1) 2004; 104
Moriuchi (D3CC03659F/cit70/1) 2003; 5
Jain (D3CC03659F/cit40/1) 2021; 60
Yagai (D3CC03659F/cit81/1) 2019; 52
Peng (D3CC03659F/cit6/1) 2014; 50
Okamura (D3CC03659F/cit62/1) 1998; 37
Umer Lone (D3CC03659F/cit67/1) 2023; 29
Beeren (D3CC03659F/cit71/1) 2011; 2
Albada (D3CC03659F/cit21/1) 2016; 116
Štěpnička (D3CC03659F/cit19/1) 2022; 51
Yang (D3CC03659F/cit87/1) 2021; 60
Savyasachi (D3CC03659F/cit2/1) 2017; 3
Yan (D3CC03659F/cit83/1) 2013; 4
Yan (D3CC03659F/cit5/1) 2012; 41
Muraoka (D3CC03659F/cit68/1) 2003; 125
Kovačević (D3CC03659F/cit61/1) 2017; 23
Inouye (D3CC03659F/cit69/1) 2001; 40
Tremlett (D3CC03659F/cit13/1) 2023; 62
Xia (D3CC03659F/cit43/1) 2015; 48
Sui (D3CC03659F/cit3/1) 2013; 1
Ahmed (D3CC03659F/cit39/1) 2019; 10
Fukino (D3CC03659F/cit32/1) 2014; 344
Plajer (D3CC03659F/cit74/1) 2020; 11
Adhikari (D3CC03659F/cit93/1) 2015; 21
Liu (D3CC03659F/cit101/1) 1999; 121
Xia (D3CC03659F/cit46/1) 2013; 49
Ni (D3CC03659F/cit100/1) 2016; 138
Heinze (D3CC03659F/cit60/1) 2005
Adhikari (D3CC03659F/cit90/1) 2013; 32
Muraoka (D3CC03659F/cit75/1) 2006; 440
Gelin (D3CC03659F/cit30/1) 1992; 57
Liu (D3CC03659F/cit38/1) 2008; 20
Chen (D3CC03659F/cit44/1) 2011; 40
Vasdev (D3CC03659F/cit12/1) 2019; 55
Toyama (D3CC03659F/cit33/1) 2013; 54
Heinze (D3CC03659F/cit18/1) 2013; 32
Hailes (D3CC03659F/cit25/1) 2016; 45
Takai (D3CC03659F/cit53/1) 2013; 52
Wehner (D3CC03659F/cit10/1) 2020; 4
de laRica (D3CC03659F/cit102/1) 2011; 50
Lehn (D3CC03659F/cit1/1) 2002; 295
Liu (D3CC03659F/cit34/1) 2023; 29
Shoji (D3CC03659F/cit55/1) 2005; 127
Wang (D3CC03659F/cit47/1) 2018; 9
Nakahata (D3CC03659F/cit99/1) 2013; 52
Kadkin (D3CC03659F/cit36/1) 2012; 81
De Greef (D3CC03659F/cit79/1) 2009; 109
Kealy (D3CC03659F/cit16/1) 1951; 168
Das (D3CC03659F/cit11/1) 2005; 44
Martić (D3CC03659F/cit22/1) 2011; 40
Aida (D3CC03659F/cit8/1) 2012; 335
Babu (D3CC03659F/cit15/1) 2014; 114
Muraoka (D3CC03659F/cit76/1) 2006; 128
Takai (D3CC03659F/cit31/1) 2016; 138
Zuo (D3CC03659F/cit86/1) 2016; 5
Kay (D3CC03659F/cit7/1) 2015; 54
Kovač (D3CC03659F/cit91/1) 2022; 41
Scottwell (D3CC03659F/cit28/1) 2016; 52
Bin Wang (D3CC03659F/cit63/1) 2005; 44
Adelizzi (D3CC03659F/cit9/1) 2019; 141
Zhao (D3CC03659F/cit66/1) 2023; 145
Eloi (D3CC03659F/cit42/1) 2011; 133
Kwon (D3CC03659F/cit49/1) 2022; 14
Horikoshi (D3CC03659F/cit54/1) 2010
Brahma (D3CC03659F/cit78/1) 2014; 53
Takahashi (D3CC03659F/cit26/1) 2013; 6
Duan (D3CC03659F/cit89/1) 2013; 135
Harisomayajula (D3CC03659F/cit65/1) 2019; 25
Sun (D3CC03659F/cit23/1) 2014; 33
Frasconi (D3CC03659F/cit103/1) 2012; 28
Abel (D3CC03659F/cit27/1) 1991; 403
Matern (D3CC03659F/cit82/1) 2019; 58
Astruc (D3CC03659F/cit17/1) 2017
Segarra-Maset (D3CC03659F/cit4/1) 2013; 42
Beer (D3CC03659F/cit57/1) 1995; 14
Beeren (D3CC03659F/cit35/1) 2011; 133
Herrick (D3CC03659F/cit51/1) 1996; 37
Okamura (D3CC03659F/cit52/1) 1998; 37
An (D3CC03659F/cit56/1) 2022; 16
Ikeda (D3CC03659F/cit77/1) 2009; 50
Sun (D3CC03659F/cit92/1) 2013; 135
Chen (D3CC03659F/cit48/1) 2016; 5
Harada (D3CC03659F/cit45/1) 2001; 34
Yuan (D3CC03659F/cit96/1) 2014; 3
Nakahata (D3CC03659F/cit98/1) 2014; 53
Adhikari (D3CC03659F/cit94/1) 2014; 50
Hein (D3CC03659F/cit24/1) 2020; 120
Banerjee (D3CC03659F/cit14/1) 2009; 19
Huo (D3CC03659F/cit72/1) 2010; 49
Wu (D3CC03659F/cit50/1) 2020; 92
Findlay (D3CC03659F/cit73/1) 2018; 57
Krieg (D3CC03659F/cit80/1) 2016; 116
Kirin (D3CC03659F/cit29/1) 2006; 35
Iordache (D3CC03659F/cit59/1) 2012; 134
Connelly (D3CC03659F/cit41/1) 1996; 96
Gupta (D3CC03659F/cit88/1) 2023; 15
Jiang (D3CC03659F/cit85/1) 2020; 16
Maity (D3CC03659F/cit95/1) 2011; 7
Jiang (D3CC03659F/cit64/1) 2018; 83
Adhikari (D3CC03659F/cit58/1) 2014; 33
Gómez-Ruiz (D3CC03659F/cit20/1) 2012; 2012
Nakahata (D3CC03659F/cit97/1) 2011; 2
References_xml – volume: 134
  start-page: 2653
  year: 2012
  ident: D3CC03659F/cit59/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209766e
– volume: 37
  start-page: 6731
  year: 1998
  ident: D3CC03659F/cit62/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9806939
– volume: 145
  start-page: 13920
  year: 2023
  ident: D3CC03659F/cit66/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03385
– volume: 440
  start-page: 512
  year: 2006
  ident: D3CC03659F/cit75/1
  publication-title: Nature
  doi: 10.1038/nature04635
– volume: 29
  start-page: e202202665
  year: 2023
  ident: D3CC03659F/cit34/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202202665
– volume: 48
  start-page: 4403
  year: 2015
  ident: D3CC03659F/cit43/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00889
– volume: 120
  start-page: 1888
  year: 2020
  ident: D3CC03659F/cit24/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00624
– volume: 6
  start-page: 5742
  year: 2013
  ident: D3CC03659F/cit26/1
  publication-title: Materials
  doi: 10.3390/ma6125742
– volume: 3
  start-page: 271
  year: 2014
  ident: D3CC03659F/cit96/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500113n
– volume: 60
  start-page: 21062
  year: 2021
  ident: D3CC03659F/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107917
– volume: 33
  start-page: 4560
  year: 2014
  ident: D3CC03659F/cit23/1
  publication-title: Organometallics
  doi: 10.1021/om5000453
– volume: 40
  start-page: 2254
  year: 2011
  ident: D3CC03659F/cit44/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00153h
– volume: 127
  start-page: 8598
  year: 2005
  ident: D3CC03659F/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051344y
– volume: 32
  start-page: 5899
  year: 2013
  ident: D3CC03659F/cit90/1
  publication-title: Organometallics
  doi: 10.1021/om4004779
– volume: 32
  start-page: 5623
  year: 2013
  ident: D3CC03659F/cit18/1
  publication-title: Organometallics
  doi: 10.1021/om400962w
– volume: 2012
  start-page: 140284
  year: 2012
  ident: D3CC03659F/cit20/1
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2012/140284
– volume: 403
  start-page: 195
  year: 1991
  ident: D3CC03659F/cit27/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/0022-328X(91)83100-I
– volume: 16
  start-page: 19220
  year: 2022
  ident: D3CC03659F/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08506
– volume: 25
  start-page: 8936
  year: 2019
  ident: D3CC03659F/cit65/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201900332
– volume: 81
  start-page: 675
  year: 2012
  ident: D3CC03659F/cit36/1
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC2012v081n08ABEH004270
– volume: 53
  start-page: 3617
  year: 2014
  ident: D3CC03659F/cit98/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310295
– volume: 55
  start-page: 7506
  year: 2019
  ident: D3CC03659F/cit12/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03321A
– volume: 34
  start-page: 456
  year: 2001
  ident: D3CC03659F/cit45/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000174l
– volume: 335
  start-page: 813
  year: 2012
  ident: D3CC03659F/cit8/1
  publication-title: Science
  doi: 10.1126/science.1205962
– volume: 52
  start-page: 2451
  year: 2016
  ident: D3CC03659F/cit28/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09569G
– volume: 51
  start-page: 8085
  year: 2022
  ident: D3CC03659F/cit19/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00903J
– volume: 2
  start-page: 511
  year: 2011
  ident: D3CC03659F/cit97/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1521
– volume: 5
  start-page: 873
  year: 2016
  ident: D3CC03659F/cit86/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.6b00450
– volume: 44
  start-page: 6022
  year: 2005
  ident: D3CC03659F/cit63/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501564
– volume: 49
  start-page: 5085
  year: 2013
  ident: D3CC03659F/cit46/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41903g
– volume: 5
  start-page: 4285
  year: 2003
  ident: D3CC03659F/cit70/1
  publication-title: Org. Lett.
  doi: 10.1021/ol030098x
– volume: 58
  start-page: 16730
  year: 2019
  ident: D3CC03659F/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905724
– volume: 14
  start-page: 14276
  year: 2022
  ident: D3CC03659F/cit49/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR03852H
– volume: 53
  start-page: 2381
  year: 2014
  ident: D3CC03659F/cit78/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401395d
– start-page: 66
  year: 2005
  ident: D3CC03659F/cit60/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200400726
– volume: 135
  start-page: 13379
  year: 2013
  ident: D3CC03659F/cit92/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403345p
– volume: 49
  start-page: 9237
  year: 2010
  ident: D3CC03659F/cit72/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004745
– volume: 5
  start-page: 966
  year: 2016
  ident: D3CC03659F/cit48/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201600161
– volume: 37
  start-page: 5289
  year: 1996
  ident: D3CC03659F/cit51/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/0040-4039(96)01094-5
– volume: 138
  start-page: 6643
  year: 2016
  ident: D3CC03659F/cit100/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03296
– volume: 40
  start-page: 7264
  year: 2011
  ident: D3CC03659F/cit22/1
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01707h
– volume: 41
  start-page: 920
  year: 2022
  ident: D3CC03659F/cit91/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.1c00661
– volume: 28
  start-page: 3322
  year: 2012
  ident: D3CC03659F/cit103/1
  publication-title: Langmuir
  doi: 10.1021/la203985n
– volume: 1
  start-page: 1658
  year: 2013
  ident: D3CC03659F/cit3/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb00209h
– volume: 344
  start-page: 499
  year: 2014
  ident: D3CC03659F/cit32/1
  publication-title: Science
  doi: 10.1126/science.1252120
– volume: 116
  start-page: 11797
  year: 2016
  ident: D3CC03659F/cit21/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00166
– volume: 40
  start-page: 1746
  year: 2001
  ident: D3CC03659F/cit69/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010504)40:9<1746::AID-ANIE17460>3.0.CO;2-U
– volume: 50
  start-page: 5704
  year: 2011
  ident: D3CC03659F/cit102/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201008189
– volume: 116
  start-page: 2414
  year: 2016
  ident: D3CC03659F/cit80/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00369
– volume: 45
  start-page: 5358
  year: 2016
  ident: D3CC03659F/cit25/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00155F
– volume: 2
  start-page: 1560
  year: 2011
  ident: D3CC03659F/cit71/1
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00168j
– volume: 41
  start-page: 6042
  year: 2012
  ident: D3CC03659F/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35091b
– volume: 141
  start-page: 6110
  year: 2019
  ident: D3CC03659F/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01089
– volume: 11
  start-page: 10399
  year: 2020
  ident: D3CC03659F/cit74/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04352D
– volume: 16
  start-page: 125
  year: 2020
  ident: D3CC03659F/cit85/1
  publication-title: Soft Matter
  doi: 10.1039/C9SM02049G
– volume: 125
  start-page: 5612
  year: 2003
  ident: D3CC03659F/cit68/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034994f
– volume: 35
  start-page: 348
  year: 2006
  ident: D3CC03659F/cit29/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b511332f
– volume: 10
  start-page: 7574
  year: 2019
  ident: D3CC03659F/cit39/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02648G
– volume: 133
  start-page: 8903
  year: 2011
  ident: D3CC03659F/cit42/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1105656
– volume: 92
  start-page: 13711
  year: 2020
  ident: D3CC03659F/cit50/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c00554
– volume: 52
  start-page: 13255
  year: 2019
  ident: D3CC03659F/cit81/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00660
– volume: 168
  start-page: 1039
  year: 1951
  ident: D3CC03659F/cit16/1
  publication-title: Nature
  doi: 10.1038/1681039b0
– volume: 50
  start-page: 2006
  year: 2009
  ident: D3CC03659F/cit77/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2009.02.086
– volume: 109
  start-page: 5687
  year: 2009
  ident: D3CC03659F/cit79/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900181u
– volume: 37
  start-page: 6731
  year: 1998
  ident: D3CC03659F/cit52/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9806939
– volume: 42
  start-page: 7086
  year: 2013
  ident: D3CC03659F/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35436E
– volume: 57
  start-page: 3602
  year: 2018
  ident: D3CC03659F/cit73/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b02503
– volume: 4
  start-page: 1216
  year: 2013
  ident: D3CC03659F/cit83/1
  publication-title: Polym. Chem.
  doi: 10.1039/C2PY20849K
– volume: 21
  start-page: 11560
  year: 2015
  ident: D3CC03659F/cit93/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201501395
– volume: 20
  start-page: 2508
  year: 2008
  ident: D3CC03659F/cit38/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703195
– volume: 9
  start-page: 1737
  year: 2018
  ident: D3CC03659F/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03827-3
– volume: 50
  start-page: 5551
  year: 2014
  ident: D3CC03659F/cit94/1
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49268K
– volume: 121
  start-page: 4304
  year: 1999
  ident: D3CC03659F/cit101/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990330n
– start-page: 5355
  year: 2010
  ident: D3CC03659F/cit54/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201000525
– volume: 3
  start-page: 764
  year: 2017
  ident: D3CC03659F/cit2/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.006
– volume: 295
  start-page: 2400
  year: 2002
  ident: D3CC03659F/cit1/1
  publication-title: Science
  doi: 10.1126/science.1071063
– volume: 52
  start-page: 5731
  year: 2013
  ident: D3CC03659F/cit99/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300862
– volume: 54
  start-page: 10080
  year: 2015
  ident: D3CC03659F/cit7/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503375
– volume: 104
  start-page: 5931
  year: 2004
  ident: D3CC03659F/cit37/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0101510
– volume: 135
  start-page: 10542
  year: 2013
  ident: D3CC03659F/cit89/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405014r
– volume: 15
  start-page: 25110
  year: 2023
  ident: D3CC03659F/cit88/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05469
– volume: 50
  start-page: 13005
  year: 2014
  ident: D3CC03659F/cit6/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05192K
– volume: 4
  start-page: 38
  year: 2020
  ident: D3CC03659F/cit10/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0153-8
– volume: 57
  start-page: 3780
  year: 1992
  ident: D3CC03659F/cit30/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00040a012
– volume: 133
  start-page: 3804
  year: 2011
  ident: D3CC03659F/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200130h
– volume: 83
  start-page: 4824
  year: 2018
  ident: D3CC03659F/cit64/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00146
– volume: 138
  start-page: 11245
  year: 2016
  ident: D3CC03659F/cit31/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05824
– volume: 14
  start-page: 2631
  year: 1995
  ident: D3CC03659F/cit57/1
  publication-title: Polyhedron
  doi: 10.1016/0277-5387(95)00129-G
– volume: 19
  start-page: 6649
  year: 2009
  ident: D3CC03659F/cit14/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b819218a
– volume: 60
  start-page: 17570
  year: 2021
  ident: D3CC03659F/cit87/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103721
– volume: 96
  start-page: 877
  year: 1996
  ident: D3CC03659F/cit41/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940053x
– volume: 62
  start-page: 3616
  year: 2023
  ident: D3CC03659F/cit13/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c04399
– volume: 128
  start-page: 11600
  year: 2006
  ident: D3CC03659F/cit76/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0632308
– start-page: 6
  year: 2017
  ident: D3CC03659F/cit17/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600983
– volume: 33
  start-page: 4873
  year: 2014
  ident: D3CC03659F/cit58/1
  publication-title: Organometallics
  doi: 10.1021/om500032p
– volume: 49
  start-page: 9845
  year: 2013
  ident: D3CC03659F/cit84/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46123h
– volume: 7
  start-page: 5239
  year: 2011
  ident: D3CC03659F/cit95/1
  publication-title: Soft Matter
  doi: 10.1039/c1sm05277b
– volume: 44
  start-page: 5798
  year: 2005
  ident: D3CC03659F/cit11/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0481834
– volume: 23
  start-page: 10372
  year: 2017
  ident: D3CC03659F/cit61/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201701602
– volume: 52
  start-page: 9167
  year: 2013
  ident: D3CC03659F/cit53/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302587
– volume: 29
  start-page: e202202711
  year: 2023
  ident: D3CC03659F/cit67/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202202711
– volume: 114
  start-page: 1973
  year: 2014
  ident: D3CC03659F/cit15/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400195e
– volume: 54
  start-page: 66
  year: 2013
  ident: D3CC03659F/cit33/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2012.10.094
SSID ssj0000158
Score 2.4875288
SecondaryResourceType review_article
Snippet Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14482
SubjectTerms Assemblies
Ball bearings
Ferrocenes
Gels
Hydrophobicity
Oxidation
Supramolecular compounds
Supramolecular polymers
Title Ferrocene: an exotic building block for supramolecular assemblies
URI https://www.proquest.com/docview/2899224117
https://www.proquest.com/docview/2893834914
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYd4AL4tdEx0BBcEEoI4kdJ-ZWlZWBgEs71FtlO45adUunLEEafz3PPxJnYkjAJWptt6n8vj4_O-99H0Kvo6JIscI0LBQlISmSNIRlOA-LXOSi4GWmIl2c_PUbPT0jn5fp0p8qmeqSRhzLn7fWlfyPVaEN7KqrZP_Bsv2XQgO8BvvCFSwM17-y8UzVev2pTH0513T9O82_KpzUtc5Kl1uTSHjVXtb8opPCfQsRs7oQ510CYcdU0JEHyGHViDmW7Uu7jO-0wh-DQ4SPrVyv-aZxD_CrouZbMFnv8udtvbnmJk79DjfmlcfknK9bC8k1r31jvbWZ3_Pdj80WvOL18HgiwSbVIxt4VJyyMMOWM_JYuTbABWyVlkM37IjBLdysMrVzqrDnswJFboWG91YF9zf3H2HNnlpgKWFhTlnpF7k-9dB37qH9BPYWyQjtT04Wn74MWMeMrGv_yztWW8ze-U_fjGP85mSv7pRjTISyeIDuu61FMLE4eYjuqOoRujvtFP0eo0mPl_cBrwKLlqBDS2DQEgBagptoCTxanqCz2clieho6CY1Q4pg0cKU5jZjOii_zREVKES6lICJPSqwkUSRJZMRzqgSnLGZC50gxWaYclzlWHB-gUbWr1FMU5JxkkYT4PFaMcJEJCA4LJShnBY8oo2P0ppuQlXT88lrm5Hxl8hwwW33A06mZvNkYverHXlpWlVtHHXXzunL_uquVPiDQYWecjdHLvhsmUj_o4pXatWYMzjFhMRmjA7BHfw9vvsM_dTxD9zyMj9CoqVv1HOLORrxwOPkFdbCFWA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferrocene%3A+an+exotic+building+block+for+supramolecular+assemblies&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Guchhait%2C+Chandrakanta&rft.au=Suriyaa%2C+Vembanan&rft.au=Sahu%2C+Nihar&rft.au=Sarkar%2C+Sovik+Dey&rft.date=2023-12-07&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=59&rft.issue=98&rft.spage=14482&rft.epage=14496&rft_id=info:doi/10.1039%2Fd3cc03659f&rft.externalDocID=d3cc03659f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon