A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes
In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Bol...
Saved in:
Published in | Chinese physics B Vol. 22; no. 11; pp. 477 - 482 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/22/11/117101 |
Cover
Abstract | In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics. |
---|---|
AbstractList | In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics. In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics. |
Author | 路朋献 屈凌波 程巧换 |
AuthorAffiliation | College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengztou 450001, China |
Author_xml | – sequence: 1 fullname: 路朋献 屈凌波 程巧换 |
BookMark | eNqFkM2KHCEURiVMID2TvEIwuyxSaa_aWkI2w5A_GMgmWYt1y5oxqdIetRb9AHnvWPRkFtkEBD_knHvluyQXMUVPyGtg74H1_R6Ulh2wg9pzvgdoRwODZ2TH2aHvRC_kBdk9QS_IZSk_GVPAuNiR39cU03J0OZQUaanreKIt1HtP_eyx5hQDtve8Yl2zL-_o7GoN6Ol4im4JWKiL48bnJZ2Nxh9zOvpcgy80TXRY51-0hDlgm7zRf3N0MdV18OUleT65ufhXj_cV-fHp4_ebL93tt89fb65vOxQga4fMGOORTwy5GrQwLUEPRigHUmJv9KQPg3aTdgPvDXoJ2oyDmDSOnDEtrsjb89z2wYfVl2qXUNDPs4s-rcWCVpwpdZDQUHVGMadSsp_sMYfF5ZMFZrfe7Vap3Sq1nFsAe-69iR_-ETFUV0OKNbsw_19_86jfp3j3EOLd02KplZHQc_EHAGmYag |
CitedBy_id | crossref_primary_10_1016_j_physb_2024_416435 crossref_primary_10_1038_s41598_024_82561_x crossref_primary_10_1016_j_apsusc_2022_153710 crossref_primary_10_1016_j_jlumin_2024_120923 crossref_primary_10_1007_s12633_021_01324_9 crossref_primary_10_1016_j_physb_2017_02_029 |
Cites_doi | 10.1186/1556-276X-6-502 10.1063/1.1736238 10.1063/1.1852072 10.1557/PROC-1044-U02-04 10.1063/1.362516 10.1063/1.3131842 10.1103/PhysRev.133.A1143 10.1063/1.3443707 10.1103/PhysRevB.56.12290 10.1038/nature06381 10.1088/0953-8984/2/19/007 10.1186/1556-276X-7-116 10.1021/jp205333m 10.1063/1.3078157 10.1088/1674-1056/20/4/046103 10.1021/jp210583f 10.1038/nature06458 10.1002/adfm.200900250 10.1017/CBO9781139644075 10.1063/1.3421543 10.1103/PhysRevB.59.7413 10.1063/1.3593193 10.1021/nl101836z 10.1063/1.3270161 10.1088/1674-1056/20/10/106202 10.1166/jctn.2010.1563 10.1103/PhysRev.140.A1133 10.1166/jctn.2008.2454 10.1063/1.3273485 10.1007/s11664-999-0211-y 10.1088/1674-1056/18/1/046 10.1103/PhysRevB.62.2899 10.1088/0953-8984/14/11/301 10.1209/0295-5075/93/47010 10.1063/1.3437252 10.1063/1.3204005 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/22/11/117101 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes |
EISSN | 2058-3834 1741-4199 |
EndPage | 482 |
ExternalDocumentID | 10_1088_1674_1056_22_11_117101 47694182 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c314t-c0999ec2f0c26b7392f0181936a144c897f75b7af7ab289ce4179db3f7cd20073 |
ISSN | 1674-1056 |
IngestDate | Fri Sep 05 04:54:23 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Tue Jul 01 02:55:03 EDT 2025 Wed Feb 14 10:39:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-c0999ec2f0c26b7392f0181936a144c897f75b7af7ab289ce4179db3f7cd20073 |
Notes | In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics. electronic structure, lattice dynamics, thermoelectric properties, silicon nanotube 11-5639/O4 Lu Peng-Xian, Qu Ling-Bo, Cheng Qiao-Huan(College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1762066541 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762066541 crossref_primary_10_1088_1674_1056_22_11_117101 crossref_citationtrail_10_1088_1674_1056_22_11_117101 chongqing_primary_47694182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2013 |
References | 23 24 26 27 Huang K (25) 1979 28 Peng H (29) 2011; 20 Tsaousidou M (37) 2011; 93 30 10 32 11 33 12 Monkhorst H J (22) 1977; 16 34 13 35 14 36 15 16 38 18 Ashcroft N W (31) 1976 19 Segall M D (17) 2002; 14 Henry A S (39) 2008; 5 3 Li H (2) 2009; 18 4 Franscis G P (21) 1990; 2 5 6 7 8 9 Yang M J (1) 2011; 20 20 |
References_xml | – ident: 7 doi: 10.1186/1556-276X-6-502 – ident: 16 doi: 10.1063/1.1736238 – start-page: 281 year: 1979 ident: 25 publication-title: Solid State Physics – ident: 26 doi: 10.1063/1.1852072 – ident: 38 doi: 10.1557/PROC-1044-U02-04 – ident: 32 doi: 10.1063/1.362516 – ident: 24 doi: 10.1063/1.3131842 – ident: 35 doi: 10.1103/PhysRev.133.A1143 – ident: 3 doi: 10.1063/1.3443707 – volume: 16 start-page: 1946 issn: 0556-2805 year: 1977 ident: 22 publication-title: Phys. Rev. – ident: 36 doi: 10.1103/PhysRevB.56.12290 – ident: 5 doi: 10.1038/nature06381 – volume: 2 start-page: 4395 issn: 0953-8984 year: 1990 ident: 21 publication-title: J. Phys: Condens. Matt. doi: 10.1088/0953-8984/2/19/007 – ident: 11 doi: 10.1186/1556-276X-7-116 – ident: 12 doi: 10.1021/jp205333m – ident: 23 doi: 10.1063/1.3078157 – volume: 20 start-page: 046103 issn: 1674-1056 year: 2011 ident: 29 publication-title: Chin. Phys. doi: 10.1088/1674-1056/20/4/046103 – ident: 10 doi: 10.1021/jp210583f – ident: 6 doi: 10.1038/nature06458 – ident: 30 doi: 10.1002/adfm.200900250 – ident: 34 doi: 10.1017/CBO9781139644075 – ident: 4 doi: 10.1063/1.3421543 – ident: 20 doi: 10.1103/PhysRevB.59.7413 – ident: 13 doi: 10.1063/1.3593193 – ident: 14 doi: 10.1021/nl101836z – ident: 27 doi: 10.1063/1.3270161 – volume: 20 start-page: 106202 issn: 1674-1056 year: 2011 ident: 1 publication-title: Chin. Phys. doi: 10.1088/1674-1056/20/10/106202 – ident: 15 doi: 10.1166/jctn.2010.1563 – ident: 18 doi: 10.1103/PhysRev.140.A1133 – volume: 5 start-page: 141 issn: 1546-1955 year: 2008 ident: 39 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2008.2454 – ident: 8 doi: 10.1063/1.3273485 – year: 1976 ident: 31 publication-title: Solid State Physics – ident: 33 doi: 10.1007/s11664-999-0211-y – volume: 18 start-page: 287 issn: 1674-1056 year: 2009 ident: 2 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/1/046 – ident: 19 doi: 10.1103/PhysRevB.62.2899 – volume: 14 start-page: 2717 issn: 0953-8984 year: 2002 ident: 17 publication-title: J. Phys.: Condens. Matt. doi: 10.1088/0953-8984/14/11/301 – volume: 93 start-page: 47010 issn: 0295-5075 year: 2011 ident: 37 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/93/47010 – ident: 28 doi: 10.1063/1.3437252 – ident: 9 doi: 10.1063/1.3204005 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0033753 |
Snippet | In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and... In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 477 |
SubjectTerms | Dynamic mechanical properties Dynamic structural analysis Dynamics Electronic structure Phonons Silicon Thermal conductivity Thermoelectricity 体硅 变速器结构 密度泛函理论 晶格动力学 热传导率 热电性能 电子结构 硅纳米管 |
Title | A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes |
URI | http://lib.cqvip.com/qk/85823A/201311/47694182.html https://www.proquest.com/docview/1762066541 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEE-xy0NGwqcSGidObB-TblYLEo_DrrS3KE4TQJR02bYX7vwrfhwztpO0AvG6RCNn7FSZr_ZnZx6EPNMijcK4UkFThSIQhjeBUToJjG7CVtemUrZqyes36em5eHWRXEwm33e8lrYb86L--su4kv-xKrSBXTFK9h8sOwwKDSCDfeEKFobrX9k48y7ktozg2qWHdm6LO9VtXIbY7ZWbD5bVBt3dpgtXiX7de1BefV65PtDjEg_orzDTKlJJs11-mq4_LgEyznG5l7uqW222xjsheoLLCsFyxbJjViRM5ywHQTKlWaZR0CFTac6KE5bPmc5YoZgCJc6KlOmUKem11eBhiyq5ZNmJVZmjOqrMWVZM8RnQVykUlG0FpTxmWTRFrcyOjkogS7ynjuHe7kkHj33I3zg5p1LAspH41Nm2LQoTFcT9gajHKt-ZkYWvEuMWd-EqHf20bsBci0cY_QMwTAYT09rVhHNgYXxcLwcvRiExClgBAbgWSWmdBF6-fdfzgBSTYuB2vx-0j09Xaja0zaJoxvnMPQLTe3xYde-_AGnZp0n7LMFSn7Nb5Kbfs9DMAfA2mTTdHXLd-g7X67vkW0ZHGFILQwoCgIqOMKQjDJ9TD0Lag5ACrOg-COkIQrpqKYKQeuBZ7V4eQHiPnJ8UZ_PTwFf3COqYi01Q496kqaM2rKPUSODpLSaP03FawSa_Vlq2MjGyamVlIqXrBmvlLUzcynqBB-zxfXLQrbrmAaFatEoKk4ZVEopWLFQkRbJIqpqLUC7S9JAcDS-2vHRZXMreeock6d90Wfu8-FieZVla_wylSrRWidYqowh2zKWz1iGZDf36Mf_U42lvyBImcfwyV3XNarsuOVASWwecH_3upz4kN8b_xSNyAIZrHgMn3pgnFno_ACteoEU |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+study+on+the+electronic+structures%2C+lattice+dynamics+and+thermoelectric+properties+of+bulk+silicon+and+silicon+nanotubes&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%B7%AF%E6%9C%8B%E7%8C%AE+%E5%B1%88%E5%87%8C%E6%B3%A2+%E7%A8%8B%E5%B7%A7%E6%8D%A2&rft.date=2013-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=11&rft.spage=477&rft.epage=482&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F11%2F117101&rft.externalDocID=47694182 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |