A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes

In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Bol...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 11; pp. 477 - 482
Main Author 路朋献 屈凌波 程巧换
Format Journal Article
LanguageEnglish
Published 01.11.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/11/117101

Cover

Abstract In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
AbstractList In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
Author 路朋献 屈凌波 程巧换
AuthorAffiliation College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengztou 450001, China
Author_xml – sequence: 1
  fullname: 路朋献 屈凌波 程巧换
BookMark eNqFkM2KHCEURiVMID2TvEIwuyxSaa_aWkI2w5A_GMgmWYt1y5oxqdIetRb9AHnvWPRkFtkEBD_knHvluyQXMUVPyGtg74H1_R6Ulh2wg9pzvgdoRwODZ2TH2aHvRC_kBdk9QS_IZSk_GVPAuNiR39cU03J0OZQUaanreKIt1HtP_eyx5hQDtve8Yl2zL-_o7GoN6Ol4im4JWKiL48bnJZ2Nxh9zOvpcgy80TXRY51-0hDlgm7zRf3N0MdV18OUleT65ufhXj_cV-fHp4_ebL93tt89fb65vOxQga4fMGOORTwy5GrQwLUEPRigHUmJv9KQPg3aTdgPvDXoJ2oyDmDSOnDEtrsjb89z2wYfVl2qXUNDPs4s-rcWCVpwpdZDQUHVGMadSsp_sMYfF5ZMFZrfe7Vap3Sq1nFsAe-69iR_-ETFUV0OKNbsw_19_86jfp3j3EOLd02KplZHQc_EHAGmYag
CitedBy_id crossref_primary_10_1016_j_physb_2024_416435
crossref_primary_10_1038_s41598_024_82561_x
crossref_primary_10_1016_j_apsusc_2022_153710
crossref_primary_10_1016_j_jlumin_2024_120923
crossref_primary_10_1007_s12633_021_01324_9
crossref_primary_10_1016_j_physb_2017_02_029
Cites_doi 10.1186/1556-276X-6-502
10.1063/1.1736238
10.1063/1.1852072
10.1557/PROC-1044-U02-04
10.1063/1.362516
10.1063/1.3131842
10.1103/PhysRev.133.A1143
10.1063/1.3443707
10.1103/PhysRevB.56.12290
10.1038/nature06381
10.1088/0953-8984/2/19/007
10.1186/1556-276X-7-116
10.1021/jp205333m
10.1063/1.3078157
10.1088/1674-1056/20/4/046103
10.1021/jp210583f
10.1038/nature06458
10.1002/adfm.200900250
10.1017/CBO9781139644075
10.1063/1.3421543
10.1103/PhysRevB.59.7413
10.1063/1.3593193
10.1021/nl101836z
10.1063/1.3270161
10.1088/1674-1056/20/10/106202
10.1166/jctn.2010.1563
10.1103/PhysRev.140.A1133
10.1166/jctn.2008.2454
10.1063/1.3273485
10.1007/s11664-999-0211-y
10.1088/1674-1056/18/1/046
10.1103/PhysRevB.62.2899
10.1088/0953-8984/14/11/301
10.1209/0295-5075/93/47010
10.1063/1.3437252
10.1063/1.3204005
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/22/11/117101
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes
EISSN 2058-3834
1741-4199
EndPage 482
ExternalDocumentID 10_1088_1674_1056_22_11_117101
47694182
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c314t-c0999ec2f0c26b7392f0181936a144c897f75b7af7ab289ce4179db3f7cd20073
ISSN 1674-1056
IngestDate Fri Sep 05 04:54:23 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Tue Jul 01 02:55:03 EDT 2025
Wed Feb 14 10:39:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-c0999ec2f0c26b7392f0181936a144c897f75b7af7ab289ce4179db3f7cd20073
Notes In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and the thermoelectric properties of bulk silicon (bulk Si) and a SiNT have been calculated in this work using density functional theory and Boltzmann transport theory. Our results suggest that the thermal conductivity of a SiNT is reduced by a factor of 1, while its electrical conductivity is improved significantly, although the Seebeck coefficient is increased slightly as compared to those of the bulk Si. As a consequence, the figure of merit (ZT) of a SiNT at 1200 K is enhanced by 12 times from 0.08 for bulk Si to 1.10. The large enhancement in electrical conductivity originates from the largely increased density of states at the Fermi energy level and the obviously narrowed band gap. The significant reduction in thermal conductivity is ascribed to the remarkably suppressed phonon thermal conductivity caused by a weakened covalent bonding, a decreased phonon density of states, a reduced phonon vibration frequency, as well as a shortened mean free path of phonons. The other factors influencing the thermoelectric properties have also been studied from the perspective of electronic structures and lattice dynamics.
electronic structure, lattice dynamics, thermoelectric properties, silicon nanotube
11-5639/O4
Lu Peng-Xian, Qu Ling-Bo, Cheng Qiao-Huan(College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762066541
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1762066541
crossref_primary_10_1088_1674_1056_22_11_117101
crossref_citationtrail_10_1088_1674_1056_22_11_117101
chongqing_primary_47694182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2013
References 23
24
26
27
Huang K (25) 1979
28
Peng H (29) 2011; 20
Tsaousidou M (37) 2011; 93
30
10
32
11
33
12
Monkhorst H J (22) 1977; 16
34
13
35
14
36
15
16
38
18
Ashcroft N W (31) 1976
19
Segall M D (17) 2002; 14
Henry A S (39) 2008; 5
3
Li H (2) 2009; 18
4
Franscis G P (21) 1990; 2
5
6
7
8
9
Yang M J (1) 2011; 20
20
References_xml – ident: 7
  doi: 10.1186/1556-276X-6-502
– ident: 16
  doi: 10.1063/1.1736238
– start-page: 281
  year: 1979
  ident: 25
  publication-title: Solid State Physics
– ident: 26
  doi: 10.1063/1.1852072
– ident: 38
  doi: 10.1557/PROC-1044-U02-04
– ident: 32
  doi: 10.1063/1.362516
– ident: 24
  doi: 10.1063/1.3131842
– ident: 35
  doi: 10.1103/PhysRev.133.A1143
– ident: 3
  doi: 10.1063/1.3443707
– volume: 16
  start-page: 1946
  issn: 0556-2805
  year: 1977
  ident: 22
  publication-title: Phys. Rev.
– ident: 36
  doi: 10.1103/PhysRevB.56.12290
– ident: 5
  doi: 10.1038/nature06381
– volume: 2
  start-page: 4395
  issn: 0953-8984
  year: 1990
  ident: 21
  publication-title: J. Phys: Condens. Matt.
  doi: 10.1088/0953-8984/2/19/007
– ident: 11
  doi: 10.1186/1556-276X-7-116
– ident: 12
  doi: 10.1021/jp205333m
– ident: 23
  doi: 10.1063/1.3078157
– volume: 20
  start-page: 046103
  issn: 1674-1056
  year: 2011
  ident: 29
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/20/4/046103
– ident: 10
  doi: 10.1021/jp210583f
– ident: 6
  doi: 10.1038/nature06458
– ident: 30
  doi: 10.1002/adfm.200900250
– ident: 34
  doi: 10.1017/CBO9781139644075
– ident: 4
  doi: 10.1063/1.3421543
– ident: 20
  doi: 10.1103/PhysRevB.59.7413
– ident: 13
  doi: 10.1063/1.3593193
– ident: 14
  doi: 10.1021/nl101836z
– ident: 27
  doi: 10.1063/1.3270161
– volume: 20
  start-page: 106202
  issn: 1674-1056
  year: 2011
  ident: 1
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/20/10/106202
– ident: 15
  doi: 10.1166/jctn.2010.1563
– ident: 18
  doi: 10.1103/PhysRev.140.A1133
– volume: 5
  start-page: 141
  issn: 1546-1955
  year: 2008
  ident: 39
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2008.2454
– ident: 8
  doi: 10.1063/1.3273485
– year: 1976
  ident: 31
  publication-title: Solid State Physics
– ident: 33
  doi: 10.1007/s11664-999-0211-y
– volume: 18
  start-page: 287
  issn: 1674-1056
  year: 2009
  ident: 2
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/1/046
– ident: 19
  doi: 10.1103/PhysRevB.62.2899
– volume: 14
  start-page: 2717
  issn: 0953-8984
  year: 2002
  ident: 17
  publication-title: J. Phys.: Condens. Matt.
  doi: 10.1088/0953-8984/14/11/301
– volume: 93
  start-page: 47010
  issn: 0295-5075
  year: 2011
  ident: 37
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/93/47010
– ident: 28
  doi: 10.1063/1.3437252
– ident: 9
  doi: 10.1063/1.3204005
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0033753
Snippet In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the elec- tronic structures, the lattice dynamics, and...
In order to investigate the mechanism of the electron and phonon transport in a silicon nanotube (SiNT), the electronic structures, the lattice dynamics, and...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 477
SubjectTerms Dynamic mechanical properties
Dynamic structural analysis
Dynamics
Electronic structure
Phonons
Silicon
Thermal conductivity
Thermoelectricity
体硅
变速器结构
密度泛函理论
晶格动力学
热传导率
热电性能
电子结构
硅纳米管
Title A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes
URI http://lib.cqvip.com/qk/85823A/201311/47694182.html
https://www.proquest.com/docview/1762066541
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEE-xy0NGwqcSGidObB-TblYLEo_DrrS3KE4TQJR02bYX7vwrfhwztpO0AvG6RCNn7FSZr_ZnZx6EPNMijcK4UkFThSIQhjeBUToJjG7CVtemUrZqyes36em5eHWRXEwm33e8lrYb86L--su4kv-xKrSBXTFK9h8sOwwKDSCDfeEKFobrX9k48y7ktozg2qWHdm6LO9VtXIbY7ZWbD5bVBt3dpgtXiX7de1BefV65PtDjEg_orzDTKlJJs11-mq4_LgEyznG5l7uqW222xjsheoLLCsFyxbJjViRM5ywHQTKlWaZR0CFTac6KE5bPmc5YoZgCJc6KlOmUKem11eBhiyq5ZNmJVZmjOqrMWVZM8RnQVykUlG0FpTxmWTRFrcyOjkogS7ynjuHe7kkHj33I3zg5p1LAspH41Nm2LQoTFcT9gajHKt-ZkYWvEuMWd-EqHf20bsBci0cY_QMwTAYT09rVhHNgYXxcLwcvRiExClgBAbgWSWmdBF6-fdfzgBSTYuB2vx-0j09Xaja0zaJoxvnMPQLTe3xYde-_AGnZp0n7LMFSn7Nb5Kbfs9DMAfA2mTTdHXLd-g7X67vkW0ZHGFILQwoCgIqOMKQjDJ9TD0Lag5ACrOg-COkIQrpqKYKQeuBZ7V4eQHiPnJ8UZ_PTwFf3COqYi01Q496kqaM2rKPUSODpLSaP03FawSa_Vlq2MjGyamVlIqXrBmvlLUzcynqBB-zxfXLQrbrmAaFatEoKk4ZVEopWLFQkRbJIqpqLUC7S9JAcDS-2vHRZXMreeock6d90Wfu8-FieZVla_wylSrRWidYqowh2zKWz1iGZDf36Mf_U42lvyBImcfwyV3XNarsuOVASWwecH_3upz4kN8b_xSNyAIZrHgMn3pgnFno_ACteoEU
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+study+on+the+electronic+structures%2C+lattice+dynamics+and+thermoelectric+properties+of+bulk+silicon+and+silicon+nanotubes&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%B7%AF%E6%9C%8B%E7%8C%AE+%E5%B1%88%E5%87%8C%E6%B3%A2+%E7%A8%8B%E5%B7%A7%E6%8D%A2&rft.date=2013-11-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=11&rft.spage=477&rft.epage=482&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F11%2F117101&rft.externalDocID=47694182
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg