The degradation of poly(1-butene) extrudates subjected to artificial and natural aging
In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were charact...
Saved in:
Published in | Iranian polymer journal Vol. 33; no. 12; pp. 1725 - 1735 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance.
Graphical abstract |
---|---|
AbstractList | In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance. In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance. Graphical abstract |
Author | Kudlacek, Michal Benicek, Lubomir Navratilova, Jana Jaska, David Cermak, Roman Zenzingerova, Sona Gajzlerova, Lenka |
Author_xml | – sequence: 1 givenname: Sona orcidid: 0000-0002-3604-6145 surname: Zenzingerova fullname: Zenzingerova, Sona organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 2 givenname: Michal orcidid: 0000-0002-6070-2149 surname: Kudlacek fullname: Kudlacek, Michal organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 3 givenname: Lubomir orcidid: 0000-0002-4858-9323 surname: Benicek fullname: Benicek, Lubomir email: benicek@utb.cz organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 4 givenname: David orcidid: 0000-0002-4056-0059 surname: Jaska fullname: Jaska, David organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 5 givenname: Jana orcidid: 0000-0003-1600-0526 surname: Navratilova fullname: Navratilova, Jana organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 6 givenname: Lenka orcidid: 0000-0002-3624-5785 surname: Gajzlerova fullname: Gajzlerova, Lenka organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin – sequence: 7 givenname: Roman orcidid: 0000-0003-1577-6031 surname: Cermak fullname: Cermak, Roman organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin |
BookMark | eNp9kE1LAzEYhINUsNb-AU8BL3pYzdcm6VGKXyB4qV5DNsmuW2pSkyzY_npTV_Dm6R2YeeaFOQUTH7wD4Byja4yQuEmYCsIrRFiFMGWy2h-BKRa0rmrC60nRqNi46BMwT6lvEKoZ5ayWU_C2enfQui5qq3MfPAwt3IbN7hJXzZCdd1fQfeU4FNclmIZm7Ux2FuYAdcx925teb6D2Fnqdh3jQXe-7M3Dc6k1y8987A6_3d6vlY_X88vC0vH2uDMUsVwaJheCI2Lq11mC64LK1zArbGs6cZDWyDZfOYiKYaDS1sjXEmkJwyohY0Bm4GHu3MXwOLmW1DkP05aWiGEuJOcKkpMiYMjGkFF2rtrH_0HGnMFKHCdU4oSoTqp8J1b5AdIRSCfvOxb_qf6hvWe52Mw |
Cites_doi | 10.1016/0141-3910(93)90222-5 10.1016/j.polymdegradstab.2013.03.017 10.1021/acs.macromol.2c00836 10.1007/s00289-011-0560-6 10.1016/j.polymdegradstab.2020.109364 10.1016/j.polymdegradstab.2020.109185 10.1016/j.apcatb.2022.122348 10.1016/0032-3861(91)90447-Q 10.1016/j.chemosphere.2022.136136 10.1016/j.polymdegradstab.2020.109434 10.1016/j.polymdegradstab.2005.01.046 10.1016/S0141-3910(99)00033-6 10.1063/1.1661962 10.1016/j.eurpolymj.2014.08.011 10.1007/s10856-016-5760-z 10.1016/j.polymdegradstab.2019.109027 10.1016/j.polymdegradstab.2020.109437 10.4236/ojopm.2021.111001 10.1021/acs.cgd.7b00872 10.1016/j.matdes.2016.08.065 10.1016/j.supflu.2019.104744 10.1002/app.37712 10.1289/ehp.751129 10.1016/j.polymer.2020.123029 10.1023/A:1021808317416 10.3390/polym16010023 10.1177/0307174X1404100313 10.1002/pen.20313 10.3390/polym10050556 10.1021/acs.chemrev.2c00750 10.3144/expresspolymlett.2007.72 10.1080/00222348.2019.1642549 10.1016/J.polymdegradstab.2023.110260 10.1016/j.ijnonlinmec.2023.104456 10.1016/j.polymdegradstab.2018.03.008 10.1016/j.polymer.2015.12.001 10.1021/ie9607513 10.1016/j.polymdegradstab.2021.109550 10.1080/00222348.2015.1094645 10.1016/j.polymdegradstab.2021.109595 10.1016/J.AEJ.2021.03.024 10.1021/acs.cgd.2c00141 10.1016/j.polymdegradstab.2019.05.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s13726-024-01348-z |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1735-5265 |
EndPage | 1735 |
ExternalDocumentID | 10_1007_s13726_024_01348_z |
GrantInformation_xml | – fundername: IGA/FT/2023/008 grantid: IGA/FT/2023/008 – fundername: Tomas Bata University in Zlín |
GroupedDBID | -EM 06D 0R~ 0VY 203 29J 2WC 30V 4.4 406 408 5GY 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAZMS ABAKF ABDZT ABECU ABFTV ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFLOW AFWTZ AFYQB AFZKB AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA C1A C6C CSCUP DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGRSB GJIRD GQ6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OK1 PT4 RLLFE ROL RSV SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 XSB Z5O Z7V Z7X ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c314t-c0797602d5fddc13968fd4d7dfc64e8450db68ed12747ba3d8fc2dc6026342793 |
IEDL.DBID | U2A |
ISSN | 1026-1265 |
IngestDate | Fri Jul 25 10:58:29 EDT 2025 Tue Jul 01 04:09:52 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Degradation Surface changes Weathering Isotactic poly(1-butene) Accelerated time equivalent |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-c0797602d5fddc13968fd4d7dfc64e8450db68ed12747ba3d8fc2dc6026342793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3624-5785 0000-0002-4056-0059 0000-0002-6070-2149 0000-0002-4858-9323 0000-0003-1600-0526 0000-0002-3604-6145 0000-0003-1577-6031 |
OpenAccessLink | https://link.springer.com/10.1007/s13726-024-01348-z |
PQID | 3118816012 |
PQPubID | 2044463 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3118816012 crossref_primary_10_1007_s13726_024_01348_z springer_journals_10_1007_s13726_024_01348_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Iranian polymer journal |
PublicationTitleAbbrev | Iran Polym J |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BatistaNLRezendeMCBotelhoECEffect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiationPolym Degrad Stab201815325526110.1016/j.polymdegradstab.2018.03.008 FuPLiJJiangSRole of chain dynamics in crystal transition of isotactic polybutene-1Polymer (Guildf)202021010.1016/j.polymer.2020.123029 RodriguezAKMansoorBAyoubGColinXBenzergaAAEffect of UV-aging on the mechanical and fracture behavior of low density polyethylenePolym Degrad Stab202018010.1016/j.polymdegradstab.2020.109185 MajewskiKMantellSCBhattacharyaMRelationship between morphological changes and mechanical properties in HDPE films exposed to a chlorinated environmentPolym Degrad Stab202017110.1016/j.polymdegradstab.2019.109027 WuHZhaoYDongXSuLWangKWangDProbing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradationPolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109434 XinRLiYShenHHuJWangSZhangHYanSThe II to I phase transition of isotactic poly(1-butene) single crystals at an early stageMacromolecules2022558203820910.1021/acs.macromol.2c00836 LooijmansSMenyhardAPetersGWMAlfonsoGCCavalloDAnomalous temperature dependence of isotactic polypropylene α-on-β cross-nucleation kineticsCryst Growth Des2017174936494310.1021/acs.cgd.7b00872 HoK-LGPomettoALHinzPNEffects of temperature and relative humidity on polylactic acid plastic degradationJ Environ Polym Degrad19997839210.1023/A:1021808317416 GrauseGChienM-FInoueCChanges during the weathering of polyolefinsPolym Degrad Stab202018110.1016/j.polymdegradstab.2020.109364 BureloMGaytánILoza-TaveraHCruz-MoralesJAZárate-SaldañaDCruz-GómezMJGutiérrezSSynthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradabilityChemosphere202230710.1016/j.chemosphere.2022.13613636028127 SchoolenbergGEMeijerHDFUltra-violet degradation of polypropylene: 2. Residual strength and failure mode in relation to the degraded surface layerPolymer (Guildf)19913243844410.1016/0032-3861(91)90447-Q BabaghayouMIMouradAHILorenzoVde la OrdenMUMartínez UrreagaJChabiraSFSebaaMPhotodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE filmsMater Des201611127929010.1016/j.matdes.2016.08.065 WuHZhaoYSuLWangKDongXWangDMarkedly improved photo-oxidation stability of α form isotactic polypropylene with nodular morphologyPolym Degrad Stab202118910.1016/j.polymdegradstab.2021.109595 CelinaMCLindeEMartinezECarbonyl identification and quantification uncertainties for oxidative polymer degradationPolym Degrad Stab202118810.1016/j.polymdegradstab.2021.109550 YamasakiRSCharacterization of wet and dry periods of plastic surfaces during outdoor exposureDurab Build Mater19842155169 KoriemAOllickAMElhadaryMThe effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizersAlex Eng J2021604167417510.1016/J.AEJ.2021.03.024 MakkiMAyoubGPannierCDargazanyRKadriRAbdelazizMNNouriHMicromechanical modeling of the visco-hyperelastic–viscoplastic behavior and fracture of aged semicrystalline polymersInt J Non Linear Mech202315510.1016/j.ijnonlinmec.2023.104456 XinRZhangJSunXLiHRenZYanSPolymorphic behavior and phase transition of poly(1-butene) and its copolymersPolymers (Basel)20181055610.3390/polym1005055630966590 JerdyACPhamTGonzález-BorjaMÁAtallahPSoulesDAbbottRLobbanLCrossleySImpact of the presence of common polymer additives in thermal and catalytic polyethylene decompositionAppl Catal B202332510.1016/j.apcatb.2022.122348 SamarthNBMahanwarPADegradation of polymer & elastomer exposed to chlorinated water—a reviewOpen J Org Polym Mater20211115010.4236/ojopm.2021.111001 LohXJThe effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymersJ Appl Polym Sci201310.1002/app.37712 CardewPTOstwald Rule of Stages─Myth or Reality?Cryst Growth Des2023233958396910.1021/acs.cgd.2c00141 GijsmanPMeijersGVitarelliGComparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalatePolym Degrad Stab19996543344110.1016/S0141-3910(99)00033-6 HarperCAHandbook of plastics technologies: the complete guide to properties and performance20061New YorkMcGraw-Hill AilaraDLAging of polymersEnviron Health Perspect197511293310.1289/ehp.751129 Mayer-TrzaskowskaPRobakowskaMGierzŁPachJMazurEObservation of the effect of aging on the structural changes of polyurethane/polyurea coatingsPolymers (Basel)2024162310.3390/polym16010023 FairbrotherAHsuehH-CKimJHJacobsDPerryLGoodwinDWhiteCWatsonSSungL-PTemperature and light intensity effects on photodegradation of high-density polyethylenePolym Degrad Stab201916515316010.1016/j.polymdegradstab.2019.05.002 ElmanovichIVStakhanovAIZefirovVVPavlovAALokshinBVGallyamovMOThermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxideJ Supercrit Fluids202015810.1016/j.supflu.2019.104744 CraigIHWhiteJRShyichukAv., Syrotynska I, Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPEPolym Eng Sci20054557958710.1002/pen.20313 MasseySAdnotARjebARoyDAction of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopyExpress Polym Lett2007150651110.3144/expresspolymlett.2007.72 GijsmanPFiorioRLong term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclabilityPolym Degrad Stab202320810.1016/J.polymdegradstab.2023.110260 StolteICavalloDAlfonsoGCPortaleGVan DrongelenMAndroschRForm I′ crystal formation in random butene-1/propylene copolymers as revealed by real-time X-ray scattering using synchrotron radiation and fast scanning chip calorimetryEur Polym J201460223210.1016/j.eurpolymj.2014.08.011 KaszonyiováMRybnikářFLapčíkLVilčákováJThe effect of long-term natural aging on the iPB-1 structure and the II – I phase transformation ratePolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109437 MadrasGChungGYSmithJMMcCoyBJMolecular weight effect on the dynamics of polystyrene degradationInd Eng Chem Res1997362019202410.1021/ie9607513 ObadalMČermákRRaabMVerneyVCommereucSFraïsseFStudy on photodegradation of injection-moulded β-polypropylenesPolym Degrad Stab20069145946310.1016/j.polymdegradstab.2005.01.046 QianSIgarashiTNittaK-HThermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanismPolym Bull2011671661167010.1007/s00289-011-0560-6 GorelikBAKolganovaIVMatisová-RychláLListvojbGIDrabkinaAMGolnikAGEffect of oxygen on the degradation of polypropylene initiated by ionizing irradiationPolym Degrad Stab19934226326610.1016/0141-3910(93)90222-5 TianRLiKLinYLuCDuanXCharacterization Techniques of Polymer Aging: From Beginning to EndChem Rev20231233007308810.1021/acs.chemrev.2c0075036802560 GalloRSeveriniFCourse of the changes in thick and thin isotactic polypropylene samples subjected to natural agingPolym Degrad Stab2013981144114910.1016/j.polymdegradstab.2013.03.017 WypychGHandbook of material weathering20186Toronto, CanadaChemTec Publishing KaszonyiováMRybnikářFThe effect of some physical factors on the II → I Phase transition of isotactic polybutene-1J Macromol Sci B20195868972110.1080/00222348.2019.1642549 GogotovINBarazovSKhThe effect of ultraviolet light and temperature on the degradation of composite polypropyleneInt Polym Sci Technol201441555810.1177/0307174X1404100313 LauritzenJIHoffmanJDExtension of theory of growth of chain-folded polymer crystals to large undercoolingsJ Appl Phys1973444340435210.1063/1.1661962 CaelersHJMGovaertLEPetersGWMThe prediction of mechanical performance of isotactic polypropylene on the basis of processing conditionsPolymer (Guildf)20168311612810.1016/j.polymer.2015.12.001 YeLLiuMHuangYZhangZYangJEffects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogenJ Macromol Sci Part B2015541479149410.1080/00222348.2015.1094645 ShiraziRNAldabbaghFRonanWErxlebenARochevYMcHughPEffects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performanceJ Mater Sci Mater Med20162715410.1007/s10856-016-5760-z27590824 XJ Loh (1348_CR29) 2013 IV Elmanovich (1348_CR35) 2020; 158 M Kaszonyiová (1348_CR41) 2019; 58 M Obadal (1348_CR17) 2006; 91 AK Rodriguez (1348_CR14) 2020; 180 NL Batista (1348_CR15) 2018; 153 MC Celina (1348_CR42) 2021; 188 CA Harper (1348_CR1) 2006 L Ye (1348_CR22) 2015; 54 AC Jerdy (1348_CR24) 2023; 325 H Wu (1348_CR36) 2021; 189 S Qian (1348_CR30) 2011; 67 P Mayer-Trzaskowska (1348_CR43) 2024; 16 K Majewski (1348_CR44) 2020; 171 A Koriem (1348_CR8) 2021; 60 MI Babaghayou (1348_CR12) 2016; 111 RN Shirazi (1348_CR20) 2016; 27 G Wypych (1348_CR21) 2018 P Fu (1348_CR4) 2020; 210 IN Gogotov (1348_CR32) 2014; 41 DL Ailara (1348_CR7) 1975; 11 NB Samarth (1348_CR28) 2021; 11 M Burelo (1348_CR25) 2022; 307 IH Craig (1348_CR11) 2005; 45 BA Gorelik (1348_CR34) 1993; 42 R Tian (1348_CR19) 2023; 123 H Wu (1348_CR18) 2021; 183 S Massey (1348_CR27) 2007; 1 K-LG Ho (1348_CR26) 1999; 7 I Stolte (1348_CR3) 2014; 60 HJM Caelers (1348_CR40) 2016; 83 A Fairbrother (1348_CR9) 2019; 165 GE Schoolenberg (1348_CR46) 1991; 32 R Xin (1348_CR6) 2018; 10 G Madras (1348_CR23) 1997; 36 S Looijmans (1348_CR39) 2017; 17 R Xin (1348_CR37) 2022; 55 JI Lauritzen (1348_CR38) 1973; 44 PT Cardew (1348_CR5) 2023; 23 G Grause (1348_CR10) 2020; 181 P Gijsman (1348_CR31) 2023; 208 P Gijsman (1348_CR33) 1999; 65 M Kaszonyiová (1348_CR2) 2021; 183 RS Yamasaki (1348_CR45) 1984; 2 M Makki (1348_CR13) 2023; 155 R Gallo (1348_CR16) 2013; 98 |
References_xml | – reference: KaszonyiováMRybnikářFLapčíkLVilčákováJThe effect of long-term natural aging on the iPB-1 structure and the II – I phase transformation ratePolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109437 – reference: YamasakiRSCharacterization of wet and dry periods of plastic surfaces during outdoor exposureDurab Build Mater19842155169 – reference: WypychGHandbook of material weathering20186Toronto, CanadaChemTec Publishing – reference: FuPLiJJiangSRole of chain dynamics in crystal transition of isotactic polybutene-1Polymer (Guildf)202021010.1016/j.polymer.2020.123029 – reference: ObadalMČermákRRaabMVerneyVCommereucSFraïsseFStudy on photodegradation of injection-moulded β-polypropylenesPolym Degrad Stab20069145946310.1016/j.polymdegradstab.2005.01.046 – reference: KaszonyiováMRybnikářFThe effect of some physical factors on the II → I Phase transition of isotactic polybutene-1J Macromol Sci B20195868972110.1080/00222348.2019.1642549 – reference: LohXJThe effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymersJ Appl Polym Sci201310.1002/app.37712 – reference: HarperCAHandbook of plastics technologies: the complete guide to properties and performance20061New YorkMcGraw-Hill – reference: KoriemAOllickAMElhadaryMThe effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizersAlex Eng J2021604167417510.1016/J.AEJ.2021.03.024 – reference: GogotovINBarazovSKhThe effect of ultraviolet light and temperature on the degradation of composite polypropyleneInt Polym Sci Technol201441555810.1177/0307174X1404100313 – reference: HoK-LGPomettoALHinzPNEffects of temperature and relative humidity on polylactic acid plastic degradationJ Environ Polym Degrad19997839210.1023/A:1021808317416 – reference: GijsmanPMeijersGVitarelliGComparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalatePolym Degrad Stab19996543344110.1016/S0141-3910(99)00033-6 – reference: GrauseGChienM-FInoueCChanges during the weathering of polyolefinsPolym Degrad Stab202018110.1016/j.polymdegradstab.2020.109364 – reference: FairbrotherAHsuehH-CKimJHJacobsDPerryLGoodwinDWhiteCWatsonSSungL-PTemperature and light intensity effects on photodegradation of high-density polyethylenePolym Degrad Stab201916515316010.1016/j.polymdegradstab.2019.05.002 – reference: AilaraDLAging of polymersEnviron Health Perspect197511293310.1289/ehp.751129 – reference: BabaghayouMIMouradAHILorenzoVde la OrdenMUMartínez UrreagaJChabiraSFSebaaMPhotodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE filmsMater Des201611127929010.1016/j.matdes.2016.08.065 – reference: BatistaNLRezendeMCBotelhoECEffect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiationPolym Degrad Stab201815325526110.1016/j.polymdegradstab.2018.03.008 – reference: MakkiMAyoubGPannierCDargazanyRKadriRAbdelazizMNNouriHMicromechanical modeling of the visco-hyperelastic–viscoplastic behavior and fracture of aged semicrystalline polymersInt J Non Linear Mech202315510.1016/j.ijnonlinmec.2023.104456 – reference: GalloRSeveriniFCourse of the changes in thick and thin isotactic polypropylene samples subjected to natural agingPolym Degrad Stab2013981144114910.1016/j.polymdegradstab.2013.03.017 – reference: JerdyACPhamTGonzález-BorjaMÁAtallahPSoulesDAbbottRLobbanLCrossleySImpact of the presence of common polymer additives in thermal and catalytic polyethylene decompositionAppl Catal B202332510.1016/j.apcatb.2022.122348 – reference: TianRLiKLinYLuCDuanXCharacterization Techniques of Polymer Aging: From Beginning to EndChem Rev20231233007308810.1021/acs.chemrev.2c0075036802560 – reference: XinRZhangJSunXLiHRenZYanSPolymorphic behavior and phase transition of poly(1-butene) and its copolymersPolymers (Basel)20181055610.3390/polym1005055630966590 – reference: LooijmansSMenyhardAPetersGWMAlfonsoGCCavalloDAnomalous temperature dependence of isotactic polypropylene α-on-β cross-nucleation kineticsCryst Growth Des2017174936494310.1021/acs.cgd.7b00872 – reference: CardewPTOstwald Rule of Stages─Myth or Reality?Cryst Growth Des2023233958396910.1021/acs.cgd.2c00141 – reference: WuHZhaoYSuLWangKDongXWangDMarkedly improved photo-oxidation stability of α form isotactic polypropylene with nodular morphologyPolym Degrad Stab202118910.1016/j.polymdegradstab.2021.109595 – reference: LauritzenJIHoffmanJDExtension of theory of growth of chain-folded polymer crystals to large undercoolingsJ Appl Phys1973444340435210.1063/1.1661962 – reference: GorelikBAKolganovaIVMatisová-RychláLListvojbGIDrabkinaAMGolnikAGEffect of oxygen on the degradation of polypropylene initiated by ionizing irradiationPolym Degrad Stab19934226326610.1016/0141-3910(93)90222-5 – reference: CraigIHWhiteJRShyichukAv., Syrotynska I, Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPEPolym Eng Sci20054557958710.1002/pen.20313 – reference: YeLLiuMHuangYZhangZYangJEffects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogenJ Macromol Sci Part B2015541479149410.1080/00222348.2015.1094645 – reference: Mayer-TrzaskowskaPRobakowskaMGierzŁPachJMazurEObservation of the effect of aging on the structural changes of polyurethane/polyurea coatingsPolymers (Basel)2024162310.3390/polym16010023 – reference: CaelersHJMGovaertLEPetersGWMThe prediction of mechanical performance of isotactic polypropylene on the basis of processing conditionsPolymer (Guildf)20168311612810.1016/j.polymer.2015.12.001 – reference: QianSIgarashiTNittaK-HThermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanismPolym Bull2011671661167010.1007/s00289-011-0560-6 – reference: StolteICavalloDAlfonsoGCPortaleGVan DrongelenMAndroschRForm I′ crystal formation in random butene-1/propylene copolymers as revealed by real-time X-ray scattering using synchrotron radiation and fast scanning chip calorimetryEur Polym J201460223210.1016/j.eurpolymj.2014.08.011 – reference: RodriguezAKMansoorBAyoubGColinXBenzergaAAEffect of UV-aging on the mechanical and fracture behavior of low density polyethylenePolym Degrad Stab202018010.1016/j.polymdegradstab.2020.109185 – reference: WuHZhaoYDongXSuLWangKWangDProbing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradationPolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109434 – reference: ElmanovichIVStakhanovAIZefirovVVPavlovAALokshinBVGallyamovMOThermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxideJ Supercrit Fluids202015810.1016/j.supflu.2019.104744 – reference: MadrasGChungGYSmithJMMcCoyBJMolecular weight effect on the dynamics of polystyrene degradationInd Eng Chem Res1997362019202410.1021/ie9607513 – reference: ShiraziRNAldabbaghFRonanWErxlebenARochevYMcHughPEffects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performanceJ Mater Sci Mater Med20162715410.1007/s10856-016-5760-z27590824 – reference: GijsmanPFiorioRLong term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclabilityPolym Degrad Stab202320810.1016/J.polymdegradstab.2023.110260 – reference: MajewskiKMantellSCBhattacharyaMRelationship between morphological changes and mechanical properties in HDPE films exposed to a chlorinated environmentPolym Degrad Stab202017110.1016/j.polymdegradstab.2019.109027 – reference: SchoolenbergGEMeijerHDFUltra-violet degradation of polypropylene: 2. Residual strength and failure mode in relation to the degraded surface layerPolymer (Guildf)19913243844410.1016/0032-3861(91)90447-Q – reference: MasseySAdnotARjebARoyDAction of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopyExpress Polym Lett2007150651110.3144/expresspolymlett.2007.72 – reference: XinRLiYShenHHuJWangSZhangHYanSThe II to I phase transition of isotactic poly(1-butene) single crystals at an early stageMacromolecules2022558203820910.1021/acs.macromol.2c00836 – reference: BureloMGaytánILoza-TaveraHCruz-MoralesJAZárate-SaldañaDCruz-GómezMJGutiérrezSSynthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradabilityChemosphere202230710.1016/j.chemosphere.2022.13613636028127 – reference: CelinaMCLindeEMartinezECarbonyl identification and quantification uncertainties for oxidative polymer degradationPolym Degrad Stab202118810.1016/j.polymdegradstab.2021.109550 – reference: SamarthNBMahanwarPADegradation of polymer & elastomer exposed to chlorinated water—a reviewOpen J Org Polym Mater20211115010.4236/ojopm.2021.111001 – volume: 42 start-page: 263 year: 1993 ident: 1348_CR34 publication-title: Polym Degrad Stab doi: 10.1016/0141-3910(93)90222-5 – volume: 98 start-page: 1144 year: 2013 ident: 1348_CR16 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2013.03.017 – volume: 55 start-page: 8203 year: 2022 ident: 1348_CR37 publication-title: Macromolecules doi: 10.1021/acs.macromol.2c00836 – volume: 67 start-page: 1661 year: 2011 ident: 1348_CR30 publication-title: Polym Bull doi: 10.1007/s00289-011-0560-6 – volume: 181 year: 2020 ident: 1348_CR10 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2020.109364 – volume: 180 year: 2020 ident: 1348_CR14 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2020.109185 – volume: 325 year: 2023 ident: 1348_CR24 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.122348 – volume: 32 start-page: 438 year: 1991 ident: 1348_CR46 publication-title: Polymer (Guildf) doi: 10.1016/0032-3861(91)90447-Q – volume: 307 year: 2022 ident: 1348_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136136 – volume: 183 year: 2021 ident: 1348_CR18 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2020.109434 – volume: 91 start-page: 459 year: 2006 ident: 1348_CR17 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2005.01.046 – volume: 65 start-page: 433 year: 1999 ident: 1348_CR33 publication-title: Polym Degrad Stab doi: 10.1016/S0141-3910(99)00033-6 – volume: 44 start-page: 4340 year: 1973 ident: 1348_CR38 publication-title: J Appl Phys doi: 10.1063/1.1661962 – volume: 60 start-page: 22 year: 2014 ident: 1348_CR3 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2014.08.011 – volume: 27 start-page: 154 year: 2016 ident: 1348_CR20 publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-016-5760-z – volume: 171 year: 2020 ident: 1348_CR44 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2019.109027 – volume: 183 year: 2021 ident: 1348_CR2 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2020.109437 – volume: 11 start-page: 1 year: 2021 ident: 1348_CR28 publication-title: Open J Org Polym Mater doi: 10.4236/ojopm.2021.111001 – volume: 17 start-page: 4936 year: 2017 ident: 1348_CR39 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.7b00872 – volume: 111 start-page: 279 year: 2016 ident: 1348_CR12 publication-title: Mater Des doi: 10.1016/j.matdes.2016.08.065 – volume: 158 year: 2020 ident: 1348_CR35 publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2019.104744 – year: 2013 ident: 1348_CR29 publication-title: J Appl Polym Sci doi: 10.1002/app.37712 – volume: 11 start-page: 29 year: 1975 ident: 1348_CR7 publication-title: Environ Health Perspect doi: 10.1289/ehp.751129 – volume: 210 year: 2020 ident: 1348_CR4 publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2020.123029 – volume: 2 start-page: 155 year: 1984 ident: 1348_CR45 publication-title: Durab Build Mater – volume: 7 start-page: 83 year: 1999 ident: 1348_CR26 publication-title: J Environ Polym Degrad doi: 10.1023/A:1021808317416 – volume: 16 start-page: 23 year: 2024 ident: 1348_CR43 publication-title: Polymers (Basel) doi: 10.3390/polym16010023 – volume: 41 start-page: 55 year: 2014 ident: 1348_CR32 publication-title: Int Polym Sci Technol doi: 10.1177/0307174X1404100313 – volume: 45 start-page: 579 year: 2005 ident: 1348_CR11 publication-title: Polym Eng Sci doi: 10.1002/pen.20313 – volume: 10 start-page: 556 year: 2018 ident: 1348_CR6 publication-title: Polymers (Basel) doi: 10.3390/polym10050556 – volume: 123 start-page: 3007 year: 2023 ident: 1348_CR19 publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00750 – volume-title: Handbook of material weathering year: 2018 ident: 1348_CR21 – volume: 1 start-page: 506 year: 2007 ident: 1348_CR27 publication-title: Express Polym Lett doi: 10.3144/expresspolymlett.2007.72 – volume: 58 start-page: 689 year: 2019 ident: 1348_CR41 publication-title: J Macromol Sci B doi: 10.1080/00222348.2019.1642549 – volume: 208 year: 2023 ident: 1348_CR31 publication-title: Polym Degrad Stab doi: 10.1016/J.polymdegradstab.2023.110260 – volume: 155 year: 2023 ident: 1348_CR13 publication-title: Int J Non Linear Mech doi: 10.1016/j.ijnonlinmec.2023.104456 – volume: 153 start-page: 255 year: 2018 ident: 1348_CR15 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2018.03.008 – volume-title: Handbook of plastics technologies: the complete guide to properties and performance year: 2006 ident: 1348_CR1 – volume: 83 start-page: 116 year: 2016 ident: 1348_CR40 publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2015.12.001 – volume: 36 start-page: 2019 year: 1997 ident: 1348_CR23 publication-title: Ind Eng Chem Res doi: 10.1021/ie9607513 – volume: 188 year: 2021 ident: 1348_CR42 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2021.109550 – volume: 54 start-page: 1479 year: 2015 ident: 1348_CR22 publication-title: J Macromol Sci Part B doi: 10.1080/00222348.2015.1094645 – volume: 189 year: 2021 ident: 1348_CR36 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2021.109595 – volume: 60 start-page: 4167 year: 2021 ident: 1348_CR8 publication-title: Alex Eng J doi: 10.1016/J.AEJ.2021.03.024 – volume: 23 start-page: 3958 year: 2023 ident: 1348_CR5 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.2c00141 – volume: 165 start-page: 153 year: 2019 ident: 1348_CR9 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2019.05.002 |
SSID | ssib005436458 ssj0000070674 |
Score | 2.341205 |
Snippet | In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1725 |
SubjectTerms | Aging (artificial) Aging (natural) Carbonyl groups Carbonyls Ceramics Chemistry Chemistry and Materials Science Composites Crack initiation Extrusions Fourier transforms Glass Infrared analysis Infrared spectroscopy Mechanical properties Modulus of elasticity Natural Materials Original Research Performance degradation Polymer Sciences Surface analysis (chemical) Surface cracks Tensile tests Ultraviolet radiation Weathering X-ray scattering |
Title | The degradation of poly(1-butene) extrudates subjected to artificial and natural aging |
URI | https://link.springer.com/article/10.1007/s13726-024-01348-z https://www.proquest.com/docview/3118816012 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsNAEB0RKIACcYpwRFtQgMBSvJeXMokSEAgqgkJleQ9XKEEkKeDrmXFsDAgKKluytcXb2bn3DcAJmiAXTJZFMnYuktYIPHOxjzTaxsCt1TyjfMfdvb4eypuRGpWXwqZVt3tVkiw0dX3ZTSScGmapa0JIE703YEVR7I5SPOSdWqokldbMZ6aFGG10QceMxpSGzmhV3p75fdnvFqp2O39USgsDNNiEjdJzZJ3FVm_BUhhvw2qvGti2DetfuAV34BEFgHmiglhMTWKTnL1Mnt9O48jO0VEOZwz18uucIv4pm84tJWSCZ7MJI2laEEuwbOxZwf1J7zTPaBeGg_5D7zoqhyhETsRyFrl2gh5Hm3uVe-_Q39Mm99InPndaBiNV21ttgo8pPLWZ8CZ33DuaTCUkx9O7B8vjyTjsA8PQJzil3KWSuXQqsXEmqE5ohJeoGZImnFfApS8Lroy0ZkUmmFOEOS1gTt-bcFRhm5bnZpoKjHdMjEEib8JFhXf9-e_VDv73-yGscdryoi_lCJYR7nCM3sXMtmClM-h27-l59XTbb0Gjp3utQsQ-AFqex3I |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtCDUdSIou7Bg0YbaXe7XY-GSFCBExhuTffRkwEicJBf70xprRI9eGuyzR6-2dl57jcAl2iCjFNJ4gnfGE9oxVHnfOtJtI0u0FoGCeU7en3ZGYrnUTjKaXLoLcxa_f5u5vMooDZZ6pXgQnnLTdgSGClT-15LtsqzJKigpr7yK8RjIzMSZjShNGpGhvmbmd-3_WmXSmdzrT6amZ32Huzm_iJ7WAl4HzbcuAbVVjGmrQY73xgFD-AVxc4sEUCsZiWxScqmk7ePK9_TC3SP3TXD2_h9QXH-jM0WmtIwzrL5hNEZWtFJsGRsWcb4Sd80xegQhu3HQavj5aMTPMN9MfdMM0I_oxnYMLXWoJcnVWqFjWxqpHBKhE2rpXLWp6BUJ9yq1ATW0DwqLgLU2SOojCdjdwwMAx5nwtDchyIVJoy0n3CqDipuBd4HUR1uCuDi6YohIy65kAnmGGGOM5jjZR0aBbZxri2zmGOUo3wMDYM63BZ4l8t_73byv98voNoZ9Lpx96n_cgrbAYk_60xpQAWhd2foX8z1eXawPgG2scJX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsNADLVYJJYDYhVlnQMHEEQ0mclkOKJCVVZxoIhblFlyQmlF0wP9euwspCA4cIuUaKS8scf22H4GOEITZJxKEk_4xnhCK44651tPom10gdYySOi-4-FR9vri9jV8neriL6rd65Rk2dNALE1Zfj606XnT-MajgIpnqYKCC-VNZmEeI5UiUduRnUbCBKXZ1NetC7HbyIKaGQ0rDaCRYdVJ8_uy361V44L-yJoWxqi7CiuVF8kuy21fgxmXrcNipx7etg7LUzyDG_CCwsAs0UKUE5TYIGXDwdvHse_pMf62O2F4Rr-PKfofsdFY0-WMsywfMJKskmSCJZllBQ8oPdNso03od6-fOz2vGqjgGe6L3DPtCL2PdmDD1FqDvp9UqRU2sqmRwikRtq2WylmfQlWdcKtSE1hDU6q4CFCTt2AuG2RuGxiGQc6EobkIRSpMGGk_4ZQzVNwKPCWiFpzWwMXDkjcjbhiSCeYYYY4LmONJC_ZqbONKh0Yxx9hH-RgwBi04q_FuXv-92s7_Pj-Ehaerbnx_83i3C0sB7X5RrrIHc4i820enI9cHhVx9AodIyp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+degradation+of+poly%281-butene%29+extrudates+subjected+to+artificial+and+natural+aging&rft.jtitle=Iranian+polymer+journal&rft.au=Zenzingerova%2C+Sona&rft.au=Kudlacek%2C+Michal&rft.au=Benicek%2C+Lubomir&rft.au=Jaska%2C+David&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1026-1265&rft.eissn=1735-5265&rft.volume=33&rft.issue=12&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1007%2Fs13726-024-01348-z&rft.externalDocID=10_1007_s13726_024_01348_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1026-1265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1026-1265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1026-1265&client=summon |