The degradation of poly(1-butene) extrudates subjected to artificial and natural aging

In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were charact...

Full description

Saved in:
Bibliographic Details
Published inIranian polymer journal Vol. 33; no. 12; pp. 1725 - 1735
Main Authors Zenzingerova, Sona, Kudlacek, Michal, Benicek, Lubomir, Jaska, David, Navratilova, Jana, Gajzlerova, Lenka, Cermak, Roman
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance. Graphical abstract
AbstractList In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance.
In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance. Graphical abstract
Author Kudlacek, Michal
Benicek, Lubomir
Navratilova, Jana
Jaska, David
Cermak, Roman
Zenzingerova, Sona
Gajzlerova, Lenka
Author_xml – sequence: 1
  givenname: Sona
  orcidid: 0000-0002-3604-6145
  surname: Zenzingerova
  fullname: Zenzingerova, Sona
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 2
  givenname: Michal
  orcidid: 0000-0002-6070-2149
  surname: Kudlacek
  fullname: Kudlacek, Michal
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 3
  givenname: Lubomir
  orcidid: 0000-0002-4858-9323
  surname: Benicek
  fullname: Benicek, Lubomir
  email: benicek@utb.cz
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 4
  givenname: David
  orcidid: 0000-0002-4056-0059
  surname: Jaska
  fullname: Jaska, David
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 5
  givenname: Jana
  orcidid: 0000-0003-1600-0526
  surname: Navratilova
  fullname: Navratilova, Jana
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 6
  givenname: Lenka
  orcidid: 0000-0002-3624-5785
  surname: Gajzlerova
  fullname: Gajzlerova, Lenka
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
– sequence: 7
  givenname: Roman
  orcidid: 0000-0003-1577-6031
  surname: Cermak
  fullname: Cermak, Roman
  organization: Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin
BookMark eNp9kE1LAzEYhINUsNb-AU8BL3pYzdcm6VGKXyB4qV5DNsmuW2pSkyzY_npTV_Dm6R2YeeaFOQUTH7wD4Byja4yQuEmYCsIrRFiFMGWy2h-BKRa0rmrC60nRqNi46BMwT6lvEKoZ5ayWU_C2enfQui5qq3MfPAwt3IbN7hJXzZCdd1fQfeU4FNclmIZm7Ux2FuYAdcx925teb6D2Fnqdh3jQXe-7M3Dc6k1y8987A6_3d6vlY_X88vC0vH2uDMUsVwaJheCI2Lq11mC64LK1zArbGs6cZDWyDZfOYiKYaDS1sjXEmkJwyohY0Bm4GHu3MXwOLmW1DkP05aWiGEuJOcKkpMiYMjGkFF2rtrH_0HGnMFKHCdU4oSoTqp8J1b5AdIRSCfvOxb_qf6hvWe52Mw
Cites_doi 10.1016/0141-3910(93)90222-5
10.1016/j.polymdegradstab.2013.03.017
10.1021/acs.macromol.2c00836
10.1007/s00289-011-0560-6
10.1016/j.polymdegradstab.2020.109364
10.1016/j.polymdegradstab.2020.109185
10.1016/j.apcatb.2022.122348
10.1016/0032-3861(91)90447-Q
10.1016/j.chemosphere.2022.136136
10.1016/j.polymdegradstab.2020.109434
10.1016/j.polymdegradstab.2005.01.046
10.1016/S0141-3910(99)00033-6
10.1063/1.1661962
10.1016/j.eurpolymj.2014.08.011
10.1007/s10856-016-5760-z
10.1016/j.polymdegradstab.2019.109027
10.1016/j.polymdegradstab.2020.109437
10.4236/ojopm.2021.111001
10.1021/acs.cgd.7b00872
10.1016/j.matdes.2016.08.065
10.1016/j.supflu.2019.104744
10.1002/app.37712
10.1289/ehp.751129
10.1016/j.polymer.2020.123029
10.1023/A:1021808317416
10.3390/polym16010023
10.1177/0307174X1404100313
10.1002/pen.20313
10.3390/polym10050556
10.1021/acs.chemrev.2c00750
10.3144/expresspolymlett.2007.72
10.1080/00222348.2019.1642549
10.1016/J.polymdegradstab.2023.110260
10.1016/j.ijnonlinmec.2023.104456
10.1016/j.polymdegradstab.2018.03.008
10.1016/j.polymer.2015.12.001
10.1021/ie9607513
10.1016/j.polymdegradstab.2021.109550
10.1080/00222348.2015.1094645
10.1016/j.polymdegradstab.2021.109595
10.1016/J.AEJ.2021.03.024
10.1021/acs.cgd.2c00141
10.1016/j.polymdegradstab.2019.05.002
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s13726-024-01348-z
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1735-5265
EndPage 1735
ExternalDocumentID 10_1007_s13726_024_01348_z
GrantInformation_xml – fundername: IGA/FT/2023/008
  grantid: IGA/FT/2023/008
– fundername: Tomas Bata University in Zlín
GroupedDBID -EM
06D
0R~
0VY
203
29J
2WC
30V
4.4
406
408
5GY
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AAYIU
AAYQN
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFWTZ
AFYQB
AFZKB
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
C1A
C6C
CSCUP
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGRSB
GJIRD
GQ6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
PT4
RLLFE
ROL
RSV
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
XSB
Z5O
Z7V
Z7X
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c314t-c0797602d5fddc13968fd4d7dfc64e8450db68ed12747ba3d8fc2dc6026342793
IEDL.DBID U2A
ISSN 1026-1265
IngestDate Fri Jul 25 10:58:29 EDT 2025
Tue Jul 01 04:09:52 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Degradation
Surface changes
Weathering
Isotactic poly(1-butene)
Accelerated time equivalent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c0797602d5fddc13968fd4d7dfc64e8450db68ed12747ba3d8fc2dc6026342793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3624-5785
0000-0002-4056-0059
0000-0002-6070-2149
0000-0002-4858-9323
0000-0003-1600-0526
0000-0002-3604-6145
0000-0003-1577-6031
OpenAccessLink https://link.springer.com/10.1007/s13726-024-01348-z
PQID 3118816012
PQPubID 2044463
PageCount 11
ParticipantIDs proquest_journals_3118816012
crossref_primary_10_1007_s13726_024_01348_z
springer_journals_10_1007_s13726_024_01348_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Iranian polymer journal
PublicationTitleAbbrev Iran Polym J
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BatistaNLRezendeMCBotelhoECEffect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiationPolym Degrad Stab201815325526110.1016/j.polymdegradstab.2018.03.008
FuPLiJJiangSRole of chain dynamics in crystal transition of isotactic polybutene-1Polymer (Guildf)202021010.1016/j.polymer.2020.123029
RodriguezAKMansoorBAyoubGColinXBenzergaAAEffect of UV-aging on the mechanical and fracture behavior of low density polyethylenePolym Degrad Stab202018010.1016/j.polymdegradstab.2020.109185
MajewskiKMantellSCBhattacharyaMRelationship between morphological changes and mechanical properties in HDPE films exposed to a chlorinated environmentPolym Degrad Stab202017110.1016/j.polymdegradstab.2019.109027
WuHZhaoYDongXSuLWangKWangDProbing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradationPolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109434
XinRLiYShenHHuJWangSZhangHYanSThe II to I phase transition of isotactic poly(1-butene) single crystals at an early stageMacromolecules2022558203820910.1021/acs.macromol.2c00836
LooijmansSMenyhardAPetersGWMAlfonsoGCCavalloDAnomalous temperature dependence of isotactic polypropylene α-on-β cross-nucleation kineticsCryst Growth Des2017174936494310.1021/acs.cgd.7b00872
HoK-LGPomettoALHinzPNEffects of temperature and relative humidity on polylactic acid plastic degradationJ Environ Polym Degrad19997839210.1023/A:1021808317416
GrauseGChienM-FInoueCChanges during the weathering of polyolefinsPolym Degrad Stab202018110.1016/j.polymdegradstab.2020.109364
BureloMGaytánILoza-TaveraHCruz-MoralesJAZárate-SaldañaDCruz-GómezMJGutiérrezSSynthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradabilityChemosphere202230710.1016/j.chemosphere.2022.13613636028127
SchoolenbergGEMeijerHDFUltra-violet degradation of polypropylene: 2. Residual strength and failure mode in relation to the degraded surface layerPolymer (Guildf)19913243844410.1016/0032-3861(91)90447-Q
BabaghayouMIMouradAHILorenzoVde la OrdenMUMartínez UrreagaJChabiraSFSebaaMPhotodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE filmsMater Des201611127929010.1016/j.matdes.2016.08.065
WuHZhaoYSuLWangKDongXWangDMarkedly improved photo-oxidation stability of α form isotactic polypropylene with nodular morphologyPolym Degrad Stab202118910.1016/j.polymdegradstab.2021.109595
CelinaMCLindeEMartinezECarbonyl identification and quantification uncertainties for oxidative polymer degradationPolym Degrad Stab202118810.1016/j.polymdegradstab.2021.109550
YamasakiRSCharacterization of wet and dry periods of plastic surfaces during outdoor exposureDurab Build Mater19842155169
KoriemAOllickAMElhadaryMThe effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizersAlex Eng J2021604167417510.1016/J.AEJ.2021.03.024
MakkiMAyoubGPannierCDargazanyRKadriRAbdelazizMNNouriHMicromechanical modeling of the visco-hyperelastic–viscoplastic​ behavior and fracture of aged semicrystalline polymersInt J Non Linear Mech202315510.1016/j.ijnonlinmec.2023.104456
XinRZhangJSunXLiHRenZYanSPolymorphic behavior and phase transition of poly(1-butene) and its copolymersPolymers (Basel)20181055610.3390/polym1005055630966590
JerdyACPhamTGonzález-BorjaMÁAtallahPSoulesDAbbottRLobbanLCrossleySImpact of the presence of common polymer additives in thermal and catalytic polyethylene decompositionAppl Catal B202332510.1016/j.apcatb.2022.122348
SamarthNBMahanwarPADegradation of polymer & elastomer exposed to chlorinated water—a reviewOpen J Org Polym Mater20211115010.4236/ojopm.2021.111001
LohXJThe effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymersJ Appl Polym Sci201310.1002/app.37712
CardewPTOstwald Rule of Stages─Myth or Reality?Cryst Growth Des2023233958396910.1021/acs.cgd.2c00141
GijsmanPMeijersGVitarelliGComparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalatePolym Degrad Stab19996543344110.1016/S0141-3910(99)00033-6
HarperCAHandbook of plastics technologies: the complete guide to properties and performance20061New YorkMcGraw-Hill
AilaraDLAging of polymersEnviron Health Perspect197511293310.1289/ehp.751129
Mayer-TrzaskowskaPRobakowskaMGierzŁPachJMazurEObservation of the effect of aging on the structural changes of polyurethane/polyurea coatingsPolymers (Basel)2024162310.3390/polym16010023
FairbrotherAHsuehH-CKimJHJacobsDPerryLGoodwinDWhiteCWatsonSSungL-PTemperature and light intensity effects on photodegradation of high-density polyethylenePolym Degrad Stab201916515316010.1016/j.polymdegradstab.2019.05.002
ElmanovichIVStakhanovAIZefirovVVPavlovAALokshinBVGallyamovMOThermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxideJ Supercrit Fluids202015810.1016/j.supflu.2019.104744
CraigIHWhiteJRShyichukAv., Syrotynska I, Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPEPolym Eng Sci20054557958710.1002/pen.20313
MasseySAdnotARjebARoyDAction of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopyExpress Polym Lett2007150651110.3144/expresspolymlett.2007.72
GijsmanPFiorioRLong term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclabilityPolym Degrad Stab202320810.1016/J.polymdegradstab.2023.110260
StolteICavalloDAlfonsoGCPortaleGVan DrongelenMAndroschRForm I′ crystal formation in random butene-1/propylene copolymers as revealed by real-time X-ray scattering using synchrotron radiation and fast scanning chip calorimetryEur Polym J201460223210.1016/j.eurpolymj.2014.08.011
KaszonyiováMRybnikářFLapčíkLVilčákováJThe effect of long-term natural aging on the iPB-1 structure and the II – I phase transformation ratePolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109437
MadrasGChungGYSmithJMMcCoyBJMolecular weight effect on the dynamics of polystyrene degradationInd Eng Chem Res1997362019202410.1021/ie9607513
ObadalMČermákRRaabMVerneyVCommereucSFraïsseFStudy on photodegradation of injection-moulded β-polypropylenesPolym Degrad Stab20069145946310.1016/j.polymdegradstab.2005.01.046
QianSIgarashiTNittaK-HThermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanismPolym Bull2011671661167010.1007/s00289-011-0560-6
GorelikBAKolganovaIVMatisová-RychláLListvojbGIDrabkinaAMGolnikAGEffect of oxygen on the degradation of polypropylene initiated by ionizing irradiationPolym Degrad Stab19934226326610.1016/0141-3910(93)90222-5
TianRLiKLinYLuCDuanXCharacterization Techniques of Polymer Aging: From Beginning to EndChem Rev20231233007308810.1021/acs.chemrev.2c0075036802560
GalloRSeveriniFCourse of the changes in thick and thin isotactic polypropylene samples subjected to natural agingPolym Degrad Stab2013981144114910.1016/j.polymdegradstab.2013.03.017
WypychGHandbook of material weathering20186Toronto, CanadaChemTec Publishing
KaszonyiováMRybnikářFThe effect of some physical factors on the II → I Phase transition of isotactic polybutene-1J Macromol Sci B20195868972110.1080/00222348.2019.1642549
GogotovINBarazovSKhThe effect of ultraviolet light and temperature on the degradation of composite polypropyleneInt Polym Sci Technol201441555810.1177/0307174X1404100313
LauritzenJIHoffmanJDExtension of theory of growth of chain-folded polymer crystals to large undercoolingsJ Appl Phys1973444340435210.1063/1.1661962
CaelersHJMGovaertLEPetersGWMThe prediction of mechanical performance of isotactic polypropylene on the basis of processing conditionsPolymer (Guildf)20168311612810.1016/j.polymer.2015.12.001
YeLLiuMHuangYZhangZYangJEffects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogenJ Macromol Sci Part B2015541479149410.1080/00222348.2015.1094645
ShiraziRNAldabbaghFRonanWErxlebenARochevYMcHughPEffects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performanceJ Mater Sci Mater Med20162715410.1007/s10856-016-5760-z27590824
XJ Loh (1348_CR29) 2013
IV Elmanovich (1348_CR35) 2020; 158
M Kaszonyiová (1348_CR41) 2019; 58
M Obadal (1348_CR17) 2006; 91
AK Rodriguez (1348_CR14) 2020; 180
NL Batista (1348_CR15) 2018; 153
MC Celina (1348_CR42) 2021; 188
CA Harper (1348_CR1) 2006
L Ye (1348_CR22) 2015; 54
AC Jerdy (1348_CR24) 2023; 325
H Wu (1348_CR36) 2021; 189
S Qian (1348_CR30) 2011; 67
P Mayer-Trzaskowska (1348_CR43) 2024; 16
K Majewski (1348_CR44) 2020; 171
A Koriem (1348_CR8) 2021; 60
MI Babaghayou (1348_CR12) 2016; 111
RN Shirazi (1348_CR20) 2016; 27
G Wypych (1348_CR21) 2018
P Fu (1348_CR4) 2020; 210
IN Gogotov (1348_CR32) 2014; 41
DL Ailara (1348_CR7) 1975; 11
NB Samarth (1348_CR28) 2021; 11
M Burelo (1348_CR25) 2022; 307
IH Craig (1348_CR11) 2005; 45
BA Gorelik (1348_CR34) 1993; 42
R Tian (1348_CR19) 2023; 123
H Wu (1348_CR18) 2021; 183
S Massey (1348_CR27) 2007; 1
K-LG Ho (1348_CR26) 1999; 7
I Stolte (1348_CR3) 2014; 60
HJM Caelers (1348_CR40) 2016; 83
A Fairbrother (1348_CR9) 2019; 165
GE Schoolenberg (1348_CR46) 1991; 32
R Xin (1348_CR6) 2018; 10
G Madras (1348_CR23) 1997; 36
S Looijmans (1348_CR39) 2017; 17
R Xin (1348_CR37) 2022; 55
JI Lauritzen (1348_CR38) 1973; 44
PT Cardew (1348_CR5) 2023; 23
G Grause (1348_CR10) 2020; 181
P Gijsman (1348_CR31) 2023; 208
P Gijsman (1348_CR33) 1999; 65
M Kaszonyiová (1348_CR2) 2021; 183
RS Yamasaki (1348_CR45) 1984; 2
M Makki (1348_CR13) 2023; 155
R Gallo (1348_CR16) 2013; 98
References_xml – reference: KaszonyiováMRybnikářFLapčíkLVilčákováJThe effect of long-term natural aging on the iPB-1 structure and the II – I phase transformation ratePolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109437
– reference: YamasakiRSCharacterization of wet and dry periods of plastic surfaces during outdoor exposureDurab Build Mater19842155169
– reference: WypychGHandbook of material weathering20186Toronto, CanadaChemTec Publishing
– reference: FuPLiJJiangSRole of chain dynamics in crystal transition of isotactic polybutene-1Polymer (Guildf)202021010.1016/j.polymer.2020.123029
– reference: ObadalMČermákRRaabMVerneyVCommereucSFraïsseFStudy on photodegradation of injection-moulded β-polypropylenesPolym Degrad Stab20069145946310.1016/j.polymdegradstab.2005.01.046
– reference: KaszonyiováMRybnikářFThe effect of some physical factors on the II → I Phase transition of isotactic polybutene-1J Macromol Sci B20195868972110.1080/00222348.2019.1642549
– reference: LohXJThe effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymersJ Appl Polym Sci201310.1002/app.37712
– reference: HarperCAHandbook of plastics technologies: the complete guide to properties and performance20061New YorkMcGraw-Hill
– reference: KoriemAOllickAMElhadaryMThe effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizersAlex Eng J2021604167417510.1016/J.AEJ.2021.03.024
– reference: GogotovINBarazovSKhThe effect of ultraviolet light and temperature on the degradation of composite polypropyleneInt Polym Sci Technol201441555810.1177/0307174X1404100313
– reference: HoK-LGPomettoALHinzPNEffects of temperature and relative humidity on polylactic acid plastic degradationJ Environ Polym Degrad19997839210.1023/A:1021808317416
– reference: GijsmanPMeijersGVitarelliGComparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalatePolym Degrad Stab19996543344110.1016/S0141-3910(99)00033-6
– reference: GrauseGChienM-FInoueCChanges during the weathering of polyolefinsPolym Degrad Stab202018110.1016/j.polymdegradstab.2020.109364
– reference: FairbrotherAHsuehH-CKimJHJacobsDPerryLGoodwinDWhiteCWatsonSSungL-PTemperature and light intensity effects on photodegradation of high-density polyethylenePolym Degrad Stab201916515316010.1016/j.polymdegradstab.2019.05.002
– reference: AilaraDLAging of polymersEnviron Health Perspect197511293310.1289/ehp.751129
– reference: BabaghayouMIMouradAHILorenzoVde la OrdenMUMartínez UrreagaJChabiraSFSebaaMPhotodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE filmsMater Des201611127929010.1016/j.matdes.2016.08.065
– reference: BatistaNLRezendeMCBotelhoECEffect of crystallinity on CF/PPS performance under weather exposure: moisture, salt fog and UV radiationPolym Degrad Stab201815325526110.1016/j.polymdegradstab.2018.03.008
– reference: MakkiMAyoubGPannierCDargazanyRKadriRAbdelazizMNNouriHMicromechanical modeling of the visco-hyperelastic–viscoplastic​ behavior and fracture of aged semicrystalline polymersInt J Non Linear Mech202315510.1016/j.ijnonlinmec.2023.104456
– reference: GalloRSeveriniFCourse of the changes in thick and thin isotactic polypropylene samples subjected to natural agingPolym Degrad Stab2013981144114910.1016/j.polymdegradstab.2013.03.017
– reference: JerdyACPhamTGonzález-BorjaMÁAtallahPSoulesDAbbottRLobbanLCrossleySImpact of the presence of common polymer additives in thermal and catalytic polyethylene decompositionAppl Catal B202332510.1016/j.apcatb.2022.122348
– reference: TianRLiKLinYLuCDuanXCharacterization Techniques of Polymer Aging: From Beginning to EndChem Rev20231233007308810.1021/acs.chemrev.2c0075036802560
– reference: XinRZhangJSunXLiHRenZYanSPolymorphic behavior and phase transition of poly(1-butene) and its copolymersPolymers (Basel)20181055610.3390/polym1005055630966590
– reference: LooijmansSMenyhardAPetersGWMAlfonsoGCCavalloDAnomalous temperature dependence of isotactic polypropylene α-on-β cross-nucleation kineticsCryst Growth Des2017174936494310.1021/acs.cgd.7b00872
– reference: CardewPTOstwald Rule of Stages─Myth or Reality?Cryst Growth Des2023233958396910.1021/acs.cgd.2c00141
– reference: WuHZhaoYSuLWangKDongXWangDMarkedly improved photo-oxidation stability of α form isotactic polypropylene with nodular morphologyPolym Degrad Stab202118910.1016/j.polymdegradstab.2021.109595
– reference: LauritzenJIHoffmanJDExtension of theory of growth of chain-folded polymer crystals to large undercoolingsJ Appl Phys1973444340435210.1063/1.1661962
– reference: GorelikBAKolganovaIVMatisová-RychláLListvojbGIDrabkinaAMGolnikAGEffect of oxygen on the degradation of polypropylene initiated by ionizing irradiationPolym Degrad Stab19934226326610.1016/0141-3910(93)90222-5
– reference: CraigIHWhiteJRShyichukAv., Syrotynska I, Photo-induced scission and crosslinking in LDPE, LLDPE, and HDPEPolym Eng Sci20054557958710.1002/pen.20313
– reference: YeLLiuMHuangYZhangZYangJEffects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogenJ Macromol Sci Part B2015541479149410.1080/00222348.2015.1094645
– reference: Mayer-TrzaskowskaPRobakowskaMGierzŁPachJMazurEObservation of the effect of aging on the structural changes of polyurethane/polyurea coatingsPolymers (Basel)2024162310.3390/polym16010023
– reference: CaelersHJMGovaertLEPetersGWMThe prediction of mechanical performance of isotactic polypropylene on the basis of processing conditionsPolymer (Guildf)20168311612810.1016/j.polymer.2015.12.001
– reference: QianSIgarashiTNittaK-HThermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanismPolym Bull2011671661167010.1007/s00289-011-0560-6
– reference: StolteICavalloDAlfonsoGCPortaleGVan DrongelenMAndroschRForm I′ crystal formation in random butene-1/propylene copolymers as revealed by real-time X-ray scattering using synchrotron radiation and fast scanning chip calorimetryEur Polym J201460223210.1016/j.eurpolymj.2014.08.011
– reference: RodriguezAKMansoorBAyoubGColinXBenzergaAAEffect of UV-aging on the mechanical and fracture behavior of low density polyethylenePolym Degrad Stab202018010.1016/j.polymdegradstab.2020.109185
– reference: WuHZhaoYDongXSuLWangKWangDProbing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradationPolym Degrad Stab202118310.1016/j.polymdegradstab.2020.109434
– reference: ElmanovichIVStakhanovAIZefirovVVPavlovAALokshinBVGallyamovMOThermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxideJ Supercrit Fluids202015810.1016/j.supflu.2019.104744
– reference: MadrasGChungGYSmithJMMcCoyBJMolecular weight effect on the dynamics of polystyrene degradationInd Eng Chem Res1997362019202410.1021/ie9607513
– reference: ShiraziRNAldabbaghFRonanWErxlebenARochevYMcHughPEffects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performanceJ Mater Sci Mater Med20162715410.1007/s10856-016-5760-z27590824
– reference: GijsmanPFiorioRLong term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclabilityPolym Degrad Stab202320810.1016/J.polymdegradstab.2023.110260
– reference: MajewskiKMantellSCBhattacharyaMRelationship between morphological changes and mechanical properties in HDPE films exposed to a chlorinated environmentPolym Degrad Stab202017110.1016/j.polymdegradstab.2019.109027
– reference: SchoolenbergGEMeijerHDFUltra-violet degradation of polypropylene: 2. Residual strength and failure mode in relation to the degraded surface layerPolymer (Guildf)19913243844410.1016/0032-3861(91)90447-Q
– reference: MasseySAdnotARjebARoyDAction of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopyExpress Polym Lett2007150651110.3144/expresspolymlett.2007.72
– reference: XinRLiYShenHHuJWangSZhangHYanSThe II to I phase transition of isotactic poly(1-butene) single crystals at an early stageMacromolecules2022558203820910.1021/acs.macromol.2c00836
– reference: BureloMGaytánILoza-TaveraHCruz-MoralesJAZárate-SaldañaDCruz-GómezMJGutiérrezSSynthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradabilityChemosphere202230710.1016/j.chemosphere.2022.13613636028127
– reference: CelinaMCLindeEMartinezECarbonyl identification and quantification uncertainties for oxidative polymer degradationPolym Degrad Stab202118810.1016/j.polymdegradstab.2021.109550
– reference: SamarthNBMahanwarPADegradation of polymer & elastomer exposed to chlorinated water—a reviewOpen J Org Polym Mater20211115010.4236/ojopm.2021.111001
– volume: 42
  start-page: 263
  year: 1993
  ident: 1348_CR34
  publication-title: Polym Degrad Stab
  doi: 10.1016/0141-3910(93)90222-5
– volume: 98
  start-page: 1144
  year: 2013
  ident: 1348_CR16
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2013.03.017
– volume: 55
  start-page: 8203
  year: 2022
  ident: 1348_CR37
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c00836
– volume: 67
  start-page: 1661
  year: 2011
  ident: 1348_CR30
  publication-title: Polym Bull
  doi: 10.1007/s00289-011-0560-6
– volume: 181
  year: 2020
  ident: 1348_CR10
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2020.109364
– volume: 180
  year: 2020
  ident: 1348_CR14
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2020.109185
– volume: 325
  year: 2023
  ident: 1348_CR24
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.122348
– volume: 32
  start-page: 438
  year: 1991
  ident: 1348_CR46
  publication-title: Polymer (Guildf)
  doi: 10.1016/0032-3861(91)90447-Q
– volume: 307
  year: 2022
  ident: 1348_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136136
– volume: 183
  year: 2021
  ident: 1348_CR18
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2020.109434
– volume: 91
  start-page: 459
  year: 2006
  ident: 1348_CR17
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2005.01.046
– volume: 65
  start-page: 433
  year: 1999
  ident: 1348_CR33
  publication-title: Polym Degrad Stab
  doi: 10.1016/S0141-3910(99)00033-6
– volume: 44
  start-page: 4340
  year: 1973
  ident: 1348_CR38
  publication-title: J Appl Phys
  doi: 10.1063/1.1661962
– volume: 60
  start-page: 22
  year: 2014
  ident: 1348_CR3
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2014.08.011
– volume: 27
  start-page: 154
  year: 2016
  ident: 1348_CR20
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-016-5760-z
– volume: 171
  year: 2020
  ident: 1348_CR44
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2019.109027
– volume: 183
  year: 2021
  ident: 1348_CR2
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2020.109437
– volume: 11
  start-page: 1
  year: 2021
  ident: 1348_CR28
  publication-title: Open J Org Polym Mater
  doi: 10.4236/ojopm.2021.111001
– volume: 17
  start-page: 4936
  year: 2017
  ident: 1348_CR39
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.7b00872
– volume: 111
  start-page: 279
  year: 2016
  ident: 1348_CR12
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.08.065
– volume: 158
  year: 2020
  ident: 1348_CR35
  publication-title: J Supercrit Fluids
  doi: 10.1016/j.supflu.2019.104744
– year: 2013
  ident: 1348_CR29
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.37712
– volume: 11
  start-page: 29
  year: 1975
  ident: 1348_CR7
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.751129
– volume: 210
  year: 2020
  ident: 1348_CR4
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2020.123029
– volume: 2
  start-page: 155
  year: 1984
  ident: 1348_CR45
  publication-title: Durab Build Mater
– volume: 7
  start-page: 83
  year: 1999
  ident: 1348_CR26
  publication-title: J Environ Polym Degrad
  doi: 10.1023/A:1021808317416
– volume: 16
  start-page: 23
  year: 2024
  ident: 1348_CR43
  publication-title: Polymers (Basel)
  doi: 10.3390/polym16010023
– volume: 41
  start-page: 55
  year: 2014
  ident: 1348_CR32
  publication-title: Int Polym Sci Technol
  doi: 10.1177/0307174X1404100313
– volume: 45
  start-page: 579
  year: 2005
  ident: 1348_CR11
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.20313
– volume: 10
  start-page: 556
  year: 2018
  ident: 1348_CR6
  publication-title: Polymers (Basel)
  doi: 10.3390/polym10050556
– volume: 123
  start-page: 3007
  year: 2023
  ident: 1348_CR19
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.2c00750
– volume-title: Handbook of material weathering
  year: 2018
  ident: 1348_CR21
– volume: 1
  start-page: 506
  year: 2007
  ident: 1348_CR27
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2007.72
– volume: 58
  start-page: 689
  year: 2019
  ident: 1348_CR41
  publication-title: J Macromol Sci B
  doi: 10.1080/00222348.2019.1642549
– volume: 208
  year: 2023
  ident: 1348_CR31
  publication-title: Polym Degrad Stab
  doi: 10.1016/J.polymdegradstab.2023.110260
– volume: 155
  year: 2023
  ident: 1348_CR13
  publication-title: Int J Non Linear Mech
  doi: 10.1016/j.ijnonlinmec.2023.104456
– volume: 153
  start-page: 255
  year: 2018
  ident: 1348_CR15
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2018.03.008
– volume-title: Handbook of plastics technologies: the complete guide to properties and performance
  year: 2006
  ident: 1348_CR1
– volume: 83
  start-page: 116
  year: 2016
  ident: 1348_CR40
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2015.12.001
– volume: 36
  start-page: 2019
  year: 1997
  ident: 1348_CR23
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie9607513
– volume: 188
  year: 2021
  ident: 1348_CR42
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2021.109550
– volume: 54
  start-page: 1479
  year: 2015
  ident: 1348_CR22
  publication-title: J Macromol Sci Part B
  doi: 10.1080/00222348.2015.1094645
– volume: 189
  year: 2021
  ident: 1348_CR36
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2021.109595
– volume: 60
  start-page: 4167
  year: 2021
  ident: 1348_CR8
  publication-title: Alex Eng J
  doi: 10.1016/J.AEJ.2021.03.024
– volume: 23
  start-page: 3958
  year: 2023
  ident: 1348_CR5
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.2c00141
– volume: 165
  start-page: 153
  year: 2019
  ident: 1348_CR9
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2019.05.002
SSID ssib005436458
ssj0000070674
Score 2.341205
Snippet In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1725
SubjectTerms Aging (artificial)
Aging (natural)
Carbonyl groups
Carbonyls
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Crack initiation
Extrusions
Fourier transforms
Glass
Infrared analysis
Infrared spectroscopy
Mechanical properties
Modulus of elasticity
Natural Materials
Original Research
Performance degradation
Polymer Sciences
Surface analysis (chemical)
Surface cracks
Tensile tests
Ultraviolet radiation
Weathering
X-ray scattering
Title The degradation of poly(1-butene) extrudates subjected to artificial and natural aging
URI https://link.springer.com/article/10.1007/s13726-024-01348-z
https://www.proquest.com/docview/3118816012
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsNAEB0RKIACcYpwRFtQgMBSvJeXMokSEAgqgkJleQ9XKEEkKeDrmXFsDAgKKluytcXb2bn3DcAJmiAXTJZFMnYuktYIPHOxjzTaxsCt1TyjfMfdvb4eypuRGpWXwqZVt3tVkiw0dX3ZTSScGmapa0JIE703YEVR7I5SPOSdWqokldbMZ6aFGG10QceMxpSGzmhV3p75fdnvFqp2O39USgsDNNiEjdJzZJ3FVm_BUhhvw2qvGti2DetfuAV34BEFgHmiglhMTWKTnL1Mnt9O48jO0VEOZwz18uucIv4pm84tJWSCZ7MJI2laEEuwbOxZwf1J7zTPaBeGg_5D7zoqhyhETsRyFrl2gh5Hm3uVe-_Q39Mm99InPndaBiNV21ttgo8pPLWZ8CZ33DuaTCUkx9O7B8vjyTjsA8PQJzil3KWSuXQqsXEmqE5ohJeoGZImnFfApS8Lroy0ZkUmmFOEOS1gTt-bcFRhm5bnZpoKjHdMjEEib8JFhXf9-e_VDv73-yGscdryoi_lCJYR7nCM3sXMtmClM-h27-l59XTbb0Gjp3utQsQ-AFqex3I
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtCDUdSIou7Bg0YbaXe7XY-GSFCBExhuTffRkwEicJBf70xprRI9eGuyzR6-2dl57jcAl2iCjFNJ4gnfGE9oxVHnfOtJtI0u0FoGCeU7en3ZGYrnUTjKaXLoLcxa_f5u5vMooDZZ6pXgQnnLTdgSGClT-15LtsqzJKigpr7yK8RjIzMSZjShNGpGhvmbmd-3_WmXSmdzrT6amZ32Huzm_iJ7WAl4HzbcuAbVVjGmrQY73xgFD-AVxc4sEUCsZiWxScqmk7ePK9_TC3SP3TXD2_h9QXH-jM0WmtIwzrL5hNEZWtFJsGRsWcb4Sd80xegQhu3HQavj5aMTPMN9MfdMM0I_oxnYMLXWoJcnVWqFjWxqpHBKhE2rpXLWp6BUJ9yq1ATW0DwqLgLU2SOojCdjdwwMAx5nwtDchyIVJoy0n3CqDipuBd4HUR1uCuDi6YohIy65kAnmGGGOM5jjZR0aBbZxri2zmGOUo3wMDYM63BZ4l8t_73byv98voNoZ9Lpx96n_cgrbAYk_60xpQAWhd2foX8z1eXawPgG2scJX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsNADLVYJJYDYhVlnQMHEEQ0mclkOKJCVVZxoIhblFlyQmlF0wP9euwspCA4cIuUaKS8scf22H4GOEITZJxKEk_4xnhCK44651tPom10gdYySOi-4-FR9vri9jV8neriL6rd65Rk2dNALE1Zfj606XnT-MajgIpnqYKCC-VNZmEeI5UiUduRnUbCBKXZ1NetC7HbyIKaGQ0rDaCRYdVJ8_uy361V44L-yJoWxqi7CiuVF8kuy21fgxmXrcNipx7etg7LUzyDG_CCwsAs0UKUE5TYIGXDwdvHse_pMf62O2F4Rr-PKfofsdFY0-WMsywfMJKskmSCJZllBQ8oPdNso03od6-fOz2vGqjgGe6L3DPtCL2PdmDD1FqDvp9UqRU2sqmRwikRtq2WylmfQlWdcKtSE1hDU6q4CFCTt2AuG2RuGxiGQc6EobkIRSpMGGk_4ZQzVNwKPCWiFpzWwMXDkjcjbhiSCeYYYY4LmONJC_ZqbONKh0Yxx9hH-RgwBi04q_FuXv-92s7_Pj-Ehaerbnx_83i3C0sB7X5RrrIHc4i820enI9cHhVx9AodIyp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+degradation+of+poly%281-butene%29+extrudates+subjected+to+artificial+and+natural+aging&rft.jtitle=Iranian+polymer+journal&rft.au=Zenzingerova%2C+Sona&rft.au=Kudlacek%2C+Michal&rft.au=Benicek%2C+Lubomir&rft.au=Jaska%2C+David&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1026-1265&rft.eissn=1735-5265&rft.volume=33&rft.issue=12&rft.spage=1725&rft.epage=1735&rft_id=info:doi/10.1007%2Fs13726-024-01348-z&rft.externalDocID=10_1007_s13726_024_01348_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1026-1265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1026-1265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1026-1265&client=summon