Nonlinear dimensionality reduction with q-Gaussian distribution

In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and unifor...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 1
Main Authors Abe, Motoshi, Nomura, Yuichiro, Kurita, Takio
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP.
AbstractList In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP.
ArticleNumber 26
Author Nomura, Yuichiro
Abe, Motoshi
Kurita, Takio
Author_xml – sequence: 1
  givenname: Motoshi
  orcidid: 0000-0001-5796-5936
  surname: Abe
  fullname: Abe, Motoshi
  email: i13abemotoshi@gmail.com
  organization: Hiroshima University, Design & Technology Consulting Sectore, NTT DATA JAPAN Corporation
– sequence: 2
  givenname: Yuichiro
  surname: Nomura
  fullname: Nomura, Yuichiro
  organization: Hiroshima University, Graduate School of Integrated Science and Technology, Shizuoka University
– sequence: 3
  givenname: Takio
  surname: Kurita
  fullname: Kurita, Takio
  organization: Hiroshima University
BookMark eNp9UMFKAzEQDVLBtvoDnhY8RzOZpOmeRIpWoehFwVvIpllNabNtsov075u6ojcPM_OGee8xvBEZhCY4Qi6BXQNj6iblLgRlPBdwYBROyBAEIlVSvg9-sYAzMkppxRgi8umQ3D43Ye2DM7FY-o0LyTfBrH27L6JbdrbNa_Hl289iR-emS8mbkImpjb7qjsdzclqbdXIXP3NM3h7uX2ePdPEyf5rdLahFEC2tSnTMWuCVRMaVU6I01VTWUtVoK8tlhhNbGma5Q1CslhaFUkqoydRU5RLH5Kr33cZm17nU6lXTxfxq0rxEZEIC55nFe5aNTUrR1Xob_cbEvQamj0HpPiidg9LfQWnIIuxFKZPDh4t_1v-oDtlpbOs
Cites_doi 10.1007/978-3-540-33037-0_14
10.21105/joss.00861
10.3115/v1/D14-1162
10.1126/science.290.5500.2323
10.1007/s11222-022-10186-z
10.1109/CAHPC.2018.8645912
10.4249/scholarpedia.1883
10.1002/0470013192.bsa068
10.1017/S1351324916000334
10.1145/2872427.2883041
10.1109/NNSP.1999.788121
10.1007/BFb0020217
10.1126/science.290.5500.2319
10.1080/14786440109462720
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-024-01210-1
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_024_01210_1
GrantInformation_xml – fundername: Hiroshima University
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c314t-b93e0cc12b53027e749ab85f57f3cbc255f56c9a0c2e3170f5c347774768ab9d3
IEDL.DBID C6C
ISSN 1433-7541
IngestDate Mon Jul 14 10:46:11 EDT 2025
Tue Jul 01 01:15:18 EDT 2025
Fri Feb 21 02:40:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dimensionality reduction
t-SNE
q-Gaussian distribution
UMAP Hiroshima University
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-b93e0cc12b53027e749ab85f57f3cbc255f56c9a0c2e3170f5c347774768ab9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5796-5936
OpenAccessLink https://doi.org/10.1007/s10044-024-01210-1
PQID 2933045122
PQPubID 2043691
ParticipantIDs proquest_journals_2933045122
crossref_primary_10_1007_s10044_024_01210_1
springer_journals_10_1007_s10044_024_01210_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002905500232323262000Sci...290.2323R1:STN:280:DC%2BD3M%2Fnt1yiug%3D%3D10.1126/science.290.5500.232311125150
Thompson B (2005) Canonical correlation analysis. In: Encyclopedia of statistics in behavioral science
Van Der MaatenLAccelerating t-sne using tree-based algorithmsJ Mach Learn Res2014151322132453277169
Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural information processing systems, pp 857–864
Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588
PetersonLEK-nearest neighborScholarpedia20094218832009SchpJ...4.1883P10.4249/scholarpedia.1883
Abe M, Miyao J, Kurita T (2020) q-sne: visualizing data using q-gaussian distributed stochastic neighbor embedding. arXiv:2012.00999
MaatenLHintonGVisualizing data using t-sneJ Mach Learn Res2008925792605
Tang J, Liu J, Zhang M, Mei Q (2016) Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th international conference on world wide web, pp 287–297
TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience20002905500231923232000Sci...290.2319T1:STN:280:DC%2BD3M%2Fnt1yitQ%3D%3D10.1126/science.290.5500.231911125149
ChurchKWWord2vecNat Lang Eng201723115516210.1017/S1351324916000334
Van Der Maaten L (2013) Barnes-hut-sne. arXiv:1301.3342
PearsonKLiii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and DublinPhilos Mag J Sci190121155957210.1080/14786440109462720
Cox MA, Cox TF (2008) Multidimensional scaling. In: Handbook of data visualization. Springer, pp 315–347
Chan DM, Rao R, Huang F, Canny JF (2018) t-sne-cuda: Gpu-accelerated t-sne and its applications to modern data. In: 2018 30th International symposium on computer architecture and high performance computing (SBAC-PAD). IEEE, pp 330–338
TanakaMGeometry of entropy. Series on stochastic models in informatics and data science2019New YorkCorona Publishing Co.Ltd
McInnes L, Healy J, Melville J (2018) Umap: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426
Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468). IEEE, pp 41–48
van der Maaten L (2013) Barnes-hut-sne
Yang Z, Chen Y, Sedov D, Kaski S, Corander J (2023) Stochastic cluster embedding. Stat Comput 33(12)
LE Peterson (1210_CR11) 2009; 4
M Tanaka (1210_CR14) 2019
K Pearson (1210_CR9) 1901; 2
JB Tenenbaum (1210_CR16) 2000; 290
1210_CR10
1210_CR21
L Maaten (1210_CR6) 2008; 9
KW Church (1210_CR3) 2017; 23
1210_CR8
1210_CR7
1210_CR5
1210_CR13
1210_CR4
L Van Der Maaten (1210_CR20) 2014; 15
1210_CR15
1210_CR2
1210_CR1
1210_CR17
1210_CR18
1210_CR19
ST Roweis (1210_CR12) 2000; 290
References_xml – reference: Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural information processing systems, pp 857–864
– reference: Van Der Maaten L (2013) Barnes-hut-sne. arXiv:1301.3342
– reference: PearsonKLiii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and DublinPhilos Mag J Sci190121155957210.1080/14786440109462720
– reference: Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
– reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002905500232323262000Sci...290.2323R1:STN:280:DC%2BD3M%2Fnt1yiug%3D%3D10.1126/science.290.5500.232311125150
– reference: Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588
– reference: TanakaMGeometry of entropy. Series on stochastic models in informatics and data science2019New YorkCorona Publishing Co.Ltd
– reference: Cox MA, Cox TF (2008) Multidimensional scaling. In: Handbook of data visualization. Springer, pp 315–347
– reference: TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience20002905500231923232000Sci...290.2319T1:STN:280:DC%2BD3M%2Fnt1yitQ%3D%3D10.1126/science.290.5500.231911125149
– reference: PetersonLEK-nearest neighborScholarpedia20094218832009SchpJ...4.1883P10.4249/scholarpedia.1883
– reference: ChurchKWWord2vecNat Lang Eng201723115516210.1017/S1351324916000334
– reference: Van Der MaatenLAccelerating t-sne using tree-based algorithmsJ Mach Learn Res2014151322132453277169
– reference: van der Maaten L (2013) Barnes-hut-sne
– reference: Tang J, Liu J, Zhang M, Mei Q (2016) Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th international conference on world wide web, pp 287–297
– reference: McInnes L, Healy J, Melville J (2018) Umap: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426
– reference: Abe M, Miyao J, Kurita T (2020) q-sne: visualizing data using q-gaussian distributed stochastic neighbor embedding. arXiv:2012.00999
– reference: Thompson B (2005) Canonical correlation analysis. In: Encyclopedia of statistics in behavioral science
– reference: Chan DM, Rao R, Huang F, Canny JF (2018) t-sne-cuda: Gpu-accelerated t-sne and its applications to modern data. In: 2018 30th International symposium on computer architecture and high performance computing (SBAC-PAD). IEEE, pp 330–338
– reference: MaatenLHintonGVisualizing data using t-sneJ Mach Learn Res2008925792605
– reference: Yang Z, Chen Y, Sedov D, Kaski S, Corander J (2023) Stochastic cluster embedding. Stat Comput 33(12)
– reference: Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468). IEEE, pp 41–48
– ident: 1210_CR4
  doi: 10.1007/978-3-540-33037-0_14
– ident: 1210_CR7
  doi: 10.21105/joss.00861
– ident: 1210_CR10
  doi: 10.3115/v1/D14-1162
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 1210_CR12
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: 1210_CR19
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: 1210_CR20
  publication-title: J Mach Learn Res
– ident: 1210_CR21
  doi: 10.1007/s11222-022-10186-z
– ident: 1210_CR2
  doi: 10.1109/CAHPC.2018.8645912
– volume-title: Geometry of entropy. Series on stochastic models in informatics and data science
  year: 2019
  ident: 1210_CR14
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 1210_CR11
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– ident: 1210_CR17
  doi: 10.1002/0470013192.bsa068
– ident: 1210_CR1
– volume: 23
  start-page: 155
  issue: 1
  year: 2017
  ident: 1210_CR3
  publication-title: Nat Lang Eng
  doi: 10.1017/S1351324916000334
– ident: 1210_CR15
  doi: 10.1145/2872427.2883041
– volume: 9
  start-page: 2579
  year: 2008
  ident: 1210_CR6
  publication-title: J Mach Learn Res
– ident: 1210_CR8
  doi: 10.1109/NNSP.1999.788121
– ident: 1210_CR5
– ident: 1210_CR13
  doi: 10.1007/BFb0020217
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 1210_CR16
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 1210_CR9
  publication-title: Philos Mag J Sci
  doi: 10.1080/14786440109462720
– ident: 1210_CR18
SSID ssj0033328
Score 2.3534064
Snippet In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Approximation
Classification
Computer Science
Embedding
Manifolds (mathematics)
Mathematical analysis
Normal distribution
Pattern Recognition
Reduction
Statistical analysis
Theoretical Advances
Title Nonlinear dimensionality reduction with q-Gaussian distribution
URI https://link.springer.com/article/10.1007/s10044-024-01210-1
https://www.proquest.com/docview/2933045122
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmHhjSiUygMbWEpiO64nVFV9CEQnKpXJsl1nLNC0_59z4lBRwcCSwbE8fH7cdz7fdwB3zuMi6TNGbXgqzqVX1BQ2hNjz3BaWpbbKkHuZ5dM5f1qIRZTJCbkwe_H7kOKWcE7RktCgPpZQ9HTaImUylGkY5sPm1GWMVXVU0fwzKgVPY4LM72P8NEI7ZrkXDK1szPgEjiI5JIN6Nk_hwK_O4DgSRRK3YYlNTS2Gpu0cHme15oVZk2UQ7K_FNpBik3UQZw3wk3DnSj7pxGzLkDqJHcvvelcXMB-PXodTGosjUMdSvqFWMZ84l2Y21P2RXnJlbF8UQhbMWYeeQiFyp0ziMo8cISmEY1wi2UP_wli1ZJfQWr2v_BUQVfSVkcIKLxi3UpmlzIzMXY5ngbTOdeC-QUt_1BoYeqd2HLDViK2usNVpB7oNoDruh1Jn1b0JkousAw8NyLvff492_b_uN3CYVfMcHol1obVZb_0tsoaN7UF7MHl7HvWqZYPfeTb4Ai-CuRQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ0YPejFb2O16h68KcnuAstyMo2xVm17apPeCFD2WLXb_n8Hulg1evAKhMMbGB4M8wbg2jpcJCWlxPiv4kw4SXRlfIi9KExlaGZChtxgWPTG7HnCJ01SWB1_u8eQZPDUX5LdUsYIninE65ClBO88W0gGSr-Wx3kn-l9KaaioikSAEsFZ1qTK_D7H9-NozTF_hEXDadPdh92GJiadlV0PYMPNDmGvoYxJsyFrbIpVGWLbEdwNV-oXep5MvXT_SnYDyXYy9zKt3hCJf31N3smjXtY-iRIH1p-Vr45h3H0Y3fdIUyaBWJqxBTGSutTaLDe-ApBwgkltSl5xUVFrLN4ZKl5YqVObO2QLacUtZQJpH940tJFTegKbs9eZO4VEVqXUghvuOGVGSD0VuRaFLdArCGNtC24iWuptpYah1rrHHluF2KqArcpa0I6AqmZn1CoPLyhIM_IW3EaQ191_z3b2v-FXsN0bDfqq_zR8OYedPNjcfx1rw-ZivnQXyCUW5jIsnQ95B72u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECamJsaLb2O16h68KenuAks5GVOt9dV4sElvBCgc19rd_n8HdtdWowevQDjMAPMNM_MNQhfGwiHpEYK1TxWn3AqsnPYh9izTTpNEhwq5l1E2HNPHCZusVPGHbPcmJFnVNHiWprzszqauu1L4FlOKwb5gz0kWY_B_1sFTSbz71c_6zVtMCAndVQEUEMwZTeqymd_3-G6alnjzR4g0WJ7BDtqqIWN0U-l4F63ZfA9t1_Axqi9nAUNNh4ZmbB9djyomDDWPpp7Gv6LgAOAdzT1lq1dK5H9iow98rxaFL6iEhcVXF6wDNB7cvfWHuG6ZgA1JaIm1IDY2Jkm17wbELadC6R5zjDtitAH_wbHMCBWb1AJyiB0zhHKAgOB1KC2m5BC18vfcHqFIuJ5QnGlmGaGaCzXlqeKZyeCF4NqYNrpspCVnFTOGXHIge9lKkK0MspVJG3Uagcr6lhQyDb8pADnSNrpqhLyc_nu34_8tP0cbr7cD-fwwejpBm2lQuc8i66BWOV_YU4AVpT4LJ-cTvjDB1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+dimensionality+reduction+with+q-Gaussian+distribution&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Abe%2C+Motoshi&rft.au=Nomura%2C+Yuichiro&rft.au=Kurita%2C+Takio&rft.date=2024-03-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-024-01210-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_024_01210_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon