Nonlinear dimensionality reduction with q-Gaussian distribution
In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and unifor...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP. |
---|---|
AbstractList | In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP. |
ArticleNumber | 26 |
Author | Nomura, Yuichiro Abe, Motoshi Kurita, Takio |
Author_xml | – sequence: 1 givenname: Motoshi orcidid: 0000-0001-5796-5936 surname: Abe fullname: Abe, Motoshi email: i13abemotoshi@gmail.com organization: Hiroshima University, Design & Technology Consulting Sectore, NTT DATA JAPAN Corporation – sequence: 2 givenname: Yuichiro surname: Nomura fullname: Nomura, Yuichiro organization: Hiroshima University, Graduate School of Integrated Science and Technology, Shizuoka University – sequence: 3 givenname: Takio surname: Kurita fullname: Kurita, Takio organization: Hiroshima University |
BookMark | eNp9UMFKAzEQDVLBtvoDnhY8RzOZpOmeRIpWoehFwVvIpllNabNtsov075u6ojcPM_OGee8xvBEZhCY4Qi6BXQNj6iblLgRlPBdwYBROyBAEIlVSvg9-sYAzMkppxRgi8umQ3D43Ye2DM7FY-o0LyTfBrH27L6JbdrbNa_Hl289iR-emS8mbkImpjb7qjsdzclqbdXIXP3NM3h7uX2ePdPEyf5rdLahFEC2tSnTMWuCVRMaVU6I01VTWUtVoK8tlhhNbGma5Q1CslhaFUkqoydRU5RLH5Kr33cZm17nU6lXTxfxq0rxEZEIC55nFe5aNTUrR1Xob_cbEvQamj0HpPiidg9LfQWnIIuxFKZPDh4t_1v-oDtlpbOs |
Cites_doi | 10.1007/978-3-540-33037-0_14 10.21105/joss.00861 10.3115/v1/D14-1162 10.1126/science.290.5500.2323 10.1007/s11222-022-10186-z 10.1109/CAHPC.2018.8645912 10.4249/scholarpedia.1883 10.1002/0470013192.bsa068 10.1017/S1351324916000334 10.1145/2872427.2883041 10.1109/NNSP.1999.788121 10.1007/BFb0020217 10.1126/science.290.5500.2319 10.1080/14786440109462720 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-024-01210-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01210_1 |
GrantInformation_xml | – fundername: Hiroshima University |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c314t-b93e0cc12b53027e749ab85f57f3cbc255f56c9a0c2e3170f5c347774768ab9d3 |
IEDL.DBID | C6C |
ISSN | 1433-7541 |
IngestDate | Mon Jul 14 10:46:11 EDT 2025 Tue Jul 01 01:15:18 EDT 2025 Fri Feb 21 02:40:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dimensionality reduction t-SNE q-Gaussian distribution UMAP Hiroshima University |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-b93e0cc12b53027e749ab85f57f3cbc255f56c9a0c2e3170f5c347774768ab9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5796-5936 |
OpenAccessLink | https://doi.org/10.1007/s10044-024-01210-1 |
PQID | 2933045122 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_2933045122 crossref_primary_10_1007_s10044_024_01210_1 springer_journals_10_1007_s10044_024_01210_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002905500232323262000Sci...290.2323R1:STN:280:DC%2BD3M%2Fnt1yiug%3D%3D10.1126/science.290.5500.232311125150 Thompson B (2005) Canonical correlation analysis. In: Encyclopedia of statistics in behavioral science Van Der MaatenLAccelerating t-sne using tree-based algorithmsJ Mach Learn Res2014151322132453277169 Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural information processing systems, pp 857–864 Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588 PetersonLEK-nearest neighborScholarpedia20094218832009SchpJ...4.1883P10.4249/scholarpedia.1883 Abe M, Miyao J, Kurita T (2020) q-sne: visualizing data using q-gaussian distributed stochastic neighbor embedding. arXiv:2012.00999 MaatenLHintonGVisualizing data using t-sneJ Mach Learn Res2008925792605 Tang J, Liu J, Zhang M, Mei Q (2016) Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th international conference on world wide web, pp 287–297 TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience20002905500231923232000Sci...290.2319T1:STN:280:DC%2BD3M%2Fnt1yitQ%3D%3D10.1126/science.290.5500.231911125149 ChurchKWWord2vecNat Lang Eng201723115516210.1017/S1351324916000334 Van Der Maaten L (2013) Barnes-hut-sne. arXiv:1301.3342 PearsonKLiii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and DublinPhilos Mag J Sci190121155957210.1080/14786440109462720 Cox MA, Cox TF (2008) Multidimensional scaling. In: Handbook of data visualization. Springer, pp 315–347 Chan DM, Rao R, Huang F, Canny JF (2018) t-sne-cuda: Gpu-accelerated t-sne and its applications to modern data. In: 2018 30th International symposium on computer architecture and high performance computing (SBAC-PAD). IEEE, pp 330–338 TanakaMGeometry of entropy. Series on stochastic models in informatics and data science2019New YorkCorona Publishing Co.Ltd McInnes L, Healy J, Melville J (2018) Umap: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468). IEEE, pp 41–48 van der Maaten L (2013) Barnes-hut-sne Yang Z, Chen Y, Sedov D, Kaski S, Corander J (2023) Stochastic cluster embedding. Stat Comput 33(12) LE Peterson (1210_CR11) 2009; 4 M Tanaka (1210_CR14) 2019 K Pearson (1210_CR9) 1901; 2 JB Tenenbaum (1210_CR16) 2000; 290 1210_CR10 1210_CR21 L Maaten (1210_CR6) 2008; 9 KW Church (1210_CR3) 2017; 23 1210_CR8 1210_CR7 1210_CR5 1210_CR13 1210_CR4 L Van Der Maaten (1210_CR20) 2014; 15 1210_CR15 1210_CR2 1210_CR1 1210_CR17 1210_CR18 1210_CR19 ST Roweis (1210_CR12) 2000; 290 |
References_xml | – reference: Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural information processing systems, pp 857–864 – reference: Van Der Maaten L (2013) Barnes-hut-sne. arXiv:1301.3342 – reference: PearsonKLiii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and DublinPhilos Mag J Sci190121155957210.1080/14786440109462720 – reference: Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 – reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002905500232323262000Sci...290.2323R1:STN:280:DC%2BD3M%2Fnt1yiug%3D%3D10.1126/science.290.5500.232311125150 – reference: Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588 – reference: TanakaMGeometry of entropy. Series on stochastic models in informatics and data science2019New YorkCorona Publishing Co.Ltd – reference: Cox MA, Cox TF (2008) Multidimensional scaling. In: Handbook of data visualization. Springer, pp 315–347 – reference: TenenbaumJBDe SilvaVLangfordJCA global geometric framework for nonlinear dimensionality reductionScience20002905500231923232000Sci...290.2319T1:STN:280:DC%2BD3M%2Fnt1yitQ%3D%3D10.1126/science.290.5500.231911125149 – reference: PetersonLEK-nearest neighborScholarpedia20094218832009SchpJ...4.1883P10.4249/scholarpedia.1883 – reference: ChurchKWWord2vecNat Lang Eng201723115516210.1017/S1351324916000334 – reference: Van Der MaatenLAccelerating t-sne using tree-based algorithmsJ Mach Learn Res2014151322132453277169 – reference: van der Maaten L (2013) Barnes-hut-sne – reference: Tang J, Liu J, Zhang M, Mei Q (2016) Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th international conference on world wide web, pp 287–297 – reference: McInnes L, Healy J, Melville J (2018) Umap: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 – reference: Abe M, Miyao J, Kurita T (2020) q-sne: visualizing data using q-gaussian distributed stochastic neighbor embedding. arXiv:2012.00999 – reference: Thompson B (2005) Canonical correlation analysis. In: Encyclopedia of statistics in behavioral science – reference: Chan DM, Rao R, Huang F, Canny JF (2018) t-sne-cuda: Gpu-accelerated t-sne and its applications to modern data. In: 2018 30th International symposium on computer architecture and high performance computing (SBAC-PAD). IEEE, pp 330–338 – reference: MaatenLHintonGVisualizing data using t-sneJ Mach Learn Res2008925792605 – reference: Yang Z, Chen Y, Sedov D, Kaski S, Corander J (2023) Stochastic cluster embedding. Stat Comput 33(12) – reference: Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468). IEEE, pp 41–48 – ident: 1210_CR4 doi: 10.1007/978-3-540-33037-0_14 – ident: 1210_CR7 doi: 10.21105/joss.00861 – ident: 1210_CR10 doi: 10.3115/v1/D14-1162 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 1210_CR12 publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 1210_CR19 – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: 1210_CR20 publication-title: J Mach Learn Res – ident: 1210_CR21 doi: 10.1007/s11222-022-10186-z – ident: 1210_CR2 doi: 10.1109/CAHPC.2018.8645912 – volume-title: Geometry of entropy. Series on stochastic models in informatics and data science year: 2019 ident: 1210_CR14 – volume: 4 start-page: 1883 issue: 2 year: 2009 ident: 1210_CR11 publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – ident: 1210_CR17 doi: 10.1002/0470013192.bsa068 – ident: 1210_CR1 – volume: 23 start-page: 155 issue: 1 year: 2017 ident: 1210_CR3 publication-title: Nat Lang Eng doi: 10.1017/S1351324916000334 – ident: 1210_CR15 doi: 10.1145/2872427.2883041 – volume: 9 start-page: 2579 year: 2008 ident: 1210_CR6 publication-title: J Mach Learn Res – ident: 1210_CR8 doi: 10.1109/NNSP.1999.788121 – ident: 1210_CR5 – ident: 1210_CR13 doi: 10.1007/BFb0020217 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 1210_CR16 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 1210_CR9 publication-title: Philos Mag J Sci doi: 10.1080/14786440109462720 – ident: 1210_CR18 |
SSID | ssj0033328 |
Score | 2.3534064 |
Snippet | In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Approximation Classification Computer Science Embedding Manifolds (mathematics) Mathematical analysis Normal distribution Pattern Recognition Reduction Statistical analysis Theoretical Advances |
Title | Nonlinear dimensionality reduction with q-Gaussian distribution |
URI | https://link.springer.com/article/10.1007/s10044-024-01210-1 https://www.proquest.com/docview/2933045122 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmHhjSiUygMbWEpiO64nVFV9CEQnKpXJsl1nLNC0_59z4lBRwcCSwbE8fH7cdz7fdwB3zuMi6TNGbXgqzqVX1BQ2hNjz3BaWpbbKkHuZ5dM5f1qIRZTJCbkwe_H7kOKWcE7RktCgPpZQ9HTaImUylGkY5sPm1GWMVXVU0fwzKgVPY4LM72P8NEI7ZrkXDK1szPgEjiI5JIN6Nk_hwK_O4DgSRRK3YYlNTS2Gpu0cHme15oVZk2UQ7K_FNpBik3UQZw3wk3DnSj7pxGzLkDqJHcvvelcXMB-PXodTGosjUMdSvqFWMZ84l2Y21P2RXnJlbF8UQhbMWYeeQiFyp0ziMo8cISmEY1wi2UP_wli1ZJfQWr2v_BUQVfSVkcIKLxi3UpmlzIzMXY5ngbTOdeC-QUt_1BoYeqd2HLDViK2usNVpB7oNoDruh1Jn1b0JkousAw8NyLvff492_b_uN3CYVfMcHol1obVZb_0tsoaN7UF7MHl7HvWqZYPfeTb4Ai-CuRQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ0YPejFb2O16h68KcnuAstyMo2xVm17apPeCFD2WLXb_n8Hulg1evAKhMMbGB4M8wbg2jpcJCWlxPiv4kw4SXRlfIi9KExlaGZChtxgWPTG7HnCJ01SWB1_u8eQZPDUX5LdUsYIninE65ClBO88W0gGSr-Wx3kn-l9KaaioikSAEsFZ1qTK_D7H9-NozTF_hEXDadPdh92GJiadlV0PYMPNDmGvoYxJsyFrbIpVGWLbEdwNV-oXep5MvXT_SnYDyXYy9zKt3hCJf31N3smjXtY-iRIH1p-Vr45h3H0Y3fdIUyaBWJqxBTGSutTaLDe-ApBwgkltSl5xUVFrLN4ZKl5YqVObO2QLacUtZQJpH940tJFTegKbs9eZO4VEVqXUghvuOGVGSD0VuRaFLdArCGNtC24iWuptpYah1rrHHluF2KqArcpa0I6AqmZn1CoPLyhIM_IW3EaQ191_z3b2v-FXsN0bDfqq_zR8OYedPNjcfx1rw-ZivnQXyCUW5jIsnQ95B72u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECamJsaLb2O16h68KenuAks5GVOt9dV4sElvBCgc19rd_n8HdtdWowevQDjMAPMNM_MNQhfGwiHpEYK1TxWn3AqsnPYh9izTTpNEhwq5l1E2HNPHCZusVPGHbPcmJFnVNHiWprzszqauu1L4FlOKwb5gz0kWY_B_1sFTSbz71c_6zVtMCAndVQEUEMwZTeqymd_3-G6alnjzR4g0WJ7BDtqqIWN0U-l4F63ZfA9t1_Axqi9nAUNNh4ZmbB9djyomDDWPpp7Gv6LgAOAdzT1lq1dK5H9iow98rxaFL6iEhcVXF6wDNB7cvfWHuG6ZgA1JaIm1IDY2Jkm17wbELadC6R5zjDtitAH_wbHMCBWb1AJyiB0zhHKAgOB1KC2m5BC18vfcHqFIuJ5QnGlmGaGaCzXlqeKZyeCF4NqYNrpspCVnFTOGXHIge9lKkK0MspVJG3Uagcr6lhQyDb8pADnSNrpqhLyc_nu34_8tP0cbr7cD-fwwejpBm2lQuc8i66BWOV_YU4AVpT4LJ-cTvjDB1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+dimensionality+reduction+with+q-Gaussian+distribution&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Abe%2C+Motoshi&rft.au=Nomura%2C+Yuichiro&rft.au=Kurita%2C+Takio&rft.date=2024-03-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1007%2Fs10044-024-01210-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_024_01210_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |