Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model
Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling J_K J K at fixed doping x. At large positive J_K J K , we c...
Saved in:
Published in | SciPost physics Vol. 17; no. 2; p. 034 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
SciPost
01.08.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling
J_K
J
K
at fixed doping x. At large positive
J_K
J
K
, we confirm the expected conventional Luttinger liquid phase with
2k_F=\frac{1+x}{2}
2
k
F
=
1
+
x
2
(in units of
2\pi
2
π
), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the
J_K ≤ 0
J
K
≤
0
side, our simulation finds the existence of a fractional Luttinger liquid (LL
\star
⋆
) phase with
2k_F=\frac{x}{2}
2
k
F
=
x
2
, accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL
\star
⋆
) phase in higher dimensions. The LL
\star
⋆
phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive
J_K
J
K
. Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of
J_K
J
K
, the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around
0.035 J
0.035
J
) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent
z=+
z
=
+
. The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference. |
---|---|
AbstractList | Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling $J_K$ at fixed doping x. At large positive $J_K$, we confirm the expected conventional Luttinger liquid phase with $2k_F=\frac{1+x}{2}$ (in units of $2\pi$), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the $J_K ≤ 0$ side, our simulation finds the existence of a fractional Luttinger liquid (LL$\star$) phase with $2k_F=\frac{x}{2}$, accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL$\star$) phase in higher dimensions. The LL$\star$ phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive $J_K$. Then we mainly focus on the "critical regime" between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of $J_K$, the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around $0.035 J$) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent $z=+$. The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference. Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling J_K J K at fixed doping x. At large positive J_K J K , we confirm the expected conventional Luttinger liquid phase with 2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of 2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the J_K ≤ 0 J K ≤ 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL \star ⋆ ) phase with 2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL \star ⋆ ) phase in higher dimensions. The LL \star ⋆ phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive J_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of J_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around 0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent z=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference. |
ArticleNumber | 034 |
Author | Zhang, Ya-Hui Nikolaenko, Alexander |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-1232-5633 surname: Nikolaenko fullname: Nikolaenko, Alexander – sequence: 2 givenname: Ya-Hui surname: Zhang fullname: Zhang, Ya-Hui |
BookMark | eNpNkMtqwzAQRUVJoWmaTyjoB5xKsmTZyxL6CA1toFl0J8bSOFVwrCI5i_x9naSUrGaYezkM55aMutAhIfeczQSXRfnwaf0qpH71fUgzrmdixnJ5RcZCSZHJQuWji_2GTFPaMsYE5xUv1Jh8ve93GL2Flia_6aDfR0w0NHTf9hGyNhwTG31_rPj-QH1HgQ4vUOd32CUfuqHwFjoXaAv9UEO6Cw7bO3LdQJtw-jcnZP38tJ6_ZsuPl8X8cZnZnMs-q5VqEFnDi0YVtUPXKCiF4qy0CrVjXFrhFNSAWmEFrCy1tHoIRK4rlecTsjhjXYCt-Yl-B_FgAnhzOoS4MRCHr1o0NdQsZ64ZRAipdFXZklVWWmAaEIUYWOrMsjGkFLH553FmTrLNhWzDtRFmkJ3_AvwMeMA |
Cites_doi | 10.1126/science.abh4273 10.1103/PhysRevLett.79.929 10.1103/RevModPhys.78.17 10.1103/RevModPhys.75.913 10.1126/science.1191195 10.1103/PhysRevResearch.2.023172 10.1103/PhysRevLett.105.146403 10.1103/PhysRevB.14.1165 10.21468/SciPostPhysLectNotes.5 10.1038/35030039 10.1103/PhysRevB.85.035104 10.1103/PhysRevLett.63.1996 10.1038/35101507 10.1088/0953-8984/13/35/202 10.1038/nphys892 10.1073/pnas.1721495115 10.1103/PhysRevResearch.6.023227 10.1038/s41586-020-03058-x 10.1103/PhysRevB.48.7183 10.1103/RevModPhys.92.011002 10.1103/PhysRevB.102.155124 10.1103/PhysRevLett.69.2863 10.1103/PhysRevLett.113.256405 10.1103/PhysRevB.69.035111 10.1016/j.physb.2004.12.041 10.1103/PhysRevB.106.045103 10.1103/PhysRevB.103.115101 10.1073/pnas.1719374115 10.1103/PhysRevLett.98.026402 10.1038/nature03279 10.1038/nphys1299 10.1103/PhysRevLett.85.626 10.1007/JHEP04(2012)086 10.1103/PhysRevLett.79.1110 10.1126/sciadv.abf9134 10.1103/RevModPhys.73.797 10.1103/PhysRevLett.127.086601 10.1103/RevModPhys.79.1015 10.1103/PhysRevLett.90.216403 10.1146/annurev-conmatphys-031218-013210 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhys.17.2.034 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_bab030df465245799c809c4ca07aee22 10_21468_SciPostPhys_17_2_034 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c314t-b55fee0f16f56bdedf5a825108c5e7d014c2d5abae75e9a08874c77d02379533 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Wed Aug 27 01:01:10 EDT 2025 Tue Jul 01 03:22:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-b55fee0f16f56bdedf5a825108c5e7d014c2d5abae75e9a08874c77d02379533 |
ORCID | 0000-0002-1232-5633 |
OpenAccessLink | https://doaj.org/article/bab030df465245799c809c4ca07aee22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bab030df465245799c809c4ca07aee22 crossref_primary_10_21468_SciPostPhys_17_2_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics |
PublicationYear | 2024 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1126/science.abh4273 – ident: ref25 doi: 10.1103/PhysRevLett.79.929 – ident: ref9 doi: 10.1103/RevModPhys.78.17 – ident: ref10 doi: 10.1103/RevModPhys.75.913 – ident: ref3 doi: 10.1126/science.1191195 – ident: ref22 doi: 10.1103/PhysRevResearch.2.023172 – ident: ref26 doi: 10.1103/PhysRevLett.105.146403 – ident: ref13 doi: 10.1103/PhysRevB.14.1165 – ident: ref38 doi: 10.21468/SciPostPhysLectNotes.5 – ident: ref17 doi: 10.1038/35030039 – ident: ref31 doi: 10.1103/PhysRevB.85.035104 – ident: ref34 doi: 10.1103/PhysRevLett.63.1996 – ident: ref18 doi: 10.1038/35101507 – ident: ref1 doi: 10.1088/0953-8984/13/35/202 – ident: ref2 doi: 10.1038/nphys892 – ident: ref39 doi: 10.1073/pnas.1721495115 – ident: ref28 doi: 10.1103/PhysRevResearch.6.023227 – ident: ref40 doi: 10.1038/s41586-020-03058-x – ident: ref14 doi: 10.1103/PhysRevB.48.7183 – ident: ref8 doi: 10.1103/RevModPhys.92.011002 – ident: ref23 doi: 10.1103/PhysRevB.102.155124 – ident: ref24 doi: 10.1103/PhysRevLett.69.2863 – ident: ref32 doi: 10.1103/PhysRevLett.113.256405 – ident: ref19 doi: 10.1103/PhysRevB.69.035111 – ident: ref7 doi: 10.1016/j.physb.2004.12.041 – ident: ref29 doi: 10.1103/PhysRevB.106.045103 – ident: ref30 doi: 10.1103/PhysRevB.103.115101 – ident: ref27 doi: 10.1073/pnas.1719374115 – ident: ref21 doi: 10.1103/PhysRevLett.98.026402 – ident: ref5 doi: 10.1038/nature03279 – ident: ref15 doi: 10.1038/nphys1299 – ident: ref16 doi: 10.1103/PhysRevLett.85.626 – ident: ref36 doi: 10.1007/JHEP04(2012)086 – ident: ref37 doi: 10.1103/PhysRevLett.79.1110 – ident: ref35 doi: 10.1126/sciadv.abf9134 – ident: ref4 doi: 10.1103/RevModPhys.73.797 – ident: ref33 doi: 10.1103/PhysRevLett.127.086601 – ident: ref6 doi: 10.1103/RevModPhys.79.1015 – ident: ref20 doi: 10.1103/PhysRevLett.90.216403 – ident: ref12 doi: 10.1146/annurev-conmatphys-031218-013210 |
SSID | ssj0002119165 |
Score | 2.2709413 |
Snippet | Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 034 |
Title | Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model |
URI | https://doaj.org/article/bab030df465245799c809c4ca07aee22 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvDabprm0R5VXBbFPa2wtzBNExCWXdnt_n8zSZV68uK1LWmZSeZBv_k-Qu6BqbqtBGS-8qFBceGkV6WCrGQVaG8RNYTDyW8zNX0XLwu5GEh9ISYs0QMnw40baMI-bL1Qkgup69pWrLbCAtPgHI_RN-S8QTOFMTjylimZRnZQu7oah7OC-rcIrMwLnfOcleJXMhpw9sfkMjkmR31VSB_S15yQPbc6JQcRnWm3Z2Qx26UfK0uKeIvIxbmla093y24DWcxH1PaiBaGsph8rCnS9crRF8v5EvEFfUbmDLqFDvBuNEjjnZD55nj9Ns14SIbNlIbqskdI7x3yhvFRN61ovAYdPWWWl023odyxvJTTgtHQ1YAgRVocbvNQIJL0g-6vw9ktCUXZHlB6aUjIB2gJvhXA111yFDs-pEcm_TWM-E_GFCQ1DtKUZ2NIU2nATbDkij2jAn4eRtzpeCN40vTfNX968-o9FrskhD6VHgundkP1us3O3oXTomru4S74AembDUw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+signatures+of+ultra-local+criticality+in+a+one+dimensional+Kondo+lattice+model&rft.jtitle=SciPost+physics&rft.au=Alexander+Nikolaenko%2C+Ya-Hui+Zhang&rft.date=2024-08-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=17&rft.issue=2&rft.spage=034&rft_id=info:doi/10.21468%2FSciPostPhys.17.2.034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bab030df465245799c809c4ca07aee22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |