Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model

Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling J_K J K at fixed doping x. At large positive J_K J K , we c...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 17; no. 2; p. 034
Main Authors Nikolaenko, Alexander, Zhang, Ya-Hui
Format Journal Article
LanguageEnglish
Published SciPost 01.08.2024
Online AccessGet full text

Cover

Loading…
Abstract Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling J_K J K at fixed doping x. At large positive J_K J K , we confirm the expected conventional Luttinger liquid phase with 2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of 2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the J_K ≤ 0 J K ≤ 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL \star ⋆ ) phase with 2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL \star ⋆ ) phase in higher dimensions. The LL \star ⋆ phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive J_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of J_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around 0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent z=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference.
AbstractList Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling $J_K$ at fixed doping x. At large positive $J_K$, we confirm the expected conventional Luttinger liquid phase with $2k_F=\frac{1+x}{2}$ (in units of $2\pi$), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the $J_K ≤ 0$ side, our simulation finds the existence of a fractional Luttinger liquid (LL$\star$) phase with $2k_F=\frac{x}{2}$, accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL$\star$) phase in higher dimensions. The LL$\star$ phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive $J_K$. Then we mainly focus on the "critical regime" between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of $J_K$, the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around $0.035 J$) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent $z=+$. The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference.
Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling J_K J K at fixed doping x. At large positive J_K J K , we confirm the expected conventional Luttinger liquid phase with 2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of 2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the J_K ≤ 0 J K ≤ 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL \star ⋆ ) phase with 2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL \star ⋆ ) phase in higher dimensions. The LL \star ⋆ phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive J_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of J_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around 0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent z=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference.
ArticleNumber 034
Author Zhang, Ya-Hui
Nikolaenko, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-1232-5633
  surname: Nikolaenko
  fullname: Nikolaenko, Alexander
– sequence: 2
  givenname: Ya-Hui
  surname: Zhang
  fullname: Zhang, Ya-Hui
BookMark eNpNkMtqwzAQRUVJoWmaTyjoB5xKsmTZyxL6CA1toFl0J8bSOFVwrCI5i_x9naSUrGaYezkM55aMutAhIfeczQSXRfnwaf0qpH71fUgzrmdixnJ5RcZCSZHJQuWji_2GTFPaMsYE5xUv1Jh8ve93GL2Flia_6aDfR0w0NHTf9hGyNhwTG31_rPj-QH1HgQ4vUOd32CUfuqHwFjoXaAv9UEO6Cw7bO3LdQJtw-jcnZP38tJ6_ZsuPl8X8cZnZnMs-q5VqEFnDi0YVtUPXKCiF4qy0CrVjXFrhFNSAWmEFrCy1tHoIRK4rlecTsjhjXYCt-Yl-B_FgAnhzOoS4MRCHr1o0NdQsZ64ZRAipdFXZklVWWmAaEIUYWOrMsjGkFLH553FmTrLNhWzDtRFmkJ3_AvwMeMA
Cites_doi 10.1126/science.abh4273
10.1103/PhysRevLett.79.929
10.1103/RevModPhys.78.17
10.1103/RevModPhys.75.913
10.1126/science.1191195
10.1103/PhysRevResearch.2.023172
10.1103/PhysRevLett.105.146403
10.1103/PhysRevB.14.1165
10.21468/SciPostPhysLectNotes.5
10.1038/35030039
10.1103/PhysRevB.85.035104
10.1103/PhysRevLett.63.1996
10.1038/35101507
10.1088/0953-8984/13/35/202
10.1038/nphys892
10.1073/pnas.1721495115
10.1103/PhysRevResearch.6.023227
10.1038/s41586-020-03058-x
10.1103/PhysRevB.48.7183
10.1103/RevModPhys.92.011002
10.1103/PhysRevB.102.155124
10.1103/PhysRevLett.69.2863
10.1103/PhysRevLett.113.256405
10.1103/PhysRevB.69.035111
10.1016/j.physb.2004.12.041
10.1103/PhysRevB.106.045103
10.1103/PhysRevB.103.115101
10.1073/pnas.1719374115
10.1103/PhysRevLett.98.026402
10.1038/nature03279
10.1038/nphys1299
10.1103/PhysRevLett.85.626
10.1007/JHEP04(2012)086
10.1103/PhysRevLett.79.1110
10.1126/sciadv.abf9134
10.1103/RevModPhys.73.797
10.1103/PhysRevLett.127.086601
10.1103/RevModPhys.79.1015
10.1103/PhysRevLett.90.216403
10.1146/annurev-conmatphys-031218-013210
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.17.2.034
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_bab030df465245799c809c4ca07aee22
10_21468_SciPostPhys_17_2_034
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c314t-b55fee0f16f56bdedf5a825108c5e7d014c2d5abae75e9a08874c77d02379533
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Wed Aug 27 01:01:10 EDT 2025
Tue Jul 01 03:22:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-b55fee0f16f56bdedf5a825108c5e7d014c2d5abae75e9a08874c77d02379533
ORCID 0000-0002-1232-5633
OpenAccessLink https://doaj.org/article/bab030df465245799c809c4ca07aee22
ParticipantIDs doaj_primary_oai_doaj_org_article_bab030df465245799c809c4ca07aee22
crossref_primary_10_21468_SciPostPhys_17_2_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2024
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.1126/science.abh4273
– ident: ref25
  doi: 10.1103/PhysRevLett.79.929
– ident: ref9
  doi: 10.1103/RevModPhys.78.17
– ident: ref10
  doi: 10.1103/RevModPhys.75.913
– ident: ref3
  doi: 10.1126/science.1191195
– ident: ref22
  doi: 10.1103/PhysRevResearch.2.023172
– ident: ref26
  doi: 10.1103/PhysRevLett.105.146403
– ident: ref13
  doi: 10.1103/PhysRevB.14.1165
– ident: ref38
  doi: 10.21468/SciPostPhysLectNotes.5
– ident: ref17
  doi: 10.1038/35030039
– ident: ref31
  doi: 10.1103/PhysRevB.85.035104
– ident: ref34
  doi: 10.1103/PhysRevLett.63.1996
– ident: ref18
  doi: 10.1038/35101507
– ident: ref1
  doi: 10.1088/0953-8984/13/35/202
– ident: ref2
  doi: 10.1038/nphys892
– ident: ref39
  doi: 10.1073/pnas.1721495115
– ident: ref28
  doi: 10.1103/PhysRevResearch.6.023227
– ident: ref40
  doi: 10.1038/s41586-020-03058-x
– ident: ref14
  doi: 10.1103/PhysRevB.48.7183
– ident: ref8
  doi: 10.1103/RevModPhys.92.011002
– ident: ref23
  doi: 10.1103/PhysRevB.102.155124
– ident: ref24
  doi: 10.1103/PhysRevLett.69.2863
– ident: ref32
  doi: 10.1103/PhysRevLett.113.256405
– ident: ref19
  doi: 10.1103/PhysRevB.69.035111
– ident: ref7
  doi: 10.1016/j.physb.2004.12.041
– ident: ref29
  doi: 10.1103/PhysRevB.106.045103
– ident: ref30
  doi: 10.1103/PhysRevB.103.115101
– ident: ref27
  doi: 10.1073/pnas.1719374115
– ident: ref21
  doi: 10.1103/PhysRevLett.98.026402
– ident: ref5
  doi: 10.1038/nature03279
– ident: ref15
  doi: 10.1038/nphys1299
– ident: ref16
  doi: 10.1103/PhysRevLett.85.626
– ident: ref36
  doi: 10.1007/JHEP04(2012)086
– ident: ref37
  doi: 10.1103/PhysRevLett.79.1110
– ident: ref35
  doi: 10.1126/sciadv.abf9134
– ident: ref4
  doi: 10.1103/RevModPhys.73.797
– ident: ref33
  doi: 10.1103/PhysRevLett.127.086601
– ident: ref6
  doi: 10.1103/RevModPhys.79.1015
– ident: ref20
  doi: 10.1103/PhysRevLett.90.216403
– ident: ref12
  doi: 10.1146/annurev-conmatphys-031218-013210
SSID ssj0002119165
Score 2.2709413
Snippet Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 034
Title Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model
URI https://doaj.org/article/bab030df465245799c809c4ca07aee22
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvDabprm0R5VXBbFPa2wtzBNExCWXdnt_n8zSZV68uK1LWmZSeZBv_k-Qu6BqbqtBGS-8qFBceGkV6WCrGQVaG8RNYTDyW8zNX0XLwu5GEh9ISYs0QMnw40baMI-bL1Qkgup69pWrLbCAtPgHI_RN-S8QTOFMTjylimZRnZQu7oah7OC-rcIrMwLnfOcleJXMhpw9sfkMjkmR31VSB_S15yQPbc6JQcRnWm3Z2Qx26UfK0uKeIvIxbmla093y24DWcxH1PaiBaGsph8rCnS9crRF8v5EvEFfUbmDLqFDvBuNEjjnZD55nj9Ns14SIbNlIbqskdI7x3yhvFRN61ovAYdPWWWl023odyxvJTTgtHQ1YAgRVocbvNQIJL0g-6vw9ktCUXZHlB6aUjIB2gJvhXA111yFDs-pEcm_TWM-E_GFCQ1DtKUZ2NIU2nATbDkij2jAn4eRtzpeCN40vTfNX968-o9FrskhD6VHgundkP1us3O3oXTomru4S74AembDUw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+signatures+of+ultra-local+criticality+in+a+one+dimensional+Kondo+lattice+model&rft.jtitle=SciPost+physics&rft.au=Alexander+Nikolaenko%2C+Ya-Hui+Zhang&rft.date=2024-08-01&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=17&rft.issue=2&rft.spage=034&rft_id=info:doi/10.21468%2FSciPostPhys.17.2.034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bab030df465245799c809c4ca07aee22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon