Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis
In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO 3 nanorods (NRs)-coupled TiO 2 nanobelts (TNBs) ternary nano-a...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 45; pp. 23681 - 23693 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO
3
nanorods (NRs)-coupled TiO
2
nanobelts (TNBs) ternary nano-architecture (TNBs/WO
3
NRs/GR), as a conceptual platform, has been progressively designed
via
a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO
3
NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO
3
NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO
3
NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron-hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO
3
NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated.
A progressive layer-by-layer self-assembly strategy has been developed to construct a graphene-wrapped and WO
3
nanorods-coupled TiO
2
nanobelts photocatalyst, in which a highly efficient cascade electron transfer pathway was judiciously built. |
---|---|
AbstractList | In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO
3
nanorods (NRs)-coupled TiO
2
nanobelts (TNBs) ternary nano-architecture (TNBs/WO
3
NRs/GR), as a conceptual platform, has been progressively designed
via
a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO
3
NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO
3
NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO
3
NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron-hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO
3
NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated.
A progressive layer-by-layer self-assembly strategy has been developed to construct a graphene-wrapped and WO
3
nanorods-coupled TiO
2
nanobelts photocatalyst, in which a highly efficient cascade electron transfer pathway was judiciously built. In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO 3 nanorods (NRs)–coupled TiO 2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO 3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO 3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO 3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO 3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO 3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated. In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO3 nanorods (NRs)–coupled TiO2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated. In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO₃ nanorods (NRs)–coupled TiO₂ nanobelts (TNBs) ternary nano-architecture (TNBs/WO₃ NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO₃ NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO₃ NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO₃ NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO₃ NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated. |
Author | Xiao, Fang-Xing Zhang, Junyu |
AuthorAffiliation | Fuzhou University College of Materials Science and Engineering |
AuthorAffiliation_xml | – sequence: 0 name: College of Materials Science and Engineering – sequence: 0 name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Junyu surname: Zhang fullname: Zhang, Junyu – sequence: 2 givenname: Fang-Xing surname: Xiao fullname: Xiao, Fang-Xing |
BookMark | eNptkU9rHSEUxYeSQNM0m-wLQjclMK2O80eX4dGmhZRukvXg6PU9g0-nXodkvkk_bk1eSCHUjVf4nXO997yrjkIMUFXnjH5mlMsvesiKipZ1-k110tCO1kMr-6OXWoi31RniHS1HUNpLeVL9-RnN4lV2MZBoiQsZklXaKU_0TqUtkJxUQAuJTCtB8LZWiLCf_PrIowtbD7VXawG2Sc07CEAg3JdyBkPKB2vj9hCwNCieRel0DGbROSYkOd6rZMi8i-UJJj4QrbLyKzp8Xx1b5RHOnu_T6vbb15vN9_r619WPzeV1rTlrcz1x4B2IwQpttNR66kC2Skrgmk-2NT2nk2XCMOgk9LTn1g6m6btWGKOkaPhp9engO6f4ewHM496hBu9VgLjg2DQDE7wfaFvQj6_Qu7ikMlahKKOSdkKwQl0cKJ0iYgI7zsntVVpHRsfHnMbNcHP5lNOmwPQVrF1-SqOs3fn_Sz4cJAn1i_W_6PlfzSeleg |
CitedBy_id | crossref_primary_10_1016_j_jcat_2018_09_003 crossref_primary_10_1007_s11814_024_00267_2 crossref_primary_10_1039_C7RA13222K crossref_primary_10_1016_j_ijhydene_2024_02_108 crossref_primary_10_1016_j_jobab_2020_03_001 crossref_primary_10_1021_acs_langmuir_2c02155 crossref_primary_10_1021_acsomega_7b01806 crossref_primary_10_1021_acs_jpcc_8b02895 crossref_primary_10_1016_j_matchemphys_2018_04_089 crossref_primary_10_1039_D0NJ06089E crossref_primary_10_1038_s41598_020_62638_z crossref_primary_10_1039_C8TA08841A crossref_primary_10_1002_cssc_202201584 crossref_primary_10_1021_acsami_0c19619 crossref_primary_10_1016_j_apsusc_2018_01_054 crossref_primary_10_1016_j_matlet_2018_10_077 crossref_primary_10_1016_j_ceramint_2018_11_222 crossref_primary_10_1016_j_solidstatesciences_2019_106067 crossref_primary_10_1021_acs_inorgchem_9b03538 crossref_primary_10_1016_j_cattod_2018_01_005 crossref_primary_10_1016_j_ijhydene_2019_05_120 crossref_primary_10_1016_j_jenvman_2019_06_041 crossref_primary_10_1039_C9NR00887J crossref_primary_10_1039_C9NR00229D crossref_primary_10_1016_j_matchemphys_2021_124739 crossref_primary_10_1016_j_ijhydene_2020_10_194 crossref_primary_10_1039_D2TA00572G crossref_primary_10_1088_2515_7655_ab0718 crossref_primary_10_1039_C8CY02283F crossref_primary_10_1039_C9TA01144G crossref_primary_10_1016_j_surfin_2024_105034 crossref_primary_10_1039_C9TA07569K crossref_primary_10_1038_s41598_019_52751_z crossref_primary_10_1016_j_apsusc_2018_02_139 crossref_primary_10_1039_C9NR01260E crossref_primary_10_1039_D2TA03720C crossref_primary_10_1039_C8NR03557A crossref_primary_10_1039_C8TA04052D crossref_primary_10_1002_gch2_202000025 crossref_primary_10_1039_C9NJ02593F crossref_primary_10_3390_molecules25153327 crossref_primary_10_1016_j_jcis_2018_06_055 crossref_primary_10_1038_s41598_018_26447_9 crossref_primary_10_1016_j_pmatsci_2023_101169 crossref_primary_10_1039_C8TA10379H crossref_primary_10_1016_j_apsusc_2018_11_168 crossref_primary_10_1039_C9QM00066F crossref_primary_10_1007_s10563_018_9259_0 crossref_primary_10_1016_j_jphotochem_2020_112534 crossref_primary_10_1039_C9NR02304F crossref_primary_10_1039_C8NR06788K crossref_primary_10_2139_ssrn_4128541 crossref_primary_10_1016_j_jphotochem_2020_112575 crossref_primary_10_1021_acs_inorgchem_0c00229 crossref_primary_10_3389_fchem_2018_00393 crossref_primary_10_1021_acs_inorgchem_0c00666 crossref_primary_10_1155_2019_6042026 crossref_primary_10_1016_j_jphotochem_2019_04_026 crossref_primary_10_1021_acs_inorgchem_9b03073 crossref_primary_10_1016_j_saa_2024_124921 crossref_primary_10_1021_acsami_9b14543 crossref_primary_10_1039_D1NJ04656J crossref_primary_10_1038_s41598_020_59491_5 crossref_primary_10_1016_j_ccr_2018_12_013 crossref_primary_10_1021_acs_energyfuels_4c05452 crossref_primary_10_1002_admi_201701098 crossref_primary_10_1007_s10853_019_03780_6 crossref_primary_10_1021_acs_jpcc_9b01403 crossref_primary_10_1007_s12598_019_01255_w crossref_primary_10_1039_C7TA09119B crossref_primary_10_1016_j_chemosphere_2023_139077 crossref_primary_10_1038_s41598_020_78542_5 crossref_primary_10_1039_D2CY02089K crossref_primary_10_1016_j_carbon_2019_06_074 |
Cites_doi | 10.1007/s11244-005-3825-1 10.1002/chem.201100166 10.1021/la4048566 10.1039/C4NR03115F 10.1039/C4NJ01346H 10.1039/c2cc16031e 10.1039/c2cp41318c 10.1039/C4CS00180J 10.1021/ja201813n 10.1002/adma.201305929 10.1126/science.1061051 10.1021/acs.accounts.6b00523 10.1021/jp508618t 10.1021/ja807106y 10.1039/C4CS00408F 10.1039/c4ta01077a 10.1039/c3dt52008k 10.1038/nature04233 10.1038/nmat1849 10.1039/B917705A 10.1021/jp0033263 10.1021/am302462d 10.1039/B800489G 10.1021/nl2012906 10.1002/anie.200802207 10.1039/c3ta12856c 10.1021/nn401256w 10.1021/cr00035a013 10.1016/j.electacta.2016.11.182 10.1039/C4CC03306J 10.1039/C3MH00097D 10.1021/am401738k 10.1103/PhysRevLett.97.187401 10.1021/cr500008u 10.1002/smll.201401919 10.1039/c3nr03425a 10.1021/nn202519j 10.1021/nl401615t 10.1039/c0cc04770h 10.1021/am100394x 10.1021/ja503508g 10.1039/C4TA00009A 10.1021/am502379q 10.1021/nl061898e 10.1039/c2jm16178h 10.1021/nn503751s 10.1039/c2nr31480k 10.1021/ja203296z 10.1002/adma.201600301 10.1021/cr400633s 10.1039/c001928c 10.1021/cm5026552 10.1039/c3ta15007k 10.1126/science.1158877 10.1021/nn1024219 10.1007/s12613-014-0975-9 10.1016/S0926-3373(99)00069-7 10.1149/1.2108660 10.1021/jp3034984 10.1006/jssc.1996.0333 10.1021/jp2093719 10.1021/ja411651e 10.1021/jp208661n |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2017 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2017 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c7ta08415c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 2050-7496 |
EndPage | 23693 |
ExternalDocumentID | 10_1039_C7TA08415C c7ta08415c |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H ROL 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-b3e35e87f8cdc9ccb5e94a99e3c3bf4d630bf18d1e59e6063ff7d26548dda9823 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 11:15:16 EDT 2025 Mon Jun 30 12:01:50 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 03:13:45 EDT 2025 Tue Dec 17 20:59:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-b3e35e87f8cdc9ccb5e94a99e3c3bf4d630bf18d1e59e6063ff7d26548dda9823 |
Notes | 10.1039/c7ta08415c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5673-5362 |
PQID | 2010905881 |
PQPubID | 2047523 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2271836704 proquest_journals_2010905881 rsc_primary_c7ta08415c crossref_citationtrail_10_1039_C7TA08415C crossref_primary_10_1039_C7TA08415C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (C7TA08415C-(cit40)/*[position()=1]) 2010; 4 Weng (C7TA08415C-(cit36)/*[position()=1]) 2014; 30 Ferrari (C7TA08415C-(cit45)/*[position()=1]) 2006; 97 Dey (C7TA08415C-(cit53)/*[position()=1]) 2012; 48 Iwase (C7TA08415C-(cit34)/*[position()=1]) 2011; 133 Yang (C7TA08415C-(cit55)/*[position()=1]) 2014; 8 Sarkar (C7TA08415C-(cit43)/*[position()=1]) 2014; 6 Li (C7TA08415C-(cit58)/*[position()=1]) 2017; 50 Xiao (C7TA08415C-(cit37)/*[position()=1]) 2014; 136 Zhang (C7TA08415C-(cit47)/*[position()=1]) 2012; 14 Wang (C7TA08415C-(cit6)/*[position()=1]) 2014; 114 Zhang (C7TA08415C-(cit51)/*[position()=1]) 2015; 39 Dasgupta (C7TA08415C-(cit3)/*[position()=1]) 2014; 26 Kudo (C7TA08415C-(cit5)/*[position()=1]) 2009; 38 Tsukamoto (C7TA08415C-(cit24)/*[position()=1]) 2011; 17 Xiao (C7TA08415C-(cit54)/*[position()=1]) 2013; 1 Zhang (C7TA08415C-(cit46)/*[position()=1]) 2014; 6 Liu (C7TA08415C-(cit11)/*[position()=1]) 2013; 13 Liang (C7TA08415C-(cit48)/*[position()=1]) 2011; 11 Liu (C7TA08415C-(cit17)/*[position()=1]) 2007; 7 Liu (C7TA08415C-(cit1)/*[position()=1]) 2015; 44 Zhao (C7TA08415C-(cit21)/*[position()=1]) 2010; 46 Zhou (C7TA08415C-(cit16)/*[position()=1]) 2010; 2 Weng (C7TA08415C-(cit61)/*[position()=1]) 2014; 2 Liu (C7TA08415C-(cit26)/*[position()=1]) 2014; 2 Geim (C7TA08415C-(cit27)/*[position()=1]) 2009; 324 Su (C7TA08415C-(cit25)/*[position()=1]) 2011; 47 Novoselov (C7TA08415C-(cit28)/*[position()=1]) 2005; 438 Hayashi (C7TA08415C-(cit33)/*[position()=1]) 2011; 133 Lin (C7TA08415C-(cit10)/*[position()=1]) 2013; 7 Zhang (C7TA08415C-(cit42)/*[position()=1]) 2014; 21 Xie (C7TA08415C-(cit23)/*[position()=1]) 2012; 22 Xiao (C7TA08415C-(cit44)/*[position()=1]) 2014; 1 Zhang (C7TA08415C-(cit39)/*[position()=1]) 2011; 5 Sa (C7TA08415C-(cit2)/*[position()=1]) 2014; 118 Radich (C7TA08415C-(cit30)/*[position()=1]) 2014; 26 Li (C7TA08415C-(cit12)/*[position()=1]) 2014; 136 Matsumoto (C7TA08415C-(cit62)/*[position()=1]) 1996; 126 Geim (C7TA08415C-(cit29)/*[position()=1]) 2007; 6 Wang (C7TA08415C-(cit32)/*[position()=1]) 2014; 50 Zhang (C7TA08415C-(cit38)/*[position()=1]) 2012; 4 Xiao (C7TA08415C-(cit57)/*[position()=1]) 2015; 11 Xiao (C7TA08415C-(cit49)/*[position()=1]) 2012; 116 Wang (C7TA08415C-(cit9)/*[position()=1]) 2011; 115 Jiang (C7TA08415C-(cit50)/*[position()=1]) 2013; 42 Litte (C7TA08415C-(cit14)/*[position()=1]) 1999; 23 Ren (C7TA08415C-(cit35)/*[position()=1]) 2014; 2 Wang (C7TA08415C-(cit41)/*[position()=1]) 2016; 222 Li (C7TA08415C-(cit59)/*[position()=1]) 2016; 28 Linsebigler (C7TA08415C-(cit7)/*[position()=1]) 1995; 95 Xiao (C7TA08415C-(cit18)/*[position()=1]) 2012; 4 Matsumoto (C7TA08415C-(cit63)/*[position()=1]) 1986; 133 Zhang (C7TA08415C-(cit52)/*[position()=1]) 2010; 46 Zhao (C7TA08415C-(cit22)/*[position()=1]) 2008; 47 Gu (C7TA08415C-(cit31)/*[position()=1]) 2013; 5 Zhang (C7TA08415C-(cit60)/*[position()=1]) 2011; 115 Miao (C7TA08415C-(cit56)/*[position()=1]) 2013; 5 Asahi (C7TA08415C-(cit13)/*[position()=1]) 2001; 293 Dawson (C7TA08415C-(cit15)/*[position()=1]) 2001; 105 Thompson (C7TA08415C-(cit8)/*[position()=1]) 2005; 35 Ma (C7TA08415C-(cit20)/*[position()=1]) 2014; 114 Nah (C7TA08415C-(cit19)/*[position()=1]) 2008; 130 Tian (C7TA08415C-(cit4)/*[position()=1]) 2014; 43 |
References_xml | – volume: 35 start-page: 197 year: 2005 ident: C7TA08415C-(cit8)/*[position()=1] publication-title: Top. Catal. doi: 10.1007/s11244-005-3825-1 – volume: 17 start-page: 9816 year: 2011 ident: C7TA08415C-(cit24)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201100166 – volume: 30 start-page: 5574 year: 2014 ident: C7TA08415C-(cit36)/*[position()=1] publication-title: Langmuir doi: 10.1021/la4048566 – volume: 6 start-page: 11293 year: 2014 ident: C7TA08415C-(cit46)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03115F – volume: 39 start-page: 279 year: 2015 ident: C7TA08415C-(cit51)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C4NJ01346H – volume: 48 start-page: 1787 year: 2012 ident: C7TA08415C-(cit53)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc16031e – volume: 14 start-page: 9167 year: 2012 ident: C7TA08415C-(cit47)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41318c – volume: 43 start-page: 6920 year: 2014 ident: C7TA08415C-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00180J – volume: 133 start-page: 7684 year: 2011 ident: C7TA08415C-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201813n – volume: 26 start-page: 2137 year: 2014 ident: C7TA08415C-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305929 – volume: 293 start-page: 269 year: 2001 ident: C7TA08415C-(cit13)/*[position()=1] publication-title: Science doi: 10.1126/science.1061051 – volume: 50 start-page: 112 year: 2017 ident: C7TA08415C-(cit58)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00523 – volume: 118 start-page: 26560 year: 2014 ident: C7TA08415C-(cit2)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp508618t – volume: 130 start-page: 16154 year: 2008 ident: C7TA08415C-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807106y – volume: 44 start-page: 5053 year: 2015 ident: C7TA08415C-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00408F – volume: 2 start-page: 9380 year: 2014 ident: C7TA08415C-(cit61)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01077a – volume: 42 start-page: 15726 year: 2013 ident: C7TA08415C-(cit50)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt52008k – volume: 438 start-page: 197 year: 2005 ident: C7TA08415C-(cit28)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 6 start-page: 183 year: 2007 ident: C7TA08415C-(cit29)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 46 start-page: 1112 year: 2010 ident: C7TA08415C-(cit52)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B917705A – volume: 105 start-page: 960 year: 2001 ident: C7TA08415C-(cit15)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0033263 – volume: 4 start-page: 7055 year: 2012 ident: C7TA08415C-(cit18)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302462d – volume: 38 start-page: 253 year: 2009 ident: C7TA08415C-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 11 start-page: 2865 year: 2011 ident: C7TA08415C-(cit48)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2012906 – volume: 47 start-page: 7051 year: 2008 ident: C7TA08415C-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802207 – volume: 1 start-page: 12229 year: 2013 ident: C7TA08415C-(cit54)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12856c – volume: 7 start-page: 4554 year: 2013 ident: C7TA08415C-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn401256w – volume: 95 start-page: 735 year: 1995 ident: C7TA08415C-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 222 start-page: 1903 year: 2016 ident: C7TA08415C-(cit41)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.182 – volume: 50 start-page: 8889 year: 2014 ident: C7TA08415C-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03306J – volume: 1 start-page: 259 year: 2014 ident: C7TA08415C-(cit44)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C3MH00097D – volume: 5 start-page: 6762 year: 2013 ident: C7TA08415C-(cit31)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401738k – volume: 97 start-page: 187401 year: 2006 ident: C7TA08415C-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 114 start-page: 9987 year: 2014 ident: C7TA08415C-(cit20)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500008u – volume: 11 start-page: 554 year: 2015 ident: C7TA08415C-(cit57)/*[position()=1] publication-title: Small doi: 10.1002/smll.201401919 – volume: 5 start-page: 11118 year: 2013 ident: C7TA08415C-(cit56)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr03425a – volume: 5 start-page: 7426 year: 2011 ident: C7TA08415C-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202519j – volume: 13 start-page: 2989 year: 2013 ident: C7TA08415C-(cit11)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401615t – volume: 47 start-page: 4231 year: 2011 ident: C7TA08415C-(cit25)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc04770h – volume: 2 start-page: 2385 year: 2010 ident: C7TA08415C-(cit16)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100394x – volume: 136 start-page: 8438 year: 2014 ident: C7TA08415C-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503508g – volume: 2 start-page: 5330 year: 2014 ident: C7TA08415C-(cit35)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00009A – volume: 6 start-page: 10044 year: 2014 ident: C7TA08415C-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502379q – volume: 7 start-page: 1081 year: 2007 ident: C7TA08415C-(cit17)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl061898e – volume: 22 start-page: 6746 year: 2012 ident: C7TA08415C-(cit23)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm16178h – volume: 8 start-page: 10403 year: 2014 ident: C7TA08415C-(cit55)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn503751s – volume: 4 start-page: 5792 year: 2012 ident: C7TA08415C-(cit38)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31480k – volume: 133 start-page: 11054 year: 2011 ident: C7TA08415C-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203296z – volume: 28 start-page: 4059 year: 2016 ident: C7TA08415C-(cit59)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600301 – volume: 114 start-page: 9346 year: 2014 ident: C7TA08415C-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400633s – volume: 46 start-page: 3321 year: 2010 ident: C7TA08415C-(cit21)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c001928c – volume: 26 start-page: 4662 year: 2014 ident: C7TA08415C-(cit30)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5026552 – volume: 2 start-page: 5387 year: 2014 ident: C7TA08415C-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta15007k – volume: 324 start-page: 1530 year: 2009 ident: C7TA08415C-(cit27)/*[position()=1] publication-title: Science doi: 10.1126/science.1158877 – volume: 4 start-page: 7303 year: 2010 ident: C7TA08415C-(cit40)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1024219 – volume: 21 start-page: 813 year: 2014 ident: C7TA08415C-(cit42)/*[position()=1] publication-title: Int. J. Miner., Metall. Mater. doi: 10.1007/s12613-014-0975-9 – volume: 23 start-page: 89 year: 1999 ident: C7TA08415C-(cit14)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(99)00069-7 – volume: 133 start-page: 711 year: 1986 ident: C7TA08415C-(cit63)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2108660 – volume: 116 start-page: 16487 year: 2012 ident: C7TA08415C-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3034984 – volume: 126 start-page: 227 year: 1996 ident: C7TA08415C-(cit62)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.1996.0333 – volume: 115 start-page: 22276 year: 2011 ident: C7TA08415C-(cit9)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2093719 – volume: 136 start-page: 1559 year: 2014 ident: C7TA08415C-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411651e – volume: 115 start-page: 23501 year: 2011 ident: C7TA08415C-(cit60)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp208661n |
SSID | ssj0000800699 |
Score | 2.451942 |
Snippet | In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this... In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23681 |
SubjectTerms | Architectural engineering Architecture Catalysis Charge transfer Current carriers Electron transfer Electrons electrostatic interactions Electrostatic properties Graphene Heavy metals ingredients Low dimensional semiconductors Metal ions Modulation Nanorods Oxidation Photocatalysis Photooxidation Photoredox catalysis Pollutants Pollution control Reduction (metal working) Self-assembly semiconductors Titanium dioxide tungsten oxide Tungsten oxides |
Title | Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis |
URI | https://www.proquest.com/docview/2010905881 https://www.proquest.com/docview/2271836704 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeEF8THQMZwQuKXJI4X36sqlZj2sZLKvUtih1HIHVJ1aWC8UsQv5ZrO05SGNLgJUpt14lyT-zjG99zEXonWSx4FMckBLZAlBohYYFICA9jnzIZxblW27-8is6WwfkqXI1GPwe7lnYNn4jvd8aV_I9VoQzsqqJk_8GyXadQAOdgXziCheF4Lxtf1kWbfcsqP2zLXPvAtQCSVAkggJbKrSKZN3JdEqDK8pqv9Wd15SVYS7LOgXU7Wrgaxj1HVl_hdAM8tK4kKZT4vxHugA6uATaVEohVGXoaveHW2Xyu4acs6m-OdgUphZO_MF4gx-apwO21aeYmztREDNkarUBu4hG1S9_Gd6ktvJ33v_Nyn--q250tXX3Jtd93AZVkZafk1qNhQjfNkOe7oUviwOS4teNzOIBhEDqbiU-jxCNwZHQ49KrSwTze1f8xSbhUaayKuMndBPiL6KdC-_n_6lO2WF5cZOl8lR6gIx-WIDDoH03n6ceLzoOnuHakE5R2t231byn70He_z3j6ZczB1uaY0VwmfYwetSbBU4OoJ2gkq6fo4UCa8hn60WML1yUeYAsbbGGLLcxv8R62VPshtrDFFu6whX_DFt7HFjbYwj22cIet52i5mKezM9Jm8SCCekFDOJU0lElcJqIQTAgeShbkjEkqqNolGlGXl15SeDKEsQEYc1nGhR_BSroocpb49BgdVnBXLxBOhIgC1xNlKcKASc4DxoFOlWAflogoHqP39klnopW4V5lW1pneakFZNovTqbbKbIzedm03Rtjlzlan1mBZ--LfZL7ezRwmiTdGb7pqeG3Ut7a8kvUO2vhA-pQ4YjBGx2Do7ho9Lk7u8eeX6IF6Q4zP7xQdNtudfAUsuOGvWzj-Amk7vzM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+interfacial+charge+transfer+by+self-assembly+of+single-layer+graphene+enwrapped+one-dimensional+semiconductors+toward+photoredox+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Junyu&rft.au=Xiao%2C+Fang-Xing&rft.date=2017&rft.issn=2050-7496&rft.volume=5&rft.issue=45+p.23681-23693&rft.spage=23681&rft.epage=23693&rft_id=info:doi/10.1039%2Fc7ta08415c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |