Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis

In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO 3 nanorods (NRs)-coupled TiO 2 nanobelts (TNBs) ternary nano-a...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 45; pp. 23681 - 23693
Main Authors Zhang, Junyu, Xiao, Fang-Xing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO 3 nanorods (NRs)-coupled TiO 2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO 3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO 3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO 3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO 3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron-hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO 3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated. A progressive layer-by-layer self-assembly strategy has been developed to construct a graphene-wrapped and WO 3 nanorods-coupled TiO 2 nanobelts photocatalyst, in which a highly efficient cascade electron transfer pathway was judiciously built.
AbstractList In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)-wrapped and WO 3 nanorods (NRs)-coupled TiO 2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO 3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO 3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO 3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO 3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron-hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO 3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated. A progressive layer-by-layer self-assembly strategy has been developed to construct a graphene-wrapped and WO 3 nanorods-coupled TiO 2 nanobelts photocatalyst, in which a highly efficient cascade electron transfer pathway was judiciously built.
In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO 3 nanorods (NRs)–coupled TiO 2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO 3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO 3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO 3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO 3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO 3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated.
In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO3 nanorods (NRs)–coupled TiO2 nanobelts (TNBs) ternary nano-architecture (TNBs/WO3 NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO3 NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO3 NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO3 NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO3 NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated.
In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this end, herein, a spatially hierarchical single-layer graphene (GR)–wrapped and WO₃ nanorods (NRs)–coupled TiO₂ nanobelts (TNBs) ternary nano-architecture (TNBs/WO₃ NRs/GR), as a conceptual platform, has been progressively designed via a facile and green layer-by-layer assembly strategy based on pronounced electrostatic interaction. It was remarkable to find that the interfacial charge transfer of a TNBs/WO₃ NRs/GR ternary heterostructure can be finely modulated by interfacial architectural engineering, thus contributing to its significantly improved photoredox performance, including photocatalytic oxidation of organic pollutants and reduction of heavy metal ions, in comparison with single and binary counterparts. The construction of highly efficient cascade electron transfer pathways at the interface is responsible for the enhancement in photoactivities of a ternary heterostructure, which is afforded by intimately intercalating WO₃ NRs in the interfacial domains of TNBs and GR. In this unique ternary nano-architecture, the WO₃ NRs ingredient serves as an efficient interfacial charge transfer mediator and GR serves as an electron transporter and collector to conspicuously trigger a cascade electron relay from TNBs to GR, thereby expediting the efficacious charge transfer, prolonging the lifetime of photogenerated electron–hole pairs, and resulting in the significantly enhanced photoredox activities of the TNBs/WO₃ NRs/GR heterostructure. In addition, the predominant active species responsible for the photoredox process were determined and the underlying photocatalytic mechanism was delineated.
Author Xiao, Fang-Xing
Zhang, Junyu
AuthorAffiliation Fuzhou University
College of Materials Science and Engineering
AuthorAffiliation_xml – sequence: 0
  name: College of Materials Science and Engineering
– sequence: 0
  name: Fuzhou University
Author_xml – sequence: 1
  givenname: Junyu
  surname: Zhang
  fullname: Zhang, Junyu
– sequence: 2
  givenname: Fang-Xing
  surname: Xiao
  fullname: Xiao, Fang-Xing
BookMark eNptkU9rHSEUxYeSQNM0m-wLQjclMK2O80eX4dGmhZRukvXg6PU9g0-nXodkvkk_bk1eSCHUjVf4nXO997yrjkIMUFXnjH5mlMsvesiKipZ1-k110tCO1kMr-6OXWoi31RniHS1HUNpLeVL9-RnN4lV2MZBoiQsZklXaKU_0TqUtkJxUQAuJTCtB8LZWiLCf_PrIowtbD7VXawG2Sc07CEAg3JdyBkPKB2vj9hCwNCieRel0DGbROSYkOd6rZMi8i-UJJj4QrbLyKzp8Xx1b5RHOnu_T6vbb15vN9_r619WPzeV1rTlrcz1x4B2IwQpttNR66kC2Skrgmk-2NT2nk2XCMOgk9LTn1g6m6btWGKOkaPhp9engO6f4ewHM496hBu9VgLjg2DQDE7wfaFvQj6_Qu7ikMlahKKOSdkKwQl0cKJ0iYgI7zsntVVpHRsfHnMbNcHP5lNOmwPQVrF1-SqOs3fn_Sz4cJAn1i_W_6PlfzSeleg
CitedBy_id crossref_primary_10_1016_j_jcat_2018_09_003
crossref_primary_10_1007_s11814_024_00267_2
crossref_primary_10_1039_C7RA13222K
crossref_primary_10_1016_j_ijhydene_2024_02_108
crossref_primary_10_1016_j_jobab_2020_03_001
crossref_primary_10_1021_acs_langmuir_2c02155
crossref_primary_10_1021_acsomega_7b01806
crossref_primary_10_1021_acs_jpcc_8b02895
crossref_primary_10_1016_j_matchemphys_2018_04_089
crossref_primary_10_1039_D0NJ06089E
crossref_primary_10_1038_s41598_020_62638_z
crossref_primary_10_1039_C8TA08841A
crossref_primary_10_1002_cssc_202201584
crossref_primary_10_1021_acsami_0c19619
crossref_primary_10_1016_j_apsusc_2018_01_054
crossref_primary_10_1016_j_matlet_2018_10_077
crossref_primary_10_1016_j_ceramint_2018_11_222
crossref_primary_10_1016_j_solidstatesciences_2019_106067
crossref_primary_10_1021_acs_inorgchem_9b03538
crossref_primary_10_1016_j_cattod_2018_01_005
crossref_primary_10_1016_j_ijhydene_2019_05_120
crossref_primary_10_1016_j_jenvman_2019_06_041
crossref_primary_10_1039_C9NR00887J
crossref_primary_10_1039_C9NR00229D
crossref_primary_10_1016_j_matchemphys_2021_124739
crossref_primary_10_1016_j_ijhydene_2020_10_194
crossref_primary_10_1039_D2TA00572G
crossref_primary_10_1088_2515_7655_ab0718
crossref_primary_10_1039_C8CY02283F
crossref_primary_10_1039_C9TA01144G
crossref_primary_10_1016_j_surfin_2024_105034
crossref_primary_10_1039_C9TA07569K
crossref_primary_10_1038_s41598_019_52751_z
crossref_primary_10_1016_j_apsusc_2018_02_139
crossref_primary_10_1039_C9NR01260E
crossref_primary_10_1039_D2TA03720C
crossref_primary_10_1039_C8NR03557A
crossref_primary_10_1039_C8TA04052D
crossref_primary_10_1002_gch2_202000025
crossref_primary_10_1039_C9NJ02593F
crossref_primary_10_3390_molecules25153327
crossref_primary_10_1016_j_jcis_2018_06_055
crossref_primary_10_1038_s41598_018_26447_9
crossref_primary_10_1016_j_pmatsci_2023_101169
crossref_primary_10_1039_C8TA10379H
crossref_primary_10_1016_j_apsusc_2018_11_168
crossref_primary_10_1039_C9QM00066F
crossref_primary_10_1007_s10563_018_9259_0
crossref_primary_10_1016_j_jphotochem_2020_112534
crossref_primary_10_1039_C9NR02304F
crossref_primary_10_1039_C8NR06788K
crossref_primary_10_2139_ssrn_4128541
crossref_primary_10_1016_j_jphotochem_2020_112575
crossref_primary_10_1021_acs_inorgchem_0c00229
crossref_primary_10_3389_fchem_2018_00393
crossref_primary_10_1021_acs_inorgchem_0c00666
crossref_primary_10_1155_2019_6042026
crossref_primary_10_1016_j_jphotochem_2019_04_026
crossref_primary_10_1021_acs_inorgchem_9b03073
crossref_primary_10_1016_j_saa_2024_124921
crossref_primary_10_1021_acsami_9b14543
crossref_primary_10_1039_D1NJ04656J
crossref_primary_10_1038_s41598_020_59491_5
crossref_primary_10_1016_j_ccr_2018_12_013
crossref_primary_10_1021_acs_energyfuels_4c05452
crossref_primary_10_1002_admi_201701098
crossref_primary_10_1007_s10853_019_03780_6
crossref_primary_10_1021_acs_jpcc_9b01403
crossref_primary_10_1007_s12598_019_01255_w
crossref_primary_10_1039_C7TA09119B
crossref_primary_10_1016_j_chemosphere_2023_139077
crossref_primary_10_1038_s41598_020_78542_5
crossref_primary_10_1039_D2CY02089K
crossref_primary_10_1016_j_carbon_2019_06_074
Cites_doi 10.1007/s11244-005-3825-1
10.1002/chem.201100166
10.1021/la4048566
10.1039/C4NR03115F
10.1039/C4NJ01346H
10.1039/c2cc16031e
10.1039/c2cp41318c
10.1039/C4CS00180J
10.1021/ja201813n
10.1002/adma.201305929
10.1126/science.1061051
10.1021/acs.accounts.6b00523
10.1021/jp508618t
10.1021/ja807106y
10.1039/C4CS00408F
10.1039/c4ta01077a
10.1039/c3dt52008k
10.1038/nature04233
10.1038/nmat1849
10.1039/B917705A
10.1021/jp0033263
10.1021/am302462d
10.1039/B800489G
10.1021/nl2012906
10.1002/anie.200802207
10.1039/c3ta12856c
10.1021/nn401256w
10.1021/cr00035a013
10.1016/j.electacta.2016.11.182
10.1039/C4CC03306J
10.1039/C3MH00097D
10.1021/am401738k
10.1103/PhysRevLett.97.187401
10.1021/cr500008u
10.1002/smll.201401919
10.1039/c3nr03425a
10.1021/nn202519j
10.1021/nl401615t
10.1039/c0cc04770h
10.1021/am100394x
10.1021/ja503508g
10.1039/C4TA00009A
10.1021/am502379q
10.1021/nl061898e
10.1039/c2jm16178h
10.1021/nn503751s
10.1039/c2nr31480k
10.1021/ja203296z
10.1002/adma.201600301
10.1021/cr400633s
10.1039/c001928c
10.1021/cm5026552
10.1039/c3ta15007k
10.1126/science.1158877
10.1021/nn1024219
10.1007/s12613-014-0975-9
10.1016/S0926-3373(99)00069-7
10.1149/1.2108660
10.1021/jp3034984
10.1006/jssc.1996.0333
10.1021/jp2093719
10.1021/ja411651e
10.1021/jp208661n
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c7ta08415c
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 2050-7496
EndPage 23693
ExternalDocumentID 10_1039_C7TA08415C
c7ta08415c
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
ROL
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c314t-b3e35e87f8cdc9ccb5e94a99e3c3bf4d630bf18d1e59e6063ff7d26548dda9823
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 11:15:16 EDT 2025
Mon Jun 30 12:01:50 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 03:13:45 EDT 2025
Tue Dec 17 20:59:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-b3e35e87f8cdc9ccb5e94a99e3c3bf4d630bf18d1e59e6063ff7d26548dda9823
Notes 10.1039/c7ta08415c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5673-5362
PQID 2010905881
PQPubID 2047523
PageCount 13
ParticipantIDs proquest_miscellaneous_2271836704
proquest_journals_2010905881
rsc_primary_c7ta08415c
crossref_citationtrail_10_1039_C7TA08415C
crossref_primary_10_1039_C7TA08415C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (C7TA08415C-(cit40)/*[position()=1]) 2010; 4
Weng (C7TA08415C-(cit36)/*[position()=1]) 2014; 30
Ferrari (C7TA08415C-(cit45)/*[position()=1]) 2006; 97
Dey (C7TA08415C-(cit53)/*[position()=1]) 2012; 48
Iwase (C7TA08415C-(cit34)/*[position()=1]) 2011; 133
Yang (C7TA08415C-(cit55)/*[position()=1]) 2014; 8
Sarkar (C7TA08415C-(cit43)/*[position()=1]) 2014; 6
Li (C7TA08415C-(cit58)/*[position()=1]) 2017; 50
Xiao (C7TA08415C-(cit37)/*[position()=1]) 2014; 136
Zhang (C7TA08415C-(cit47)/*[position()=1]) 2012; 14
Wang (C7TA08415C-(cit6)/*[position()=1]) 2014; 114
Zhang (C7TA08415C-(cit51)/*[position()=1]) 2015; 39
Dasgupta (C7TA08415C-(cit3)/*[position()=1]) 2014; 26
Kudo (C7TA08415C-(cit5)/*[position()=1]) 2009; 38
Tsukamoto (C7TA08415C-(cit24)/*[position()=1]) 2011; 17
Xiao (C7TA08415C-(cit54)/*[position()=1]) 2013; 1
Zhang (C7TA08415C-(cit46)/*[position()=1]) 2014; 6
Liu (C7TA08415C-(cit11)/*[position()=1]) 2013; 13
Liang (C7TA08415C-(cit48)/*[position()=1]) 2011; 11
Liu (C7TA08415C-(cit17)/*[position()=1]) 2007; 7
Liu (C7TA08415C-(cit1)/*[position()=1]) 2015; 44
Zhao (C7TA08415C-(cit21)/*[position()=1]) 2010; 46
Zhou (C7TA08415C-(cit16)/*[position()=1]) 2010; 2
Weng (C7TA08415C-(cit61)/*[position()=1]) 2014; 2
Liu (C7TA08415C-(cit26)/*[position()=1]) 2014; 2
Geim (C7TA08415C-(cit27)/*[position()=1]) 2009; 324
Su (C7TA08415C-(cit25)/*[position()=1]) 2011; 47
Novoselov (C7TA08415C-(cit28)/*[position()=1]) 2005; 438
Hayashi (C7TA08415C-(cit33)/*[position()=1]) 2011; 133
Lin (C7TA08415C-(cit10)/*[position()=1]) 2013; 7
Zhang (C7TA08415C-(cit42)/*[position()=1]) 2014; 21
Xie (C7TA08415C-(cit23)/*[position()=1]) 2012; 22
Xiao (C7TA08415C-(cit44)/*[position()=1]) 2014; 1
Zhang (C7TA08415C-(cit39)/*[position()=1]) 2011; 5
Sa (C7TA08415C-(cit2)/*[position()=1]) 2014; 118
Radich (C7TA08415C-(cit30)/*[position()=1]) 2014; 26
Li (C7TA08415C-(cit12)/*[position()=1]) 2014; 136
Matsumoto (C7TA08415C-(cit62)/*[position()=1]) 1996; 126
Geim (C7TA08415C-(cit29)/*[position()=1]) 2007; 6
Wang (C7TA08415C-(cit32)/*[position()=1]) 2014; 50
Zhang (C7TA08415C-(cit38)/*[position()=1]) 2012; 4
Xiao (C7TA08415C-(cit57)/*[position()=1]) 2015; 11
Xiao (C7TA08415C-(cit49)/*[position()=1]) 2012; 116
Wang (C7TA08415C-(cit9)/*[position()=1]) 2011; 115
Jiang (C7TA08415C-(cit50)/*[position()=1]) 2013; 42
Litte (C7TA08415C-(cit14)/*[position()=1]) 1999; 23
Ren (C7TA08415C-(cit35)/*[position()=1]) 2014; 2
Wang (C7TA08415C-(cit41)/*[position()=1]) 2016; 222
Li (C7TA08415C-(cit59)/*[position()=1]) 2016; 28
Linsebigler (C7TA08415C-(cit7)/*[position()=1]) 1995; 95
Xiao (C7TA08415C-(cit18)/*[position()=1]) 2012; 4
Matsumoto (C7TA08415C-(cit63)/*[position()=1]) 1986; 133
Zhang (C7TA08415C-(cit52)/*[position()=1]) 2010; 46
Zhao (C7TA08415C-(cit22)/*[position()=1]) 2008; 47
Gu (C7TA08415C-(cit31)/*[position()=1]) 2013; 5
Zhang (C7TA08415C-(cit60)/*[position()=1]) 2011; 115
Miao (C7TA08415C-(cit56)/*[position()=1]) 2013; 5
Asahi (C7TA08415C-(cit13)/*[position()=1]) 2001; 293
Dawson (C7TA08415C-(cit15)/*[position()=1]) 2001; 105
Thompson (C7TA08415C-(cit8)/*[position()=1]) 2005; 35
Ma (C7TA08415C-(cit20)/*[position()=1]) 2014; 114
Nah (C7TA08415C-(cit19)/*[position()=1]) 2008; 130
Tian (C7TA08415C-(cit4)/*[position()=1]) 2014; 43
References_xml – volume: 35
  start-page: 197
  year: 2005
  ident: C7TA08415C-(cit8)/*[position()=1]
  publication-title: Top. Catal.
  doi: 10.1007/s11244-005-3825-1
– volume: 17
  start-page: 9816
  year: 2011
  ident: C7TA08415C-(cit24)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201100166
– volume: 30
  start-page: 5574
  year: 2014
  ident: C7TA08415C-(cit36)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la4048566
– volume: 6
  start-page: 11293
  year: 2014
  ident: C7TA08415C-(cit46)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03115F
– volume: 39
  start-page: 279
  year: 2015
  ident: C7TA08415C-(cit51)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01346H
– volume: 48
  start-page: 1787
  year: 2012
  ident: C7TA08415C-(cit53)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16031e
– volume: 14
  start-page: 9167
  year: 2012
  ident: C7TA08415C-(cit47)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41318c
– volume: 43
  start-page: 6920
  year: 2014
  ident: C7TA08415C-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00180J
– volume: 133
  start-page: 7684
  year: 2011
  ident: C7TA08415C-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201813n
– volume: 26
  start-page: 2137
  year: 2014
  ident: C7TA08415C-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305929
– volume: 293
  start-page: 269
  year: 2001
  ident: C7TA08415C-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1061051
– volume: 50
  start-page: 112
  year: 2017
  ident: C7TA08415C-(cit58)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00523
– volume: 118
  start-page: 26560
  year: 2014
  ident: C7TA08415C-(cit2)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp508618t
– volume: 130
  start-page: 16154
  year: 2008
  ident: C7TA08415C-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807106y
– volume: 44
  start-page: 5053
  year: 2015
  ident: C7TA08415C-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00408F
– volume: 2
  start-page: 9380
  year: 2014
  ident: C7TA08415C-(cit61)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta01077a
– volume: 42
  start-page: 15726
  year: 2013
  ident: C7TA08415C-(cit50)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt52008k
– volume: 438
  start-page: 197
  year: 2005
  ident: C7TA08415C-(cit28)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 6
  start-page: 183
  year: 2007
  ident: C7TA08415C-(cit29)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 46
  start-page: 1112
  year: 2010
  ident: C7TA08415C-(cit52)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B917705A
– volume: 105
  start-page: 960
  year: 2001
  ident: C7TA08415C-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0033263
– volume: 4
  start-page: 7055
  year: 2012
  ident: C7TA08415C-(cit18)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302462d
– volume: 38
  start-page: 253
  year: 2009
  ident: C7TA08415C-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 11
  start-page: 2865
  year: 2011
  ident: C7TA08415C-(cit48)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2012906
– volume: 47
  start-page: 7051
  year: 2008
  ident: C7TA08415C-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802207
– volume: 1
  start-page: 12229
  year: 2013
  ident: C7TA08415C-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12856c
– volume: 7
  start-page: 4554
  year: 2013
  ident: C7TA08415C-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401256w
– volume: 95
  start-page: 735
  year: 1995
  ident: C7TA08415C-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– volume: 222
  start-page: 1903
  year: 2016
  ident: C7TA08415C-(cit41)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.182
– volume: 50
  start-page: 8889
  year: 2014
  ident: C7TA08415C-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03306J
– volume: 1
  start-page: 259
  year: 2014
  ident: C7TA08415C-(cit44)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00097D
– volume: 5
  start-page: 6762
  year: 2013
  ident: C7TA08415C-(cit31)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401738k
– volume: 97
  start-page: 187401
  year: 2006
  ident: C7TA08415C-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 114
  start-page: 9987
  year: 2014
  ident: C7TA08415C-(cit20)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500008u
– volume: 11
  start-page: 554
  year: 2015
  ident: C7TA08415C-(cit57)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201401919
– volume: 5
  start-page: 11118
  year: 2013
  ident: C7TA08415C-(cit56)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr03425a
– volume: 5
  start-page: 7426
  year: 2011
  ident: C7TA08415C-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202519j
– volume: 13
  start-page: 2989
  year: 2013
  ident: C7TA08415C-(cit11)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401615t
– volume: 47
  start-page: 4231
  year: 2011
  ident: C7TA08415C-(cit25)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04770h
– volume: 2
  start-page: 2385
  year: 2010
  ident: C7TA08415C-(cit16)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100394x
– volume: 136
  start-page: 8438
  year: 2014
  ident: C7TA08415C-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503508g
– volume: 2
  start-page: 5330
  year: 2014
  ident: C7TA08415C-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00009A
– volume: 6
  start-page: 10044
  year: 2014
  ident: C7TA08415C-(cit43)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502379q
– volume: 7
  start-page: 1081
  year: 2007
  ident: C7TA08415C-(cit17)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl061898e
– volume: 22
  start-page: 6746
  year: 2012
  ident: C7TA08415C-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16178h
– volume: 8
  start-page: 10403
  year: 2014
  ident: C7TA08415C-(cit55)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn503751s
– volume: 4
  start-page: 5792
  year: 2012
  ident: C7TA08415C-(cit38)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31480k
– volume: 133
  start-page: 11054
  year: 2011
  ident: C7TA08415C-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203296z
– volume: 28
  start-page: 4059
  year: 2016
  ident: C7TA08415C-(cit59)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600301
– volume: 114
  start-page: 9346
  year: 2014
  ident: C7TA08415C-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr400633s
– volume: 46
  start-page: 3321
  year: 2010
  ident: C7TA08415C-(cit21)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c001928c
– volume: 26
  start-page: 4662
  year: 2014
  ident: C7TA08415C-(cit30)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5026552
– volume: 2
  start-page: 5387
  year: 2014
  ident: C7TA08415C-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta15007k
– volume: 324
  start-page: 1530
  year: 2009
  ident: C7TA08415C-(cit27)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 4
  start-page: 7303
  year: 2010
  ident: C7TA08415C-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1024219
– volume: 21
  start-page: 813
  year: 2014
  ident: C7TA08415C-(cit42)/*[position()=1]
  publication-title: Int. J. Miner., Metall. Mater.
  doi: 10.1007/s12613-014-0975-9
– volume: 23
  start-page: 89
  year: 1999
  ident: C7TA08415C-(cit14)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(99)00069-7
– volume: 133
  start-page: 711
  year: 1986
  ident: C7TA08415C-(cit63)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2108660
– volume: 116
  start-page: 16487
  year: 2012
  ident: C7TA08415C-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3034984
– volume: 126
  start-page: 227
  year: 1996
  ident: C7TA08415C-(cit62)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1996.0333
– volume: 115
  start-page: 22276
  year: 2011
  ident: C7TA08415C-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2093719
– volume: 136
  start-page: 1559
  year: 2014
  ident: C7TA08415C-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411651e
– volume: 115
  start-page: 23501
  year: 2011
  ident: C7TA08415C-(cit60)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208661n
SSID ssj0000800699
Score 2.451942
Snippet In recent years, the exquisite modulation of the transport of photogenerated electron-hole charge carriers has constituted a long-standing challenge. To this...
In recent years, the exquisite modulation of the transport of photogenerated electron–hole charge carriers has constituted a long-standing challenge. To this...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23681
SubjectTerms Architectural engineering
Architecture
Catalysis
Charge transfer
Current carriers
Electron transfer
Electrons
electrostatic interactions
Electrostatic properties
Graphene
Heavy metals
ingredients
Low dimensional semiconductors
Metal ions
Modulation
Nanorods
Oxidation
Photocatalysis
Photooxidation
Photoredox catalysis
Pollutants
Pollution control
Reduction (metal working)
Self-assembly
semiconductors
Titanium dioxide
tungsten oxide
Tungsten oxides
Title Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis
URI https://www.proquest.com/docview/2010905881
https://www.proquest.com/docview/2271836704
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeEF8THQMZwQuKXJI4X36sqlZj2sZLKvUtih1HIHVJ1aWC8UsQv5ZrO05SGNLgJUpt14lyT-zjG99zEXonWSx4FMckBLZAlBohYYFICA9jnzIZxblW27-8is6WwfkqXI1GPwe7lnYNn4jvd8aV_I9VoQzsqqJk_8GyXadQAOdgXziCheF4Lxtf1kWbfcsqP2zLXPvAtQCSVAkggJbKrSKZN3JdEqDK8pqv9Wd15SVYS7LOgXU7Wrgaxj1HVl_hdAM8tK4kKZT4vxHugA6uATaVEohVGXoaveHW2Xyu4acs6m-OdgUphZO_MF4gx-apwO21aeYmztREDNkarUBu4hG1S9_Gd6ktvJ33v_Nyn--q250tXX3Jtd93AZVkZafk1qNhQjfNkOe7oUviwOS4teNzOIBhEDqbiU-jxCNwZHQ49KrSwTze1f8xSbhUaayKuMndBPiL6KdC-_n_6lO2WF5cZOl8lR6gIx-WIDDoH03n6ceLzoOnuHakE5R2t231byn70He_z3j6ZczB1uaY0VwmfYwetSbBU4OoJ2gkq6fo4UCa8hn60WML1yUeYAsbbGGLLcxv8R62VPshtrDFFu6whX_DFt7HFjbYwj22cIet52i5mKezM9Jm8SCCekFDOJU0lElcJqIQTAgeShbkjEkqqNolGlGXl15SeDKEsQEYc1nGhR_BSroocpb49BgdVnBXLxBOhIgC1xNlKcKASc4DxoFOlWAflogoHqP39klnopW4V5lW1pneakFZNovTqbbKbIzedm03Rtjlzlan1mBZ--LfZL7ezRwmiTdGb7pqeG3Ut7a8kvUO2vhA-pQ4YjBGx2Do7ho9Lk7u8eeX6IF6Q4zP7xQdNtudfAUsuOGvWzj-Amk7vzM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+interfacial+charge+transfer+by+self-assembly+of+single-layer+graphene+enwrapped+one-dimensional+semiconductors+toward+photoredox+catalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Junyu&rft.au=Xiao%2C+Fang-Xing&rft.date=2017&rft.issn=2050-7496&rft.volume=5&rft.issue=45+p.23681-23693&rft.spage=23681&rft.epage=23693&rft_id=info:doi/10.1039%2Fc7ta08415c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon