Tunable hydrocarbon adsorption based on a zeolitic imidazolate framework in the sodalite topology
Manipulation of materials exhibiting step-shaped isotherms using simple and scalable methods is key to realizing their utility in advanced separation schemes. To this end, we have discovered EMM-36, a hybrid isostructural to ZIF-7 material in the sodalite topology prepared from industrially scalable...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 3; pp. 1425 - 1432 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manipulation of materials exhibiting step-shaped isotherms using simple and scalable methods is key to realizing their utility in advanced separation schemes. To this end, we have discovered EMM-36, a hybrid isostructural to ZIF-7 material in the sodalite topology prepared from industrially scalable organic moieties. Through simple compositional tuning of EMM-36 that remains true to the linker composition introduced in the synthesis, controlled manipulation of the step-function adsorption behaviour of gases onto the flexible framework has been realized. We observe that the energetics for the phase transformation from a denser narrow pore (np) to more open large pore (lp) phase are directly controllable while maintaining the hexagonal crystal structure characteristic of the lp phase of ZIF-7 under adsorbed conditions throughout the entire hybrid compositional range.
The structural flexibility of ZIF-7 is controlled
via
a mixed-linker approach resulting in modified adsorption properties tunable across 2 orders of magnitude of step pressure while maintaining the ZIF-7 structure throughout the compositional range. |
---|---|
AbstractList | Manipulation of materials exhibiting step-shaped isotherms using simple and scalable methods is key to realizing their utility in advanced separation schemes. To this end, we have discovered EMM-36, a hybrid isostructural to ZIF-7 material in the sodalite topology prepared from industrially scalable organic moieties. Through simple compositional tuning of EMM-36 that remains true to the linker composition introduced in the synthesis, controlled manipulation of the step-function adsorption behaviour of gases onto the flexible framework has been realized. We observe that the energetics for the phase transformation from a denser narrow pore (np) to more open large pore (lp) phase are directly controllable while maintaining the hexagonal crystal structure characteristic of the lp phase of ZIF-7 under adsorbed conditions throughout the entire hybrid compositional range. Manipulation of materials exhibiting step-shaped isotherms using simple and scalable methods is key to realizing their utility in advanced separation schemes. To this end, we have discovered EMM-36, a hybrid isostructural to ZIF-7 material in the sodalite topology prepared from industrially scalable organic moieties. Through simple compositional tuning of EMM-36 that remains true to the linker composition introduced in the synthesis, controlled manipulation of the step-function adsorption behaviour of gases onto the flexible framework has been realized. We observe that the energetics for the phase transformation from a denser narrow pore (np) to more open large pore (lp) phase are directly controllable while maintaining the hexagonal crystal structure characteristic of the lp phase of ZIF-7 under adsorbed conditions throughout the entire hybrid compositional range. The structural flexibility of ZIF-7 is controlled via a mixed-linker approach resulting in modified adsorption properties tunable across 2 orders of magnitude of step pressure while maintaining the ZIF-7 structure throughout the compositional range. |
Author | Ravikovitch, Peter I Muraro, Giovanni M Falkowski, Joseph M Weston, Simon C Liu, Sophie F Abdulkarim, Mary S Paur, Charanjit Strohmaier, Elisa A |
AuthorAffiliation | ExxonMobil Research and Engineering Corporate Strategic Research |
AuthorAffiliation_xml | – name: Corporate Strategic Research – name: ExxonMobil Research and Engineering |
Author_xml | – sequence: 1 givenname: Joseph M surname: Falkowski fullname: Falkowski, Joseph M – sequence: 2 givenname: Peter I surname: Ravikovitch fullname: Ravikovitch, Peter I – sequence: 3 givenname: Mary S surname: Abdulkarim fullname: Abdulkarim, Mary S – sequence: 4 givenname: Giovanni M surname: Muraro fullname: Muraro, Giovanni M – sequence: 5 givenname: Sophie F surname: Liu fullname: Liu, Sophie F – sequence: 6 givenname: Charanjit surname: Paur fullname: Paur, Charanjit – sequence: 7 givenname: Elisa A surname: Strohmaier fullname: Strohmaier, Elisa A – sequence: 8 givenname: Simon C surname: Weston fullname: Weston, Simon C |
BookMark | eNptkc1LAzEQxYMoWGsv3oWAFxGqySb7kaPUTyh4qedlNpnV6HZTkxRp_3pTKwrFucxj-M1jeHNE9nvXIyEnnF1yJtSV4REY41LpPTLIWM7GpVTF_q-uqkMyCuGNpaoYK5QaEJgte2g6pK8r450G37ieggnOL6JNsoGAhm5mdI2us9FqaufWwNp1EJG2Hub46fw7tT2Nr0iDM5AwpNEtXOdeVsfkoIUu4OinD8nz3e1s8jCePt0_Tq6nYy24jGOojMC2BCFllUsooWhNxVC2KHmjM93kIjdl1oqyyEqGSkvJWqXSRGoAycWQnG99F959LDHEem6Dxq6DHt0y1FkhCqFKwfOEnu2gb27p-3RdojJWKVXkRaIutpT2LgSPbb3wdg5-VXNWbwKvb_js-jvwSYLZDqxthE2E0YPt_l853a74oH-t_34ovgBgWo8b |
CitedBy_id | crossref_primary_10_1039_D2CC04362A crossref_primary_10_1021_acs_chemmater_4c01815 crossref_primary_10_1038_s41467_022_32332_x |
Cites_doi | 10.1039/b805117h 10.1021/jacs.8b06062 10.1039/C7TA05922A 10.1126/science.1152516 10.1021/jp303907p 10.1002/anie.201410167 10.1063/1.3562232 10.1016/j.micromeso.2013.01.012 10.1039/C5DT03438H 10.1016/S0025-5408(97)00055-X 10.1021/jacs.5b00803 10.1021/acs.jpcc.9b05758 10.1016/j.ccr.2017.11.022 10.1002/ange.201002413 10.1021/jacs.9b05567 10.1021/acs.jpcc.7b10339 10.1039/C0NJ00836B 10.1103/PhysRevLett.77.3865 10.1039/C4CS90059F 10.1021/cm3006953 10.1073/pnas.0602439103 10.1021/cm500407f 10.1021/jacs.5b08362 10.1016/j.micromeso.2013.06.036 10.1126/science.abb3976 10.1021/ja00219a005 10.1039/c39840000541 10.1039/C7SC04266C 10.1039/C8TA09713E 10.1002/aic.15102 10.1021/cr8002642 10.1021/ja5016298 10.1021/ja1089765 10.1021/la1045207 10.1021/ja8039579 10.1002/anie.200503778 10.1126/science.1231451 10.1039/D0TA06830F 10.1038/nature17430 10.1021/jacs.6b09155 10.1103/PhysRevLett.102.073005 10.1021/ja806391k |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta00149c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1432 |
ExternalDocumentID | 10_1039_D1TA00149C d1ta00149c |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-a8d3ef7a344854a7a6fd80e4fe41bc2cb535d72f376270e9c440f9972f4caa413 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 04:30:56 EDT 2025 Mon Jun 30 11:57:00 EDT 2025 Tue Jul 01 01:13:20 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Wed Jan 19 11:26:32 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-a8d3ef7a344854a7a6fd80e4fe41bc2cb535d72f376270e9c440f9972f4caa413 |
Notes | 10.1039/d1ta00149c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3221-2548 0000-0002-2319-0826 0000-0002-7439-5055 |
PQID | 2620899656 |
PQPubID | 2047523 |
PageCount | 8 |
ParticipantIDs | rsc_primary_d1ta00149c proquest_miscellaneous_2636397315 crossref_primary_10_1039_D1TA00149C crossref_citationtrail_10_1039_D1TA00149C proquest_journals_2620899656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-18 |
PublicationDateYYYYMMDD | 2022-01-18 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Park (D1TA00149C/cit21/1) 2006; 103 Trung (D1TA00149C/cit3/1) 2008; 130 Hyla (D1TA00149C/cit40/1) 2019; 123 Garai (D1TA00149C/cit15/1) 2020; 8 Jeffroy (D1TA00149C/cit10/1) 2008; 28 Morris (D1TA00149C/cit24/1) 2012; 112 Du (D1TA00149C/cit28/1) 2015; 137 Rashidi (D1TA00149C/cit35/1) 2016; 62 Fyfe (D1TA00149C/cit8/1) 1988; 110 Siegelman (D1TA00149C/cit17/1) 2019; 141 Kim (D1TA00149C/cit18/1) 2020; 369 Cai (D1TA00149C/cit38/1) 2014; 136 Perdew (D1TA00149C/cit42/1) 1996; 77 Peralta (D1TA00149C/cit6/1) 2013; 173 Du (D1TA00149C/cit45/1) 2017; 121 Silvestre-Albero (D1TA00149C/cit25/1) 2019; 7 Smit (D1TA00149C/cit2/1) 2008; 108 Taylor (D1TA00149C/cit19/1) 2018; 140 Elsaidi (D1TA00149C/cit5/1) 2018; 358 McGuirk (D1TA00149C/cit31/1) 2016; 138 Sakata (D1TA00149C/cit43/1) 2013; 11 Cuadrado-Collados (D1TA00149C/cit37/1) 2017; 5 Aguado (D1TA00149C/cit27/1) 2011; 35 Wharmby (D1TA00149C/cit23/1) 2015; 54 Huang (D1TA00149C/cit20/1) 2006; 45 Krause (D1TA00149C/cit14/1) 2016; 532 Gücüyener (D1TA00149C/cit29/1) 2010; 132 Thompson (D1TA00149C/cit32/1) 2012; 24 Zhou (D1TA00149C/cit1/1) 2014; 43 Tkatchenko (D1TA00149C/cit41/1) 2009; 102 Walker (D1TA00149C/cit11/1) 2010; 122 Zhao (D1TA00149C/cit26/1) 2014; 26 Fyfe (D1TA00149C/cit7/1) 1984 Banerjee (D1TA00149C/cit22/1) 2008; 319 Milner (D1TA00149C/cit16/1) 2018; 9 Munn (D1TA00149C/cit12/1) 2016; 45 Stavitski (D1TA00149C/cit13/1) 2011; 27 Kortunov (D1TA00149C/cit39/1) 2011; 1130 Mentzen (D1TA00149C/cit9/1) 1997; 32 Thompson (D1TA00149C/cit33/1) 2014; 192 Eum (D1TA00149C/cit34/1) 2015; 137 Thallapally (D1TA00149C/cit4/1) 2008; 130 |
References_xml | – issn: December 9, 2014 volume-title: EMM 19 novel zeolitic imidazolate framework material, methods for making same, and uses thereof doi: Weston Afeworki Ni Zengel Stern – issn: 2009 doi: Reyes Ni Paur Kortunov Zengel Deckman Santiesteban – volume: 28 start-page: 3275 year: 2008 ident: D1TA00149C/cit10/1 publication-title: Chem. Commun. doi: 10.1039/b805117h – volume: 140 start-page: 10324 year: 2018 ident: D1TA00149C/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06062 – volume: 5 start-page: 20938 year: 2017 ident: D1TA00149C/cit37/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05922A – volume: 319 start-page: 939 year: 2008 ident: D1TA00149C/cit22/1 publication-title: Science doi: 10.1126/science.1152516 – volume: 112 start-page: 13307 year: 2012 ident: D1TA00149C/cit24/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp303907p – volume: 54 start-page: 6447 year: 2015 ident: D1TA00149C/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410167 – volume: 1130 start-page: 57 year: 2011 ident: D1TA00149C/cit39/1 publication-title: AIP Conf. Proc. doi: 10.1063/1.3562232 – volume: 173 start-page: 1 year: 2013 ident: D1TA00149C/cit6/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.01.012 – volume: 45 start-page: 4162 year: 2016 ident: D1TA00149C/cit12/1 publication-title: Dalton Trans. doi: 10.1039/C5DT03438H – volume: 32 start-page: 813 year: 1997 ident: D1TA00149C/cit9/1 publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(97)00055-X – volume: 137 start-page: 4191 year: 2015 ident: D1TA00149C/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00803 – volume: 123 start-page: 20405 year: 2019 ident: D1TA00149C/cit40/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05758 – volume: 358 start-page: 125 year: 2018 ident: D1TA00149C/cit5/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.11.022 – volume: 122 start-page: 7663 year: 2010 ident: D1TA00149C/cit11/1 publication-title: Angew. Chem. doi: 10.1002/ange.201002413 – volume: 141 start-page: 14171 year: 2019 ident: D1TA00149C/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05567 – volume: 121 start-page: 28090 issue: 50 year: 2017 ident: D1TA00149C/cit45/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10339 – volume: 35 start-page: 546 issue: 3 year: 2011 ident: D1TA00149C/cit27/1 publication-title: New J. Chem. doi: 10.1039/C0NJ00836B – volume: 77 start-page: 3865 year: 1996 ident: D1TA00149C/cit42/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 43 start-page: 5415 year: 2014 ident: D1TA00149C/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS90059F – volume: 24 start-page: 1930 year: 2012 ident: D1TA00149C/cit32/1 publication-title: Chem. Mater. doi: 10.1021/cm3006953 – volume: 103 start-page: 10186 year: 2006 ident: D1TA00149C/cit21/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602439103 – volume: 26 start-page: 1767 year: 2014 ident: D1TA00149C/cit26/1 publication-title: Chem. Mater. doi: 10.1021/cm500407f – volume: 137 start-page: 13603 year: 2015 ident: D1TA00149C/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08362 – volume: 192 start-page: 43 year: 2014 ident: D1TA00149C/cit33/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.06.036 – volume: 369 start-page: 392 year: 2020 ident: D1TA00149C/cit18/1 publication-title: Science doi: 10.1126/science.abb3976 – volume: 110 start-page: 3373 year: 1988 ident: D1TA00149C/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00219a005 – start-page: 541 year: 1984 ident: D1TA00149C/cit7/1 publication-title: Chem. Commun. doi: 10.1039/c39840000541 – volume: 9 start-page: 160 year: 2018 ident: D1TA00149C/cit16/1 publication-title: Chem. Sci. doi: 10.1039/C7SC04266C – volume: 7 start-page: 14552 year: 2019 ident: D1TA00149C/cit25/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09713E – volume: 62 start-page: 525 year: 2016 ident: D1TA00149C/cit35/1 publication-title: AIChE J. doi: 10.1002/aic.15102 – volume: 108 start-page: 4125 year: 2008 ident: D1TA00149C/cit2/1 publication-title: Chem. Rev. doi: 10.1021/cr8002642 – volume: 136 start-page: 7961 year: 2014 ident: D1TA00149C/cit38/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5016298 – volume: 132 start-page: 17704 year: 2010 ident: D1TA00149C/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1089765 – volume: 27 start-page: 3970 year: 2011 ident: D1TA00149C/cit13/1 publication-title: Langmiuir doi: 10.1021/la1045207 – volume: 130 start-page: 16926 year: 2008 ident: D1TA00149C/cit3/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8039579 – volume: 45 start-page: 1557 year: 2006 ident: D1TA00149C/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200503778 – volume: 11 start-page: 193 year: 2013 ident: D1TA00149C/cit43/1 publication-title: Science doi: 10.1126/science.1231451 – volume: 8 start-page: 20420 year: 2020 ident: D1TA00149C/cit15/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06830F – volume: 532 start-page: 348 year: 2016 ident: D1TA00149C/cit14/1 publication-title: Nature doi: 10.1038/nature17430 – volume: 138 start-page: 15019 year: 2016 ident: D1TA00149C/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09155 – volume: 102 start-page: 073005 year: 2009 ident: D1TA00149C/cit41/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.073005 – volume: 130 start-page: 16842 year: 2008 ident: D1TA00149C/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806391k |
SSID | ssj0000800699 |
Score | 2.360066 |
Snippet | Manipulation of materials exhibiting step-shaped isotherms using simple and scalable methods is key to realizing their utility in advanced separation schemes.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1425 |
SubjectTerms | Adsorption Crystal structure Metal-organic frameworks phase transition Phase transitions Sodalite Topology Zeolites |
Title | Tunable hydrocarbon adsorption based on a zeolitic imidazolate framework in the sodalite topology |
URI | https://www.proquest.com/docview/2620899656 https://www.proquest.com/docview/2636397315 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJwkBG8IKqjCS22_ixGhsDAQ-ok_ZWOb6IqF0ytenQ9qf4ixzHdhJEkYCXqLItt_X5cm4-F4ReG5UbKqWMdMZlRFORRjmY1pGhXIE00ZLl1jXw-cvk7Jx-vGAXg8GPXtTSts6P5O3OvJL_oSqMAV1tluw_ULbdFAbgM9AXnkBheP4djbcu8-nbjQI5JNa5DS1Wm2rt-ICVUMreBojxrXZxbuPislDiFuzZWo9NCMwKwY6bSlm13HbTuOrc7b-rrqDlur83lqFf3NF45lJ_wkxTStwlFja--ZCoZWNxWzf-qVgtq---dba7jOjcs1_FdbGsrovadatqIok7J-8sV9vVEiz9S59ydNN5cQE9wuXvvLextmVZ-F29eyO1cSJRnyOnMYttwVM3pPtjrhVuy8Z7aCU9lpxQl1ntxTvoh-lO0RETW3lVJbVozEbZCcg2bLGb3EP7Kdgl6RDtz07mHz61bj2rgE-arqXtDw9FcQl_223wqxrU2TZ769B4plFw5vfRPU9ePHMwe4AGunyI7vbqVT5CwgMO9wCHO8DhBnDYjuEAONwDHG4Bh4sSA-BwABwOgHuMzk9P5sdnke_REUmS0DoSmSLaTAUBM59RMRUTo7JYU6NpkstU5owwNU0NyLF0GmsuKY2NTdYGDiEEaFAHaFhWpX6CcC6VkZLHgtk26FwLo7gSTGjGM8YyMkJvwpEtpC9gb_uorBZNIAXhi3fJfNYc7_EIvWrXXrmyLTtXHYaTX_jXerOwHRoyzsHOGaGX7TS8S_YmTZS62to1xF6Ik4SN0AFQrP2OjsBP_zTxDN3pcH6IhvV6q5-DYlvnLzyYfgI2KawI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+hydrocarbon+adsorption+based+on+a+zeolitic+imidazolate+framework+in+the+sodalite+topology&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Falkowski%2C+Joseph+M&rft.au=Ravikovitch%2C+Peter+I&rft.au=Abdulkarim%2C+Mary+S&rft.au=Muraro%2C+Giovanni+M&rft.date=2022-01-18&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=3&rft.spage=1425&rft.epage=1432&rft_id=info:doi/10.1039%2Fd1ta00149c&rft.externalDocID=d1ta00149c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |