Forest fire detection in aerial vehicle videos using a deep ensemble neural network model

Purpose The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos. Design/methodology/approach Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a s...

Full description

Saved in:
Bibliographic Details
Published inAircraft engineering Vol. 95; no. 8; pp. 1257 - 1267
Main Author Sarikaya Basturk, Nurcan
Format Journal Article
LanguageEnglish
Published Bradford Emerald Publishing Limited 21.07.2023
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN1748-8842
1758-4213
1748-8842
DOI10.1108/AEAT-01-2022-0004

Cover

Loading…
Abstract Purpose The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos. Design/methodology/approach Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models. Findings The presented fusing approach significantly improves the detection accuracy of fire incidents in the input data. Research limitations/implications The computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models. Practical implications The simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images. Social implications By this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high. Originality/value This study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.
AbstractList PurposeThe purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.Design/methodology/approachPresented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models.FindingsThe presented fusing approach significantly improves the detection accuracy of fire incidents in the input data.Research limitations/implicationsThe computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models.Practical implicationsThe simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images.Social implicationsBy this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high.Originality/valueThis study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.
Purpose The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos. Design/methodology/approach Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models. Findings The presented fusing approach significantly improves the detection accuracy of fire incidents in the input data. Research limitations/implications The computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models. Practical implications The simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images. Social implications By this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high. Originality/value This study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.
Author Sarikaya Basturk, Nurcan
Author_xml – sequence: 1
  givenname: Nurcan
  surname: Sarikaya Basturk
  fullname: Sarikaya Basturk, Nurcan
  email: nurcanb@erciyes.edu.tr
BookMark eNp9kU1LxDAQhoMo-PkDvAU8VzNN2qTHRfyCBS968BSyyVSjbbIm7Yr_3pb1ooinDOR9ZphnDsluiAEJOQV2DsDUxeJq8VAwKEpWlgVjTOyQA5CVKkQJfHeuhSqUEuU-Ocz5lTGoK8YPyNN1TJgH2vqE1OGAdvAxUB-oweRNRzf44m2HdOMdxkzH7MMzNVMU1xRDxn41fQYc05QNOHzE9Eb76LA7Jnut6TKefL9H5PH66uHytlje39xdLpaF5SCGwigjlAVoUArA2siWr1qnKlPVQtaNs2blXAlONgIsGF4zrkpl2waVRdNIfkTOtn3XKb6P0y76NY4pTCN1qXhTg5RNM6XkNmVTzDlhq60fzLzrkIzvNDA9e9SzR81Azx717HEi4Re5Tr436fNfhm0Z7HES4_5EfpyLfwGeO4Xu
CitedBy_id crossref_primary_10_1080_00102202_2024_2372689
crossref_primary_10_3233_JIFS_240531
crossref_primary_10_3390_info15090538
Cites_doi 10.1016/j.firesaf.2019.03.004
10.1007/s11760-018-1319-4
10.3390/f10050408
10.1007/s10694-017-0665-z
10.3390/s18030712
10.1016/j.proeng.2017.12.034
10.1073/pnas.1617394114
10.1109/ACCESS.2018.2812835
10.1109/ISRITI51436.2020.9315359
10.1016/j.firesaf.2017.06.012
10.1007/s11042-018-5978-5
10.1109/ACCESS.2017.2747399
10.1177/1042391503013002003
10.3390/f13060963
10.1016/j.neucom.2017.04.083
10.3233/JIFS-171307
10.1038/nature14539
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7RQ
7TB
7WY
7XB
8AF
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
HCIFZ
K6~
KB.
L.-
L6V
L7M
M0F
M1Q
M2P
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/AEAT-01-2022-0004
DatabaseName CrossRef
Career & Technical Education Database
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ABI/INFORM Trade & Industry
Military Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ABI/INFORM Trade & Industry
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest One Business

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-4213
1748-8842
EndPage 1267
ExternalDocumentID 10_1108_AEAT_01_2022_0004
10.1108/AEAT-01-2022-0004
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 23M
4.4
490
5GY
6J9
7RQ
7WY
AAIKC
AAMNW
AATHL
ABJCF
ABPTK
ACBEA
ACGOD
ACIWK
ADFRT
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
EBS
GEI
GQ.
HCIFZ
H~9
IJT
J1Y
M0F
M42
P2P
RIG
SBBZN
TN5
UNMZH
V1G
8AF
8FE
8FG
8FW
AAYXX
AFKRA
AFZLO
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CZ9
D1I
DWQXO
GNUQQ
K6~
KB.
KC.
L6V
M1Q
M2P
M2Q
M7S
P62
PDBOC
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PTHSS
0R~
70U
7TB
7XB
8FD
8R4
8R5
AAMCF
AAUDR
ABIJV
ABJNI
ABKQV
ABSDC
ABYQI
ACGFS
ACZLT
ADOMW
AEBZA
AFYHH
AIDUJ
AJEBP
AODMV
AUCOK
CS3
ECCUG
F28
FNNZZ
FR3
GEL
H13
H8D
HZ~
JI-
JL0
KBGRL
L.-
L7M
O9-
PKEHL
PQEST
PQUKI
PRINS
Q2X
Q9U
RWL
SC5
TAE
ID FETCH-LOGICAL-c314t-a8a48c119e741e6a7f3bfd85a564769dcabdd21d7941c1a3603828cf9e8cea973
IEDL.DBID 8FG
ISSN 1748-8842
IngestDate Sat Aug 16 18:53:07 EDT 2025
Wed Jul 30 23:53:05 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jan 16 21:21:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Aerial vehicle videos
Deep neural networks
Ensemble model
Forest fire detection
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a8a48c119e741e6a7f3bfd85a564769dcabdd21d7941c1a3603828cf9e8cea973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2839617799
PQPubID 32113
PageCount 11
ParticipantIDs crossref_citationtrail_10_1108_AEAT_01_2022_0004
emerald_primary_10_1108_AEAT-01-2022-0004
crossref_primary_10_1108_AEAT_01_2022_0004
proquest_journals_2839617799
PublicationCentury 2000
PublicationDate 2023-07-21
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Aircraft engineering
PublicationYear 2023
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023072005333749800_ref004) 2020
(key2023072005333749800_ref033) 2017; 92
(key2023072005333749800_ref015) 2003; 13
(key2023072005333749800_ref030) 2017
(key2023072005333749800_ref017) 2018; 288
key2023072005333749800_ref008
(key2023072005333749800_ref011) 2018; 21
key2023072005333749800_ref007
(key2023072005333749800_ref040) 2016
(key2023072005333749800_ref019) 2018; 6
(key2023072005333749800_ref022) 2017
(key2023072005333749800_ref038) 2018; 34
(key2023072005333749800_ref043) 2018; 12
(key2023072005333749800_ref020) 2021
(key2023072005333749800_ref009) 2019; 10
(key2023072005333749800_ref016) 2017; 77
(key2023072005333749800_ref018) 2018; 49
(key2023072005333749800_ref026) 2021; 1918
(key2023072005333749800_ref032) 2016
(key2023072005333749800_ref006) 2018
(key2023072005333749800_ref037) 2017; 5
(key2023072005333749800_ref002) 2017; 114
(key2023072005333749800_ref036) 2021; 12
(key2023072005333749800_ref012) 2015; 521
(key2023072005333749800_ref042) 2018; 18
(key2023072005333749800_ref039) 2018
(key2023072005333749800_ref035) 2019; 105
(key2023072005333749800_ref005) 2022; 13
(key2023072005333749800_ref024) 2016
(key2023072005333749800_ref031) 2020
(key2023072005333749800_ref014) 2017
(key2023072005333749800_ref021) 2017; 53
(key2023072005333749800_ref025) 2015; 28
(key2023072005333749800_ref034) 2017
(key2023072005333749800_ref003) 2018
(key2023072005333749800_ref010) 2018; 77
(key2023072005333749800_ref041) 2018; 211
(key2023072005333749800_ref027) 2020
(key2023072005333749800_ref028) 2015
(key2023072005333749800_ref023) 2018
(key2023072005333749800_ref029) 2018
(key2023072005333749800_ref013) 2017
(key2023072005333749800_ref001) 2018
References_xml – start-page: 779
  year: 2016
  ident: key2023072005333749800_ref024
  article-title: You only look once: unified, real-time object detection
– start-page: 2980
  year: 2017
  ident: key2023072005333749800_ref014
  article-title: Focal loss for dense object detection
– start-page: 299
  year: 2017
  ident: key2023072005333749800_ref030
  article-title: Video-based fire detection with saliency detection and convolutional neural networks
– volume: 105
  start-page: 277
  year: 2019
  ident: key2023072005333749800_ref035
  article-title: Video smoke detection based on deep saliency network
  publication-title: Fire Safety Journal
  doi: 10.1016/j.firesaf.2019.03.004
– volume: 12
  start-page: 1619
  issue: 8
  year: 2018
  ident: key2023072005333749800_ref043
  article-title: A convolutional neural network-based flame detection method in video sequence
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-018-1319-4
– volume: 49
  start-page: 1419
  issue: 7
  year: 2018
  ident: key2023072005333749800_ref018
  article-title: Efficient deep CNN-based fire detection and localization in video surveillance applications
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 10
  start-page: 408
  issue: 5
  year: 2019
  ident: key2023072005333749800_ref009
  article-title: Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park
  publication-title: Forests
  doi: 10.3390/f10050408
– start-page: 7263
  year: 2017
  ident: key2023072005333749800_ref022
  article-title: Yolo9000: better, faster, stronger
– volume: 53
  start-page: 1943
  issue: 6
  year: 2017
  ident: key2023072005333749800_ref021
  article-title: Deep belief network for smoke detection
  publication-title: Fire Technology
  doi: 10.1007/s10694-017-0665-z
– volume: 18
  start-page: 712
  issue: 3
  year: 2018
  ident: key2023072005333749800_ref042
  article-title: Saliency detection and deep learning-based wildfire identification in UAV imagery
  publication-title: Sensors
  doi: 10.3390/s18030712
– volume: 12
  start-page: 1
  issue: 2
  year: 2021
  ident: key2023072005333749800_ref036
  article-title: A forest fire detection system based on ensemble learning
  publication-title: Forests
– volume: 211
  start-page: 441
  year: 2018
  ident: key2023072005333749800_ref041
  article-title: Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2017.12.034
– volume: 114
  start-page: 2946
  issue: 11
  year: 2017
  ident: key2023072005333749800_ref002
  article-title: Human-started wildfires expand the fire niche across the United States
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1617394114
– volume: 6
  start-page: 18174
  year: 2018
  ident: key2023072005333749800_ref019
  article-title: Convolutional neural networks-based fire detection in surveillance videos
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812835
– start-page: 1
  volume-title: 2021 International Conference on Intelligent Technologies (CONIT)
  year: 2021
  ident: key2023072005333749800_ref020
  article-title: Forest fire prediction using machine learning techniques
– ident: key2023072005333749800_ref008
– start-page: 48
  volume-title: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)
  year: 2020
  ident: key2023072005333749800_ref027
  article-title: Prediction of forest fire occurrence in peatlands using machine learning approaches
  doi: 10.1109/ISRITI51436.2020.9315359
– start-page: V003T47A002-1
  volume-title: ASME 2015 Dynamic Systems and Control Conference
  year: 2015
  ident: key2023072005333749800_ref028
  article-title: Image processing and localization for detecting and tracking wildland fires
– start-page: 150
  year: 2016
  ident: key2023072005333749800_ref032
– volume: 92
  start-page: 188
  year: 2017
  ident: key2023072005333749800_ref033
  article-title: Computer vision for wildfire research: an evolving image dataset for processing and analysis
  publication-title: Fire Safety Journal
  doi: 10.1016/j.firesaf.2017.06.012
– start-page: 568
  year: 2016
  ident: key2023072005333749800_ref040
  article-title: Deep convolutional neural networks for forest fire detection
– start-page: 10305
  volume-title: IEEE 37th Chinese Control Conference
  year: 2018
  ident: key2023072005333749800_ref003
  article-title: A UAV-based forest fire detection algorithm using convolutional neural network
– start-page: 1804
  year: 2018
  ident: key2023072005333749800_ref023
  article-title: Yolov3: an incremental improvement
– start-page: 1
  volume-title: 2020 Systems of Signals Generating and Processing in the Field of on Board Communications
  year: 2020
  ident: key2023072005333749800_ref031
  article-title: An integrated approach to the regression problem in forest fires detection
– start-page: 252
  year: 2017
  ident: key2023072005333749800_ref013
  article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle
– start-page: 1954
  year: 2017
  ident: key2023072005333749800_ref034
  article-title: An adaptive threshold deep learning method for fire and smoke detection
– volume: 77
  start-page: 29283
  issue: 22
  year: 2018
  ident: key2023072005333749800_ref010
  article-title: Real-time video fire smoke detection by utilizing spatial-temporal ConvNet features
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-5978-5
– volume: 5
  start-page: 18429
  year: 2017
  ident: key2023072005333749800_ref037
  article-title: A deep normalization and convolutional neural network for image smoke detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2747399
– volume: 28
  start-page: 91
  year: 2015
  ident: key2023072005333749800_ref025
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume-title: Proc. SPIE 10649, Pattern Recognition and Tracking XXIX
  year: 2018
  ident: key2023072005333749800_ref001
  article-title: Wildland fires detection and segmentation using deep learning
– start-page: 416
  year: 2018
  ident: key2023072005333749800_ref029
  article-title: Flame detection using deep learning
– start-page: 1
  volume-title: 2020 8th International Conference on Information and Communication Technology (ICoICT)
  year: 2020
  ident: key2023072005333749800_ref004
  article-title: Experimental exploratory of temporal sampling forest in forest fire regression andclassification
– volume: 13
  start-page: 129
  issue: 2
  year: 2003
  ident: key2023072005333749800_ref015
  article-title: Review of recent developments in fire detection technologies
  publication-title: Journal of Fire Protection Engineering
  doi: 10.1177/1042391503013002003
– ident: key2023072005333749800_ref007
– volume: 13
  start-page: 963
  issue: 6
  year: 2022
  ident: key2023072005333749800_ref005
  article-title: Forest fire detection of FY-3D using genetic algorithm and brightness temperature change
  publication-title: Forests
  doi: 10.3390/f13060963
– volume: 288
  start-page: 30
  year: 2018
  ident: key2023072005333749800_ref017
  article-title: Early fire detection using convolutional neural networks during surveillance for effective disaster management
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.083
– volume: 21
  start-page: 173
  issue: 1
  year: 2018
  ident: key2023072005333749800_ref011
  article-title: A study on fire detection using faster R-CNN and ResNet
  publication-title: Information: An International Interdisciplinary Journal
– volume: 1918
  start-page: 42043
  issue: 4
  year: 2021
  ident: key2023072005333749800_ref026
  article-title: Prediction of forest fire using ensemble method
  publication-title: Journal of Physics: Conference Series
– start-page: 108065X-1-8
  year: 2018
  ident: key2023072005333749800_ref039
  article-title: Early wildfire smoke detection based on improved codebook model and convolutional neural networks
– volume: 77
  start-page: 15075
  issue: 12
  year: 2017
  ident: key2023072005333749800_ref016
  article-title: Fire smoke detection algorithm based on motion characteristic and convolutional neural networks
  publication-title: Multimedia Tools and Applications
– start-page: 1558
  year: 2018
  ident: key2023072005333749800_ref006
  article-title: Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection
– volume: 34
  start-page: 2273
  issue: 4
  year: 2018
  ident: key2023072005333749800_ref038
  article-title: Classification of high resolution hyperspectral remote sensing data using deep neural networks
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-171307
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: key2023072005333749800_ref012
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0016503
ssj0000497
Score 2.3067207
Snippet Purpose The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos....
PurposeThe purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1257
SubjectTerms Algorithms
Artificial neural networks
Codes
Decision trees
Deep learning
Forest & brush fires
Forest fire detection
Forest fires
Localization
Machine learning
Methods
Neural networks
Regions
Regression analysis
Support vector machines
Surveillance
Unmanned aerial vehicles
Video
Title Forest fire detection in aerial vehicle videos using a deep ensemble neural network model
URI https://www.emerald.com/insight/content/doi/10.1108/AEAT-01-2022-0004/full/html
https://www.proquest.com/docview/2839617799
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0jhy8KBSbJm2Tk0zZHIJDZIN5KmmSqqDdtNW_37w2c05k57xc3nt533k_hE6l4oEMM5hUi43HqDaeYETB3ts0tf6WZyH8Hb4bRoMxu52EE1dwK9xY5dwmVoZaTxXUyC-sGxTW28ZCXM7ePUCNgu6qg9BYR01iPQ3oOe_fLCwxq8FVYsY9zlngupqAfNPtdUeQSQcwzQ6US37pz-fchYGuvE5_G225cBF3a_nuoDWT76LNX0sE99AjoGsWJc6s8cLalNVsVY5fciwr7cJf5hkuY_hxNy0wTLo_YWlJzQzbJNa8pfYQ9lpa2ryeCscVQM4-Gvd7o-uB5wATPEUJKz3JJeOKEGFsnGAiGWc0zTQPZRixOBJayVTrgOgYxEEkjXxqEy6VCcOVkSKmB6iRT3NziDANMxb6vqShkQx2krFAafuAFYvSVDDRQv6cXYly28QB1OI1qbIKnyfA4cQnCXAYWtyshc5_rszqVRqriM-cDP6lXRJdC7XnUkrcCyyShb4crT4-RhsAIQ_12oC0UaP8-DQnNtAo006lTR3UvOoN7x--AeEuzkM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4inGMwc4gFTRR9omB4QGDI3XhNCQ4FTSJAUk6AYrIP4Uv5G4DwYIceMct6ps11-c2P4A1oRkrvATrFQLtUU9pS1OHYlzb-PY4C1LfOwdPm0HrQt6dOlfDsF71QuDZZVVTMwDtepKPCPfMjDIDdqGnO_0Hi1kjcLb1YpCo3CLY_32alK2_vbhvrHvuuseNDt7LatkFbCk59DMEkxQJh2HawOmOhBh4sWJYr7wAxoGXEkRK-U6KsRvdoQX2J7JSmTCNZNa8NAz7x2GEYodrTUY2W22z84HsZ8WdC4hZRZj1C3vUZFrp9FsdDB3d7F-HiW_IeGPduABJOQ4dzAJE-UGlTQKj5qCIZ1Ow_iXsYUzcIV8nv2MJCZcEqWzvJorJXcpEbk_kxd9iw8T7PHr9gnW1t8QYUR1j5i0WT_EZhEnaRrZtKhDJzklzyxc_Isy56CWdlM9D8TzE-rbtvB8LShOQaOuVCZkSBrEMae8DnalrkiW88uRRuM-yvMYm0Wo4ch2ItQwXqrTOmx-PtIrhnf8JbxR2uBX2W-mq8NSZaWo_Of70cBDF_5eXoXRVuf0JDo5bB8vwhgS2ONpsessQS17etbLZpuTxSulbxG4_m93_gCf3Qux
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+fire+detection+in+aerial+vehicle+videos+using+a+deep+ensemble+neural+network+model&rft.jtitle=Aircraft+engineering+and+aerospace+technology&rft.au=Sarikaya+Basturk%2C+Nurcan&rft.date=2023-07-21&rft.issn=1748-8842&rft.eissn=1748-8842&rft.volume=95&rft.issue=8&rft.spage=1257&rft.epage=1267&rft_id=info:doi/10.1108%2FAEAT-01-2022-0004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_AEAT_01_2022_0004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-8842&client=summon