Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)
New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ ca...
Saved in:
Published in | Data mining and knowledge discovery Vol. 38; no. 3; pp. 913 - 937 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-023-00982-0 |
Cover
Loading…
Abstract | New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub:
https://github.com/cruiseresearchgroup/forecasting-on-new-roads
. |
---|---|
AbstractList | New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub:
https://github.com/cruiseresearchgroup/forecasting-on-new-roads
. New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub:https://github.com/cruiseresearchgroup/forecasting-on-new-roads. |
Author | Shao, Wei Prabowo, Arian Koniusz, Piotr Salim, Flora D. Xue, Hao |
Author_xml | – sequence: 1 givenname: Arian orcidid: 0000-0002-0459-354X surname: Prabowo fullname: Prabowo, Arian organization: Computing Technologies, RMIT, Data61, CSIRO, Computer Science and Engineering, UNSW – sequence: 2 givenname: Hao surname: Xue fullname: Xue, Hao organization: Computer Science and Engineering, UNSW – sequence: 3 givenname: Wei surname: Shao fullname: Shao, Wei organization: Data61, CSIRO – sequence: 4 givenname: Piotr surname: Koniusz fullname: Koniusz, Piotr organization: Data61, CSIRO, Engineering, Computing and Cybernetics, ANU – sequence: 5 givenname: Flora D. surname: Salim fullname: Salim, Flora D. email: flora.salim@unsw.edu.au organization: Computer Science and Engineering, UNSW |
BookMark | eNp9kMtKAzEUhoNUsK2-gKsBN7qIniQnc1lK8QZCBSu4C5mZpEypSU2mim_js_hkpo7gztW58P3nwDchI-edIeSYwTkDKC4ig5yVFLigAFXJKeyRMZOFoIXMn0epFyVSWTI4IJMYVwAguYAxmS-CtrZrMuuDaXTsO7fMvMucec-C123MtnG3ihvdd3qdNd71YYe9mWwTDE1D5xLw9Xn6OHtYnB2SfavX0Rz91il5ur5azG7p_fzmbnZ5TxvBsKc6Z1JCW2NZ2baVTEisCkDGcqwktrUusOIImFvRaNNWzGCLnDW8xtqC5WJKToa7m-Bftyb2auW3waWXSoAEWVSAmCg-UE3wMQZj1SZ0Lzp8KAZqJ04N4lQSp37EKUghMYRigt3ShL_T_6S-AWnici4 |
Cites_doi | 10.1109/TITS.2021.3083957 10.1109/CVPR52688.2022.01861 10.3141/1678-22 10.1109/CVPR52729.2023.02298 10.1061/(ASCE)0733-947X(1995)121:3(249) 10.1016/j.neucom.2021.04.136 10.1145/3360322.3360853 10.1145/3459637.3482000 10.1016/j.trc.2020.102671 10.1145/3534678.3539422 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1145/3557915.3560939 10.1145/3576842.3582362 10.1007/978-3-031-19803-8_11 10.24963/ijcai.2018/505 10.1016/S0968-090X(97)82903-8 10.1109/YAC.2016.7804912 10.1016/j.trc.2011.12.006 10.3141/1857-09 10.1145/3394486.3403118 10.1109/CVPR52688.2022.00887 10.1007/978-3-031-43430-3_1 10.14778/3551793.3551827 10.1007/978-3-031-26316-3_19 10.1145/3534678.3539425 10.24963/ijcai.2019/264 10.1109/ICDMW58026.2022.00101 10.1145/3347146.3359079 10.1609/aaai.v37i9.26336 10.1109/T-C.1974.223784 10.1609/aaai.v36i8.20881 10.1007/978-3-030-01219-9_38 10.1007/978-3-030-69538-5_23 10.1007/978-3-031-20044-1_18 10.3141/1776-25 10.1177/0361198120930010 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-023-00982-0 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 937 |
ExternalDocumentID | 10_1007_s10618_023_00982_0 |
GrantInformation_xml | – fundername: University of New South Wales – fundername: data61 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c314t-a61550db489fdd5135497041164954dba74924046f3caed91e4d421c2b4bf0f23 |
IEDL.DBID | 8FG |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 21:24:20 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Spatio-temporal Cyber-physical systems Sensor networks Intelligent transport systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-a61550db489fdd5135497041164954dba74924046f3caed91e4d421c2b4bf0f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0459-354X |
OpenAccessLink | https://link.springer.com/10.1007/s10618-023-00982-0 |
PQID | 3050579044 |
PQPubID | 43030 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3050579044 crossref_primary_10_1007_s10618_023_00982_0 springer_journals_10_1007_s10618_023_00982_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240500 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Yue Z, Wang Y, Duan J, Yang T, Huang C, Tong Y, Xu B (2022) Ts2vec: towards universal representation of time series Prabowo A, Shao W, Xue H, Koniusz P, Salim FD (2023) Because every sensor is unique, so is every pair: Handling dynamicity in traffic forecasting. In: IoTDI, pp 93–104. Association for Computing Machinery, New York, NY, USA Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) NeurIPS, pp 4077–4087 van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: A Generative Model for Raw Audio. In: Proc. 9th ISCA workshop on speech synthesis workshop (SSW 9), p 125 CuiZLinLPuZWangYGraph markov network for traffic forecasting with missing dataTransp Res Part C Emerg Technol202011710.1016/j.trc.2020.102671 Prabowo A, Chen K, Xue H, Sethuvenkatraman S, Salim FD (2023) Continually learning out-of-distribution spatiotemporal data for robust energy forecasting. In: ECML PKDD. Springer Prabowo A, Koniusz P, Shao W, Salim F (2019) Coltrane: convolutional trajectory network for deep map inference. BuildSys, p 10. Association for Computing Machinery, New York, USA Zhu H, Koniusz, P (2022) EASE: Unsupervised discriminant subspace learning for transductive few-shot learning. CVPR Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. IJCAI Liang X, Wu L, Li J, Wang Y, Meng Q, Qin T, Chen W, Zhang M, Liu T-Y (2021) R-drop: regularized dropout for neural networks. In: NeurIPS Zhang Y, Zhu H, Song Z, Koniusz P, King I (2023) Spectral feature augmentation for graph contrastive learning and beyond. In: AAAI Zhu H, Koniusz P (2021) Simple spectral graph convolution. In: ICLR LeeSFambroDBApplication of subset autoregressive integrated moving average model for short-term freeway traffic volume forecastingTransp Res Record19991678117918810.3141/1678-22 Oord A.v.d, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 AhmedNNatarajanTRaoKRDiscrete cosine transformIEEE Trans Comput19741001909335655510.1109/T-C.1974.223784 WilliamsBMHoelLAModeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical resultsJ Transp Eng2003129666467210.1061/(ASCE)0733-947X(2003)129:6(664) BrownTMannBRyderNSubbiahMKaplanJDDhariwalPNeelakantanAShyamPSastryGAskellALanguage models are few-shot learnersNeurIPS20203318771901 Baevski A, Hsu W-N, Xu Q, Babu A, Gu J, Auli M (2022) Data2vec: a general framework for self-supervised learning in speech, vision and language. arXiv preprint arXiv:2202.03555 ChenCWangYLiLHuJZhangZThe retrieval of intra-day trend and its influence on traffic predictionTransp Res Part C Emerg Technol20122210311810.1016/j.trc.2011.12.006 DefferrardMBressonXVandergheynstPConvolutional neural networks on graphs with fast localized spectral filteringNeurIPS20162938443852 Van Der VoortMDoughertyMWatsonSCombining kohonen maps with arima time series models to forecast traffic flowTransp Res Part C Emerg Technol19964530731810.1016/S0968-090X(97)82903-8 Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: YAC, pp 324–328. IEEE Shao H (2020) Deep learning approaches for traffic prediction. PhD thesis, Nanyang Technological University, Nanyang Wang L, Koniusz P (2022) Uncertainty-dtw for time series and sequences. In: ECCV, pp 176–195. Springer Wang T, Isola P (2020) Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML Li R, Zhong T, Jiang X, Trajcevski G, Wu J, Zhou F (2022) Mining spatio-temporal relations via self-paced graph contrastive learning. In: SIGKDD, pp. 936–944 Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachT-ITS2014162865873 Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: SIGKDD Chen M, Radford A, Child R, Wu J, Jun H, Luan D, Sutskever I (2020) Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR Jiang R, Yin D, Wang Z, Wang Y, Deng J, Liu H, Cai Z, Deng J, Song X, Shibasaki R (2021) Dl-traff: survey and benchmark of deep learning models for urban traffic prediction. CIKM Wang L, Liu J, Koniusz P (2021) 3D skeleton-based few-shot action recognition with JEANIE is not so naïve. arXiv preprint arXiv: 2112.12668 KamarianakisYPrastacosPForecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approachesTransp Res Record200318571748410.3141/1857-09 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI Zhu H, Sun K, Koniusz P (2021) Contrastive laplacian eigenmaps. NeurIPS Zhu H, Koniusz P (2023) Transductive few-shot learning with prototype-based label propagation by iterative graph refinement. CVPR ShaoZZhangZWeiWWangFXuYCaoXJensenCSDecoupled dynamic spatial-temporal graph neural network for traffic forecastingProc VLDB Endow202215112733274610.14778/3551793.3551827 Zhang S, Murray N, Wang L, Koniusz P (2022) Time-rEversed diffusion tensor transformer: a new TENET of few-shot object detection. In: ECCV. Springer WilliamsBMMultivariate vehicular traffic flow prediction: evaluation of arimax modelingTransp Res Record20011776119420010.3141/1776-25 Zhang Y, Zhu H, Song Z, Koniusz P, King I (2022) Costa: covariance-preserving feature augmentation for graph contrastive learning. In: SIGKDD Roth A, Liebig T (2022) Forecasting unobserved node states with spatio-temporal graph neural networks. In: Data Mining Workshops ICDMW’22 Zhang S, Wang L, Murray N, Koniusz P (2022) Kernelized few-shot object detection with efficient integral aggregation. In: CVPR Prabowo A (2022) Spatiotemporal deep learning. PhD thesis, RMIT University ShaoWPrabowoAZhaoSKoniuszPSalimFDPredicting flight delay with spatio-temporal trajectory convolutional network and airport situational awareness mapNeurocomputing202247228029310.1016/j.neucom.2021.04.136 Ahmed MS, Cook AR (1979) Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques vol. 722. Transportation Research Record Zhang S, Luo D, Wang L, Koniusz P (2020) Few-shot object detection by second-order pooling. In: ACCV Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR Lin T-Y, Maji S, Koniusz P (2018) Second-order democratic aggregation. In: ECCV Shao W, Prabowo A, Zhao S, Tan S, Koniusz P, Chan J, Hei X, Feest B, Salim FD (2019) Flight delay prediction using airport situational awareness map. SIGSPATIAL ’19, pp 432–435. Association for Computing Machinery, New York, NY, USA MallickTBalaprakashPRaskEMacfarlaneJGraph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecastingTransp Res Record20202674947348810.1177/0361198120930010 Shang, C., Chen, J., Bi, J (2021) Discrete graph structure learning for forecasting multiple time series. In: ICLR HamedMMAl-MasaeidHRSaidZMBShort-term prediction of traffic volume in urban arterialsJ Transp Eng1995121324925410.1061/(ASCE)0733-947X(1995)121:3(249) Wang L, Koniusz P (2022)Temporal-viewpoint transportation plan for skeletal few-shot action recognition. In: ACCV Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting: Does it make a difference? T-ITS Zhu H, Koniusz P (2022) Generalized laplacian eigenmaps. NeurIPS Prabowo A, Xue H, Shao W, Koniusz P, Salim FD (2023) Message Passing Neural Networks for Traffic Forecasting LippiMBertiniMFrasconiPShort-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learningTITS2013142871882 JeongY-SByonY-JCastro-NetoMMEasaSMSupervised weighting-online learning algorithm for short-term traffic flow predictionTITS201314417001707 Liu X, Liang Y, Huang C, Zheng Y, Hooi B, Zimmermann R (2022) When do contrastive learning signals help spatio-temporal graph forecasting? In: SIGSPATIAL Van Den OordADielemanSZenHSimonyanKVinyalsOGravesAKalchbrennerNSeniorAWKavukcuogluKWavenet: A generative model for raw audioSSW20161252 S Lee (982_CR16) 1999; 1678 W Shao (982_CR35) 2022; 472 982_CR17 982_CR18 982_CR25 982_CR26 982_CR20 982_CR21 982_CR22 982_CR60 N Ahmed (982_CR2) 1974; 100 982_CR61 Y Lv (982_CR23) 2014; 16 982_CR62 C Chen (982_CR6) 2012; 22 Y Kamarianakis (982_CR15) 2003; 1857 Z Cui (982_CR9) 2020; 117 982_CR49 MM Hamed (982_CR12) 1995; 121 982_CR56 982_CR57 982_CR14 982_CR58 982_CR59 982_CR52 982_CR53 982_CR54 982_CR11 Y-S Jeong (982_CR13) 2013; 14 982_CR55 M Van Der Voort (982_CR41) 1996; 4 T Mallick (982_CR24) 2020; 2674 982_CR50 A Van Den Oord (982_CR39) 2016; 125 982_CR51 T Brown (982_CR5) 2020; 33 Z Shao (982_CR36) 2022; 15 982_CR38 982_CR45 982_CR48 982_CR42 982_CR43 982_CR44 BM Williams (982_CR46) 2001; 1776 982_CR40 M Defferrard (982_CR10) 2016; 29 982_CR8 982_CR7 982_CR4 982_CR3 982_CR1 BM Williams (982_CR47) 2003; 129 982_CR27 M Lippi (982_CR19) 2013; 14 982_CR28 982_CR29 982_CR34 982_CR37 982_CR30 982_CR31 982_CR32 982_CR33 |
References_xml | – reference: Ahmed MS, Cook AR (1979) Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques vol. 722. Transportation Research Record – reference: LeeSFambroDBApplication of subset autoregressive integrated moving average model for short-term freeway traffic volume forecastingTransp Res Record19991678117918810.3141/1678-22 – reference: Liang X, Wu L, Li J, Wang Y, Meng Q, Qin T, Chen W, Zhang M, Liu T-Y (2021) R-drop: regularized dropout for neural networks. In: NeurIPS – reference: Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR – reference: Zhang Y, Zhu H, Song Z, Koniusz P, King I (2023) Spectral feature augmentation for graph contrastive learning and beyond. In: AAAI – reference: JeongY-SByonY-JCastro-NetoMMEasaSMSupervised weighting-online learning algorithm for short-term traffic flow predictionTITS201314417001707 – reference: WilliamsBMHoelLAModeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical resultsJ Transp Eng2003129666467210.1061/(ASCE)0733-947X(2003)129:6(664) – reference: Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI – reference: Shao H (2020) Deep learning approaches for traffic prediction. PhD thesis, Nanyang Technological University, Nanyang – reference: Wang T, Isola P (2020) Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML – reference: MallickTBalaprakashPRaskEMacfarlaneJGraph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecastingTransp Res Record20202674947348810.1177/0361198120930010 – reference: Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. IJCAI – reference: Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: SIGKDD – reference: Van Den OordADielemanSZenHSimonyanKVinyalsOGravesAKalchbrennerNSeniorAWKavukcuogluKWavenet: A generative model for raw audioSSW20161252 – reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: YAC, pp 324–328. IEEE – reference: Roth A, Liebig T (2022) Forecasting unobserved node states with spatio-temporal graph neural networks. In: Data Mining Workshops ICDMW’22 – reference: Shao W, Prabowo A, Zhao S, Tan S, Koniusz P, Chan J, Hei X, Feest B, Salim FD (2019) Flight delay prediction using airport situational awareness map. SIGSPATIAL ’19, pp 432–435. Association for Computing Machinery, New York, NY, USA – reference: Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR – reference: ShaoWPrabowoAZhaoSKoniuszPSalimFDPredicting flight delay with spatio-temporal trajectory convolutional network and airport situational awareness mapNeurocomputing202247228029310.1016/j.neucom.2021.04.136 – reference: Oord A.v.d, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 – reference: Prabowo A, Shao W, Xue H, Koniusz P, Salim FD (2023) Because every sensor is unique, so is every pair: Handling dynamicity in traffic forecasting. In: IoTDI, pp 93–104. Association for Computing Machinery, New York, NY, USA – reference: Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) NeurIPS, pp 4077–4087 – reference: Zhang Y, Zhu H, Song Z, Koniusz P, King I (2022) Costa: covariance-preserving feature augmentation for graph contrastive learning. In: SIGKDD – reference: Lin T-Y, Maji S, Koniusz P (2018) Second-order democratic aggregation. In: ECCV – reference: Wang L, Koniusz P (2022) Uncertainty-dtw for time series and sequences. In: ECCV, pp 176–195. Springer – reference: Zhu H, Koniusz P (2022) Generalized laplacian eigenmaps. NeurIPS – reference: Zhu H, Koniusz P (2021) Simple spectral graph convolution. In: ICLR – reference: Prabowo A, Chen K, Xue H, Sethuvenkatraman S, Salim FD (2023) Continually learning out-of-distribution spatiotemporal data for robust energy forecasting. In: ECML PKDD. Springer – reference: van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: A Generative Model for Raw Audio. In: Proc. 9th ISCA workshop on speech synthesis workshop (SSW 9), p 125 – reference: Zhang S, Luo D, Wang L, Koniusz P (2020) Few-shot object detection by second-order pooling. In: ACCV – reference: Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS – reference: Zhang S, Murray N, Wang L, Koniusz P (2022) Time-rEversed diffusion tensor transformer: a new TENET of few-shot object detection. In: ECCV. Springer – reference: Prabowo A, Xue H, Shao W, Koniusz P, Salim FD (2023) Message Passing Neural Networks for Traffic Forecasting – reference: Shang, C., Chen, J., Bi, J (2021) Discrete graph structure learning for forecasting multiple time series. In: ICLR – reference: Prabowo A, Koniusz P, Shao W, Salim F (2019) Coltrane: convolutional trajectory network for deep map inference. BuildSys, p 10. Association for Computing Machinery, New York, USA – reference: AhmedNNatarajanTRaoKRDiscrete cosine transformIEEE Trans Comput19741001909335655510.1109/T-C.1974.223784 – reference: Wang L, Liu J, Koniusz P (2021) 3D skeleton-based few-shot action recognition with JEANIE is not so naïve. arXiv preprint arXiv: 2112.12668 – reference: CuiZLinLPuZWangYGraph markov network for traffic forecasting with missing dataTransp Res Part C Emerg Technol202011710.1016/j.trc.2020.102671 – reference: Zhu H, Koniusz, P (2022) EASE: Unsupervised discriminant subspace learning for transductive few-shot learning. CVPR – reference: Zhu H, Sun K, Koniusz P (2021) Contrastive laplacian eigenmaps. NeurIPS – reference: Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting: Does it make a difference? T-ITS – reference: ChenCWangYLiLHuJZhangZThe retrieval of intra-day trend and its influence on traffic predictionTransp Res Part C Emerg Technol20122210311810.1016/j.trc.2011.12.006 – reference: Prabowo A (2022) Spatiotemporal deep learning. PhD thesis, RMIT University – reference: BrownTMannBRyderNSubbiahMKaplanJDDhariwalPNeelakantanAShyamPSastryGAskellALanguage models are few-shot learnersNeurIPS20203318771901 – reference: Wang L, Koniusz P (2022)Temporal-viewpoint transportation plan for skeletal few-shot action recognition. In: ACCV – reference: Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR – reference: Zhang S, Wang L, Murray N, Koniusz P (2022) Kernelized few-shot object detection with efficient integral aggregation. In: CVPR – reference: ShaoZZhangZWeiWWangFXuYCaoXJensenCSDecoupled dynamic spatial-temporal graph neural network for traffic forecastingProc VLDB Endow202215112733274610.14778/3551793.3551827 – reference: Jiang R, Yin D, Wang Z, Wang Y, Deng J, Liu H, Cai Z, Deng J, Song X, Shibasaki R (2021) Dl-traff: survey and benchmark of deep learning models for urban traffic prediction. CIKM – reference: Yue Z, Wang Y, Duan J, Yang T, Huang C, Tong Y, Xu B (2022) Ts2vec: towards universal representation of time series – reference: KamarianakisYPrastacosPForecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approachesTransp Res Record200318571748410.3141/1857-09 – reference: LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachT-ITS2014162865873 – reference: Li R, Zhong T, Jiang X, Trajcevski G, Wu J, Zhou F (2022) Mining spatio-temporal relations via self-paced graph contrastive learning. In: SIGKDD, pp. 936–944 – reference: DefferrardMBressonXVandergheynstPConvolutional neural networks on graphs with fast localized spectral filteringNeurIPS20162938443852 – reference: HamedMMAl-MasaeidHRSaidZMBShort-term prediction of traffic volume in urban arterialsJ Transp Eng1995121324925410.1061/(ASCE)0733-947X(1995)121:3(249) – reference: Baevski A, Hsu W-N, Xu Q, Babu A, Gu J, Auli M (2022) Data2vec: a general framework for self-supervised learning in speech, vision and language. arXiv preprint arXiv:2202.03555 – reference: Van Der VoortMDoughertyMWatsonSCombining kohonen maps with arima time series models to forecast traffic flowTransp Res Part C Emerg Technol19964530731810.1016/S0968-090X(97)82903-8 – reference: Chen M, Radford A, Child R, Wu J, Jun H, Luan D, Sutskever I (2020) Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR – reference: LippiMBertiniMFrasconiPShort-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learningTITS2013142871882 – reference: WilliamsBMMultivariate vehicular traffic flow prediction: evaluation of arimax modelingTransp Res Record20011776119420010.3141/1776-25 – reference: Liu X, Liang Y, Huang C, Zheng Y, Hooi B, Zimmermann R (2022) When do contrastive learning signals help spatio-temporal graph forecasting? In: SIGSPATIAL – reference: Zhu H, Koniusz P (2023) Transductive few-shot learning with prototype-based label propagation by iterative graph refinement. CVPR – ident: 982_CR40 – ident: 982_CR25 doi: 10.1109/TITS.2021.3083957 – ident: 982_CR38 – ident: 982_CR55 doi: 10.1109/CVPR52688.2022.01861 – volume: 1678 start-page: 179 issue: 1 year: 1999 ident: 982_CR16 publication-title: Transp Res Record doi: 10.3141/1678-22 – ident: 982_CR21 – volume: 125 start-page: 2 year: 2016 ident: 982_CR39 publication-title: SSW – ident: 982_CR7 – volume: 14 start-page: 871 issue: 2 year: 2013 ident: 982_CR19 publication-title: TITS – ident: 982_CR60 doi: 10.1109/CVPR52729.2023.02298 – ident: 982_CR3 – volume: 121 start-page: 249 issue: 3 year: 1995 ident: 982_CR12 publication-title: J Transp Eng doi: 10.1061/(ASCE)0733-947X(1995)121:3(249) – volume: 472 start-page: 280 year: 2022 ident: 982_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.136 – ident: 982_CR29 doi: 10.1145/3360322.3360853 – ident: 982_CR14 doi: 10.1145/3459637.3482000 – ident: 982_CR34 – volume: 117 year: 2020 ident: 982_CR9 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2020.102671 – ident: 982_CR22 doi: 10.1145/3534678.3539422 – volume: 129 start-page: 664 issue: 6 year: 2003 ident: 982_CR47 publication-title: J Transp Eng doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 33 start-page: 1877 year: 2020 ident: 982_CR5 publication-title: NeurIPS – ident: 982_CR20 doi: 10.1145/3557915.3560939 – ident: 982_CR30 doi: 10.1145/3576842.3582362 – ident: 982_CR58 – ident: 982_CR43 doi: 10.1007/978-3-031-19803-8_11 – ident: 982_CR52 doi: 10.24963/ijcai.2018/505 – volume: 4 start-page: 307 issue: 5 year: 1996 ident: 982_CR41 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/S0968-090X(97)82903-8 – ident: 982_CR11 doi: 10.1109/YAC.2016.7804912 – ident: 982_CR26 – ident: 982_CR50 – volume: 22 start-page: 103 year: 2012 ident: 982_CR6 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.12.006 – volume: 1857 start-page: 74 issue: 1 year: 2003 ident: 982_CR15 publication-title: Transp Res Record doi: 10.3141/1857-09 – ident: 982_CR48 doi: 10.1145/3394486.3403118 – ident: 982_CR33 – volume: 29 start-page: 3844 year: 2016 ident: 982_CR10 publication-title: NeurIPS – ident: 982_CR61 doi: 10.1109/CVPR52688.2022.00887 – ident: 982_CR28 doi: 10.1007/978-3-031-43430-3_1 – volume: 15 start-page: 2733 issue: 11 year: 2022 ident: 982_CR36 publication-title: Proc VLDB Endow doi: 10.14778/3551793.3551827 – ident: 982_CR17 – ident: 982_CR42 – ident: 982_CR44 doi: 10.1007/978-3-031-26316-3_19 – ident: 982_CR56 doi: 10.1145/3534678.3539425 – ident: 982_CR59 – ident: 982_CR1 – ident: 982_CR49 doi: 10.24963/ijcai.2019/264 – ident: 982_CR27 – ident: 982_CR32 doi: 10.1109/ICDMW58026.2022.00101 – ident: 982_CR37 doi: 10.1145/3347146.3359079 – ident: 982_CR57 doi: 10.1609/aaai.v37i9.26336 – volume: 100 start-page: 90 issue: 1 year: 1974 ident: 982_CR2 publication-title: IEEE Trans Comput doi: 10.1109/T-C.1974.223784 – ident: 982_CR51 doi: 10.1609/aaai.v36i8.20881 – ident: 982_CR18 doi: 10.1007/978-3-030-01219-9_38 – volume: 14 start-page: 1700 issue: 4 year: 2013 ident: 982_CR13 publication-title: TITS – ident: 982_CR53 doi: 10.1007/978-3-030-69538-5_23 – ident: 982_CR54 doi: 10.1007/978-3-031-20044-1_18 – ident: 982_CR62 – volume: 16 start-page: 865 issue: 2 year: 2014 ident: 982_CR23 publication-title: T-ITS – ident: 982_CR45 – ident: 982_CR8 – ident: 982_CR4 – volume: 1776 start-page: 194 issue: 1 year: 2001 ident: 982_CR46 publication-title: Transp Res Record doi: 10.3141/1776-25 – volume: 2674 start-page: 473 issue: 9 year: 2020 ident: 982_CR24 publication-title: Transp Res Record doi: 10.1177/0361198120930010 – ident: 982_CR31 |
SSID | ssj0005230 |
Score | 2.4679236 |
Snippet | New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 913 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Coders Computer Science Data Mining and Knowledge Discovery Forecasting Inference Information Storage and Retrieval Mathematical models Physics Road construction S.i. : Ecml Pkdd 2023 Statistics for Engineering Traffic information Traffic signals |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbz4qIrVKjl4UDSwee0mx1IsRfABttDbstkk3rbSrf4ef4u_zMk-aBU9eN7sHCaP-T7mmxmELphWxvlEEhGbkGY0ETFOecIBLsOb7GLNQ3Hy_UM8noq7mZw1RWFlq3ZvU5LVS71W7BZTRSDGkNAEkxEg6psSuHs411M2WBN28Lo2WAkiFY2aUpnfbXwPRyuM-SMtWkWb0R7aaWAiHtT7uo82XNFFu-0IBtzcyC7aqhSceXmAHiHqhHYQGFCoy7MyyJnxvMAAm_FintkSB4n7Cy6DhBpMVxr1sOzd4SAFaWdFfH5cPg-fJleHaDq6nQzHpJmWQHJOxZJkIcMYWSOU9tZKyoH5JZGgwIe0FNZkiQCuBXTY8zxzVlMnrGA0Z0YYH3nGj1CnmBfuGGGjPbOx9cBfAXDQTClgTVZqgCIa_mQ9dN06LX2tm2Kkq_bHwcUpuDitXJxGPdRv_Zo2F6RMeZigl-hIiB66aX29-vy3tZP_LT9F23BERC1R7KPOcvHmzgBGLM15dWq-AI5_vM4 priority: 102 providerName: Springer Nature |
Title | Traffic forecasting on new roads using spatial contrastive pre-training (SCPT) |
URI | https://link.springer.com/article/10.1007/s10618-023-00982-0 https://www.proquest.com/docview/3050579044 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAAAovYcRJ7QqXqQyCqCloJpiiOHba0NIXfzzlxVECCJZHy8HC2777zfXeH0DmTQpksCggPlQ0zKo8oIzLiA1wGnWxC6dvk5MdxOJrx-5fgxR24FY5WWevEUlHreWrPyG9823Itkh7nt4t3YrtG2eiqa6GxiZoULI1d4WIw_Ebx8KssYcFJIKjnkmZc6lxIBQGLRWxJTUa8n4ZpjTZ_BUhLuzPYRdsOMOJuNcN7aMPk-2inbsaA3d48QGOwOrYcBAYUatKksHRmPM8xwGa8nCe6wJbi_oYLS6GGAUuOuv3s02BLBal7ReCL595kenmIZoP-tDcirlkCSX3KVySxAUZPKy5kpnVAfXD8Io9TcIdkwLVKIg6uFnjDmZ8mRktquOaMpkxxlXkZ849QI5_n5hhhJTOmQ52B-wp4gyZCgNOkAwlIRMKfrIWuaknFi6omRryufmzlGoNc41KusddC7VqYsdsfRbyezRa6rgW8fv33aCf_j3aKthigjoqR2EaN1fLDnAFqWKlOuTQ6qNkdvj704X7XH0-e4Gkv7MF1xrpflHXAlw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1F9EAvpdBWDU1hD1Rq1a5q766d3QNCKBCSQqJKDRI31-tdc0vSOID4U_zGzvhDoZXglrPtPTyPZ9543swAHAijrc-7EVexpTKjDbj1OucS6TL6ZB8bSc3Jo3E8uFQ_rqKrFjw0vTAkq2x8Yumo3Syjf-TfJa1c65pAqaP5H05bo6i62qzQqMzi3N_fYcpWHA5P8P1-EqJ_OukNeL1VgGcyVEueUiUucFZpkzsXhRIzpG6gQswbTKScTbsKcxJMG3OZpd6Z0CunRJgJq2we5DToAF3-CyWlIQmh7p89kpTIqitZKx7pMKibdOpWvTjUHCMkpxGeggf_BsIVu_2vIFvGuf5reFUTVHZcWdQ2tPx0B7aa5Q-s9gVvYIxRjsZPMGS9PksLkk-z2ZQhTWeLWeoKRpL6a1aQZBsPLDXxdNutZyQ9aXZTsM-_ej8nX97C5VpgfAcb09nUvwdmTS5c7HJMl5HfhKnWmKS5yCDzMfikaMPXBqlkXs3gSFbTlgnXBHFNSlyToA2dBsyk_h6LZGU9bfjWALy6_PRpu8-ftg-bg8noIrkYjs8_wEuBjKdSQ3ZgY7m48R-RsSztXmkmDH6v2y7_Ak4c9w8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hKiEulFIQy0fxAaRW1MJxnMQ-oAoBC5R2hVSQuIU4trntUrJQ8df665jJhxaQ4MY5iQ-TycybzJt5AJvSaOtDlnCVWmozWsGt14HHCJcxJvvUxDSc_HuQHl-on5fJ5RT872ZhiFbZxcQ6ULtRSf_Id2KSXMuMUGontLSIs4P-j5u_nBSkqNPayWk0LnLqH_5h-Vbtnhzgu96Ssn94vn_MW4UBXsaRGvOCunLCWaVNcC6JYqyWMqEirCFMopwtMoX1CZaQIS4L70zklVMyKqVVNohASw8w_H_IYi1IPUH3j57QS-JmQlkrnuhItAM77dheGmmO2ZLTOk_JxfOkOEG6L5qzdc7rz8NcC1bZXuNdn2DKDxfgYycEwdq48BkGmPFoFQVDBOzLoiIqNRsNGUJ2djsqXMWIXn_NKqJv44E1P55uu_eMaCidTgX7-mf_7PzbIly8ixmXYHo4GvplYNYE6VIXsHRGrBMVWmPB5hKDKMjgk7IH252l8ptmH0c-2bxMds3Rrnlt11z0YK0zZt5-m1U-8aQefO8MPLn8-mkrb5-2ATPokfmvk8HpKsxKBD8NMXINpse3d34dwcvYfqm9hMHVe7vlI8wF-zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+forecasting+on+new+roads+using+spatial+contrastive+pre-training+%28SCPT%29&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Prabowo%2C+Arian&rft.au=Xue%2C+Hao&rft.au=Shao%2C+Wei&rft.au=Koniusz%2C+Piotr&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=3&rft.spage=913&rft.epage=937&rft_id=info:doi/10.1007%2Fs10618-023-00982-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |