Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)

New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ ca...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 3; pp. 913 - 937
Main Authors Prabowo, Arian, Xue, Hao, Shao, Wei, Koniusz, Piotr, Salim, Flora D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-023-00982-0

Cover

Loading…
Abstract New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub: https://github.com/cruiseresearchgroup/forecasting-on-new-roads .
AbstractList New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub: https://github.com/cruiseresearchgroup/forecasting-on-new-roads .
New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training data (unseen roads) are rarely explored. In this paper, we introduce a novel setup called a spatio-temporal split to evaluate the models’ capabilities to generalize to unseen roads. In this setup, the models are trained on data from a sample of roads, but tested on roads not seen in the training data. Moreover, we also present a novel framework called Spatial Contrastive Pre-Training (SCPT) where we introduce a spatial encoder module to extract latent features from unseen roads during inference time. This spatial encoder is pre-trained using contrastive learning. During inference, the spatial encoder only requires two days of traffic data on the new roads and does not require any re-training. We also show that the output from the spatial encoder can be used effectively to infer latent node embeddings on unseen roads during inference time. The SCPT framework also incorporates a new layer, named the spatially gated addition layer, to effectively combine the latent features from the output of the spatial encoder to existing backbones. Additionally, since there is limited data on the unseen roads, we argue that it is better to decouple traffic signals to trivial-to-capture periodic signals and difficult-to-capture Markovian signals, and for the spatial encoder to only learn the Markovian signals. Finally, we empirically evaluated SCPT using the ST split setup on four real-world datasets. The results showed that adding SCPT to a backbone consistently improves forecasting performance on unseen roads. More importantly, the improvements are greater when forecasting further into the future. The codes are available on GitHub:https://github.com/cruiseresearchgroup/forecasting-on-new-roads.
Author Shao, Wei
Prabowo, Arian
Koniusz, Piotr
Salim, Flora D.
Xue, Hao
Author_xml – sequence: 1
  givenname: Arian
  orcidid: 0000-0002-0459-354X
  surname: Prabowo
  fullname: Prabowo, Arian
  organization: Computing Technologies, RMIT, Data61, CSIRO, Computer Science and Engineering, UNSW
– sequence: 2
  givenname: Hao
  surname: Xue
  fullname: Xue, Hao
  organization: Computer Science and Engineering, UNSW
– sequence: 3
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  organization: Data61, CSIRO
– sequence: 4
  givenname: Piotr
  surname: Koniusz
  fullname: Koniusz, Piotr
  organization: Data61, CSIRO, Engineering, Computing and Cybernetics, ANU
– sequence: 5
  givenname: Flora D.
  surname: Salim
  fullname: Salim, Flora D.
  email: flora.salim@unsw.edu.au
  organization: Computer Science and Engineering, UNSW
BookMark eNp9kMtKAzEUhoNUsK2-gKsBN7qIniQnc1lK8QZCBSu4C5mZpEypSU2mim_js_hkpo7gztW58P3nwDchI-edIeSYwTkDKC4ig5yVFLigAFXJKeyRMZOFoIXMn0epFyVSWTI4IJMYVwAguYAxmS-CtrZrMuuDaXTsO7fMvMucec-C123MtnG3ihvdd3qdNd71YYe9mWwTDE1D5xLw9Xn6OHtYnB2SfavX0Rz91il5ur5azG7p_fzmbnZ5TxvBsKc6Z1JCW2NZ2baVTEisCkDGcqwktrUusOIImFvRaNNWzGCLnDW8xtqC5WJKToa7m-Bftyb2auW3waWXSoAEWVSAmCg-UE3wMQZj1SZ0Lzp8KAZqJ04N4lQSp37EKUghMYRigt3ShL_T_6S-AWnici4
Cites_doi 10.1109/TITS.2021.3083957
10.1109/CVPR52688.2022.01861
10.3141/1678-22
10.1109/CVPR52729.2023.02298
10.1061/(ASCE)0733-947X(1995)121:3(249)
10.1016/j.neucom.2021.04.136
10.1145/3360322.3360853
10.1145/3459637.3482000
10.1016/j.trc.2020.102671
10.1145/3534678.3539422
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1145/3557915.3560939
10.1145/3576842.3582362
10.1007/978-3-031-19803-8_11
10.24963/ijcai.2018/505
10.1016/S0968-090X(97)82903-8
10.1109/YAC.2016.7804912
10.1016/j.trc.2011.12.006
10.3141/1857-09
10.1145/3394486.3403118
10.1109/CVPR52688.2022.00887
10.1007/978-3-031-43430-3_1
10.14778/3551793.3551827
10.1007/978-3-031-26316-3_19
10.1145/3534678.3539425
10.24963/ijcai.2019/264
10.1109/ICDMW58026.2022.00101
10.1145/3347146.3359079
10.1609/aaai.v37i9.26336
10.1109/T-C.1974.223784
10.1609/aaai.v36i8.20881
10.1007/978-3-030-01219-9_38
10.1007/978-3-030-69538-5_23
10.1007/978-3-031-20044-1_18
10.3141/1776-25
10.1177/0361198120930010
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-023-00982-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 937
ExternalDocumentID 10_1007_s10618_023_00982_0
GrantInformation_xml – fundername: University of New South Wales
– fundername: data61
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c314t-a61550db489fdd5135497041164954dba74924046f3caed91e4d421c2b4bf0f23
IEDL.DBID 8FG
ISSN 1384-5810
IngestDate Sat Aug 16 21:24:20 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Spatio-temporal
Cyber-physical systems
Sensor networks
Intelligent transport systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a61550db489fdd5135497041164954dba74924046f3caed91e4d421c2b4bf0f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0459-354X
OpenAccessLink https://link.springer.com/10.1007/s10618-023-00982-0
PQID 3050579044
PQPubID 43030
PageCount 25
ParticipantIDs proquest_journals_3050579044
crossref_primary_10_1007_s10618_023_00982_0
springer_journals_10_1007_s10618_023_00982_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yue Z, Wang Y, Duan J, Yang T, Huang C, Tong Y, Xu B (2022) Ts2vec: towards universal representation of time series
Prabowo A, Shao W, Xue H, Koniusz P, Salim FD (2023) Because every sensor is unique, so is every pair: Handling dynamicity in traffic forecasting. In: IoTDI, pp 93–104. Association for Computing Machinery, New York, NY, USA
Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) NeurIPS, pp 4077–4087
van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: A Generative Model for Raw Audio. In: Proc. 9th ISCA workshop on speech synthesis workshop (SSW 9), p 125
CuiZLinLPuZWangYGraph markov network for traffic forecasting with missing dataTransp Res Part C Emerg Technol202011710.1016/j.trc.2020.102671
Prabowo A, Chen K, Xue H, Sethuvenkatraman S, Salim FD (2023) Continually learning out-of-distribution spatiotemporal data for robust energy forecasting. In: ECML PKDD. Springer
Prabowo A, Koniusz P, Shao W, Salim F (2019) Coltrane: convolutional trajectory network for deep map inference. BuildSys, p 10. Association for Computing Machinery, New York, USA
Zhu H, Koniusz, P (2022) EASE: Unsupervised discriminant subspace learning for transductive few-shot learning. CVPR
Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. IJCAI
Liang X, Wu L, Li J, Wang Y, Meng Q, Qin T, Chen W, Zhang M, Liu T-Y (2021) R-drop: regularized dropout for neural networks. In: NeurIPS
Zhang Y, Zhu H, Song Z, Koniusz P, King I (2023) Spectral feature augmentation for graph contrastive learning and beyond. In: AAAI
Zhu H, Koniusz P (2021) Simple spectral graph convolution. In: ICLR
LeeSFambroDBApplication of subset autoregressive integrated moving average model for short-term freeway traffic volume forecastingTransp Res Record19991678117918810.3141/1678-22
Oord A.v.d, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748
AhmedNNatarajanTRaoKRDiscrete cosine transformIEEE Trans Comput19741001909335655510.1109/T-C.1974.223784
WilliamsBMHoelLAModeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical resultsJ Transp Eng2003129666467210.1061/(ASCE)0733-947X(2003)129:6(664)
BrownTMannBRyderNSubbiahMKaplanJDDhariwalPNeelakantanAShyamPSastryGAskellALanguage models are few-shot learnersNeurIPS20203318771901
Baevski A, Hsu W-N, Xu Q, Babu A, Gu J, Auli M (2022) Data2vec: a general framework for self-supervised learning in speech, vision and language. arXiv preprint arXiv:2202.03555
ChenCWangYLiLHuJZhangZThe retrieval of intra-day trend and its influence on traffic predictionTransp Res Part C Emerg Technol20122210311810.1016/j.trc.2011.12.006
DefferrardMBressonXVandergheynstPConvolutional neural networks on graphs with fast localized spectral filteringNeurIPS20162938443852
Van Der VoortMDoughertyMWatsonSCombining kohonen maps with arima time series models to forecast traffic flowTransp Res Part C Emerg Technol19964530731810.1016/S0968-090X(97)82903-8
Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS
Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: YAC, pp 324–328. IEEE
Shao H (2020) Deep learning approaches for traffic prediction. PhD thesis, Nanyang Technological University, Nanyang
Wang L, Koniusz P (2022) Uncertainty-dtw for time series and sequences. In: ECCV, pp 176–195. Springer
Wang T, Isola P (2020) Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML
Li R, Zhong T, Jiang X, Trajcevski G, Wu J, Zhou F (2022) Mining spatio-temporal relations via self-paced graph contrastive learning. In: SIGKDD, pp. 936–944
Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR
LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachT-ITS2014162865873
Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: SIGKDD
Chen M, Radford A, Child R, Wu J, Jun H, Luan D, Sutskever I (2020) Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR
Jiang R, Yin D, Wang Z, Wang Y, Deng J, Liu H, Cai Z, Deng J, Song X, Shibasaki R (2021) Dl-traff: survey and benchmark of deep learning models for urban traffic prediction. CIKM
Wang L, Liu J, Koniusz P (2021) 3D skeleton-based few-shot action recognition with JEANIE is not so naïve. arXiv preprint arXiv: 2112.12668
KamarianakisYPrastacosPForecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approachesTransp Res Record200318571748410.3141/1857-09
Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI
Zhu H, Sun K, Koniusz P (2021) Contrastive laplacian eigenmaps. NeurIPS
Zhu H, Koniusz P (2023) Transductive few-shot learning with prototype-based label propagation by iterative graph refinement. CVPR
ShaoZZhangZWeiWWangFXuYCaoXJensenCSDecoupled dynamic spatial-temporal graph neural network for traffic forecastingProc VLDB Endow202215112733274610.14778/3551793.3551827
Zhang S, Murray N, Wang L, Koniusz P (2022) Time-rEversed diffusion tensor transformer: a new TENET of few-shot object detection. In: ECCV. Springer
WilliamsBMMultivariate vehicular traffic flow prediction: evaluation of arimax modelingTransp Res Record20011776119420010.3141/1776-25
Zhang Y, Zhu H, Song Z, Koniusz P, King I (2022) Costa: covariance-preserving feature augmentation for graph contrastive learning. In: SIGKDD
Roth A, Liebig T (2022) Forecasting unobserved node states with spatio-temporal graph neural networks. In: Data Mining Workshops ICDMW’22
Zhang S, Wang L, Murray N, Koniusz P (2022) Kernelized few-shot object detection with efficient integral aggregation. In: CVPR
Prabowo A (2022) Spatiotemporal deep learning. PhD thesis, RMIT University
ShaoWPrabowoAZhaoSKoniuszPSalimFDPredicting flight delay with spatio-temporal trajectory convolutional network and airport situational awareness mapNeurocomputing202247228029310.1016/j.neucom.2021.04.136
Ahmed MS, Cook AR (1979) Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques vol. 722. Transportation Research Record
Zhang S, Luo D, Wang L, Koniusz P (2020) Few-shot object detection by second-order pooling. In: ACCV
Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR
Lin T-Y, Maji S, Koniusz P (2018) Second-order democratic aggregation. In: ECCV
Shao W, Prabowo A, Zhao S, Tan S, Koniusz P, Chan J, Hei X, Feest B, Salim FD (2019) Flight delay prediction using airport situational awareness map. SIGSPATIAL ’19, pp 432–435. Association for Computing Machinery, New York, NY, USA
MallickTBalaprakashPRaskEMacfarlaneJGraph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecastingTransp Res Record20202674947348810.1177/0361198120930010
Shang, C., Chen, J., Bi, J (2021) Discrete graph structure learning for forecasting multiple time series. In: ICLR
HamedMMAl-MasaeidHRSaidZMBShort-term prediction of traffic volume in urban arterialsJ Transp Eng1995121324925410.1061/(ASCE)0733-947X(1995)121:3(249)
Wang L, Koniusz P (2022)Temporal-viewpoint transportation plan for skeletal few-shot action recognition. In: ACCV
Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR
Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting: Does it make a difference? T-ITS
Zhu H, Koniusz P (2022) Generalized laplacian eigenmaps. NeurIPS
Prabowo A, Xue H, Shao W, Koniusz P, Salim FD (2023) Message Passing Neural Networks for Traffic Forecasting
LippiMBertiniMFrasconiPShort-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learningTITS2013142871882
JeongY-SByonY-JCastro-NetoMMEasaSMSupervised weighting-online learning algorithm for short-term traffic flow predictionTITS201314417001707
Liu X, Liang Y, Huang C, Zheng Y, Hooi B, Zimmermann R (2022) When do contrastive learning signals help spatio-temporal graph forecasting? In: SIGSPATIAL
Van Den OordADielemanSZenHSimonyanKVinyalsOGravesAKalchbrennerNSeniorAWKavukcuogluKWavenet: A generative model for raw audioSSW20161252
S Lee (982_CR16) 1999; 1678
W Shao (982_CR35) 2022; 472
982_CR17
982_CR18
982_CR25
982_CR26
982_CR20
982_CR21
982_CR22
982_CR60
N Ahmed (982_CR2) 1974; 100
982_CR61
Y Lv (982_CR23) 2014; 16
982_CR62
C Chen (982_CR6) 2012; 22
Y Kamarianakis (982_CR15) 2003; 1857
Z Cui (982_CR9) 2020; 117
982_CR49
MM Hamed (982_CR12) 1995; 121
982_CR56
982_CR57
982_CR14
982_CR58
982_CR59
982_CR52
982_CR53
982_CR54
982_CR11
Y-S Jeong (982_CR13) 2013; 14
982_CR55
M Van Der Voort (982_CR41) 1996; 4
T Mallick (982_CR24) 2020; 2674
982_CR50
A Van Den Oord (982_CR39) 2016; 125
982_CR51
T Brown (982_CR5) 2020; 33
Z Shao (982_CR36) 2022; 15
982_CR38
982_CR45
982_CR48
982_CR42
982_CR43
982_CR44
BM Williams (982_CR46) 2001; 1776
982_CR40
M Defferrard (982_CR10) 2016; 29
982_CR8
982_CR7
982_CR4
982_CR3
982_CR1
BM Williams (982_CR47) 2003; 129
982_CR27
M Lippi (982_CR19) 2013; 14
982_CR28
982_CR29
982_CR34
982_CR37
982_CR30
982_CR31
982_CR32
982_CR33
References_xml – reference: Ahmed MS, Cook AR (1979) Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques vol. 722. Transportation Research Record
– reference: LeeSFambroDBApplication of subset autoregressive integrated moving average model for short-term freeway traffic volume forecastingTransp Res Record19991678117918810.3141/1678-22
– reference: Liang X, Wu L, Li J, Wang Y, Meng Q, Qin T, Chen W, Zhang M, Liu T-Y (2021) R-drop: regularized dropout for neural networks. In: NeurIPS
– reference: Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR
– reference: Zhang Y, Zhu H, Song Z, Koniusz P, King I (2023) Spectral feature augmentation for graph contrastive learning and beyond. In: AAAI
– reference: JeongY-SByonY-JCastro-NetoMMEasaSMSupervised weighting-online learning algorithm for short-term traffic flow predictionTITS201314417001707
– reference: WilliamsBMHoelLAModeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical resultsJ Transp Eng2003129666467210.1061/(ASCE)0733-947X(2003)129:6(664)
– reference: Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI
– reference: Shao H (2020) Deep learning approaches for traffic prediction. PhD thesis, Nanyang Technological University, Nanyang
– reference: Wang T, Isola P (2020) Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML
– reference: MallickTBalaprakashPRaskEMacfarlaneJGraph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecastingTransp Res Record20202674947348810.1177/0361198120930010
– reference: Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. IJCAI
– reference: Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: SIGKDD
– reference: Van Den OordADielemanSZenHSimonyanKVinyalsOGravesAKalchbrennerNSeniorAWKavukcuogluKWavenet: A generative model for raw audioSSW20161252
– reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: YAC, pp 324–328. IEEE
– reference: Roth A, Liebig T (2022) Forecasting unobserved node states with spatio-temporal graph neural networks. In: Data Mining Workshops ICDMW’22
– reference: Shao W, Prabowo A, Zhao S, Tan S, Koniusz P, Chan J, Hei X, Feest B, Salim FD (2019) Flight delay prediction using airport situational awareness map. SIGSPATIAL ’19, pp 432–435. Association for Computing Machinery, New York, NY, USA
– reference: Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR
– reference: ShaoWPrabowoAZhaoSKoniuszPSalimFDPredicting flight delay with spatio-temporal trajectory convolutional network and airport situational awareness mapNeurocomputing202247228029310.1016/j.neucom.2021.04.136
– reference: Oord A.v.d, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748
– reference: Prabowo A, Shao W, Xue H, Koniusz P, Salim FD (2023) Because every sensor is unique, so is every pair: Handling dynamicity in traffic forecasting. In: IoTDI, pp 93–104. Association for Computing Machinery, New York, NY, USA
– reference: Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) NeurIPS, pp 4077–4087
– reference: Zhang Y, Zhu H, Song Z, Koniusz P, King I (2022) Costa: covariance-preserving feature augmentation for graph contrastive learning. In: SIGKDD
– reference: Lin T-Y, Maji S, Koniusz P (2018) Second-order democratic aggregation. In: ECCV
– reference: Wang L, Koniusz P (2022) Uncertainty-dtw for time series and sequences. In: ECCV, pp 176–195. Springer
– reference: Zhu H, Koniusz P (2022) Generalized laplacian eigenmaps. NeurIPS
– reference: Zhu H, Koniusz P (2021) Simple spectral graph convolution. In: ICLR
– reference: Prabowo A, Chen K, Xue H, Sethuvenkatraman S, Salim FD (2023) Continually learning out-of-distribution spatiotemporal data for robust energy forecasting. In: ECML PKDD. Springer
– reference: van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: A Generative Model for Raw Audio. In: Proc. 9th ISCA workshop on speech synthesis workshop (SSW 9), p 125
– reference: Zhang S, Luo D, Wang L, Koniusz P (2020) Few-shot object detection by second-order pooling. In: ACCV
– reference: Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS
– reference: Zhang S, Murray N, Wang L, Koniusz P (2022) Time-rEversed diffusion tensor transformer: a new TENET of few-shot object detection. In: ECCV. Springer
– reference: Prabowo A, Xue H, Shao W, Koniusz P, Salim FD (2023) Message Passing Neural Networks for Traffic Forecasting
– reference: Shang, C., Chen, J., Bi, J (2021) Discrete graph structure learning for forecasting multiple time series. In: ICLR
– reference: Prabowo A, Koniusz P, Shao W, Salim F (2019) Coltrane: convolutional trajectory network for deep map inference. BuildSys, p 10. Association for Computing Machinery, New York, USA
– reference: AhmedNNatarajanTRaoKRDiscrete cosine transformIEEE Trans Comput19741001909335655510.1109/T-C.1974.223784
– reference: Wang L, Liu J, Koniusz P (2021) 3D skeleton-based few-shot action recognition with JEANIE is not so naïve. arXiv preprint arXiv: 2112.12668
– reference: CuiZLinLPuZWangYGraph markov network for traffic forecasting with missing dataTransp Res Part C Emerg Technol202011710.1016/j.trc.2020.102671
– reference: Zhu H, Koniusz, P (2022) EASE: Unsupervised discriminant subspace learning for transductive few-shot learning. CVPR
– reference: Zhu H, Sun K, Koniusz P (2021) Contrastive laplacian eigenmaps. NeurIPS
– reference: Manibardo EL, Laña I, Del Ser J (2021) Deep learning for road traffic forecasting: Does it make a difference? T-ITS
– reference: ChenCWangYLiLHuJZhangZThe retrieval of intra-day trend and its influence on traffic predictionTransp Res Part C Emerg Technol20122210311810.1016/j.trc.2011.12.006
– reference: Prabowo A (2022) Spatiotemporal deep learning. PhD thesis, RMIT University
– reference: BrownTMannBRyderNSubbiahMKaplanJDDhariwalPNeelakantanAShyamPSastryGAskellALanguage models are few-shot learnersNeurIPS20203318771901
– reference: Wang L, Koniusz P (2022)Temporal-viewpoint transportation plan for skeletal few-shot action recognition. In: ACCV
– reference: Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR
– reference: Zhang S, Wang L, Murray N, Koniusz P (2022) Kernelized few-shot object detection with efficient integral aggregation. In: CVPR
– reference: ShaoZZhangZWeiWWangFXuYCaoXJensenCSDecoupled dynamic spatial-temporal graph neural network for traffic forecastingProc VLDB Endow202215112733274610.14778/3551793.3551827
– reference: Jiang R, Yin D, Wang Z, Wang Y, Deng J, Liu H, Cai Z, Deng J, Song X, Shibasaki R (2021) Dl-traff: survey and benchmark of deep learning models for urban traffic prediction. CIKM
– reference: Yue Z, Wang Y, Duan J, Yang T, Huang C, Tong Y, Xu B (2022) Ts2vec: towards universal representation of time series
– reference: KamarianakisYPrastacosPForecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approachesTransp Res Record200318571748410.3141/1857-09
– reference: LvYDuanYKangWLiZWangF-YTraffic flow prediction with big data: a deep learning approachT-ITS2014162865873
– reference: Li R, Zhong T, Jiang X, Trajcevski G, Wu J, Zhou F (2022) Mining spatio-temporal relations via self-paced graph contrastive learning. In: SIGKDD, pp. 936–944
– reference: DefferrardMBressonXVandergheynstPConvolutional neural networks on graphs with fast localized spectral filteringNeurIPS20162938443852
– reference: HamedMMAl-MasaeidHRSaidZMBShort-term prediction of traffic volume in urban arterialsJ Transp Eng1995121324925410.1061/(ASCE)0733-947X(1995)121:3(249)
– reference: Baevski A, Hsu W-N, Xu Q, Babu A, Gu J, Auli M (2022) Data2vec: a general framework for self-supervised learning in speech, vision and language. arXiv preprint arXiv:2202.03555
– reference: Van Der VoortMDoughertyMWatsonSCombining kohonen maps with arima time series models to forecast traffic flowTransp Res Part C Emerg Technol19964530731810.1016/S0968-090X(97)82903-8
– reference: Chen M, Radford A, Child R, Wu J, Jun H, Luan D, Sutskever I (2020) Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR
– reference: LippiMBertiniMFrasconiPShort-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learningTITS2013142871882
– reference: WilliamsBMMultivariate vehicular traffic flow prediction: evaluation of arimax modelingTransp Res Record20011776119420010.3141/1776-25
– reference: Liu X, Liang Y, Huang C, Zheng Y, Hooi B, Zimmermann R (2022) When do contrastive learning signals help spatio-temporal graph forecasting? In: SIGSPATIAL
– reference: Zhu H, Koniusz P (2023) Transductive few-shot learning with prototype-based label propagation by iterative graph refinement. CVPR
– ident: 982_CR40
– ident: 982_CR25
  doi: 10.1109/TITS.2021.3083957
– ident: 982_CR38
– ident: 982_CR55
  doi: 10.1109/CVPR52688.2022.01861
– volume: 1678
  start-page: 179
  issue: 1
  year: 1999
  ident: 982_CR16
  publication-title: Transp Res Record
  doi: 10.3141/1678-22
– ident: 982_CR21
– volume: 125
  start-page: 2
  year: 2016
  ident: 982_CR39
  publication-title: SSW
– ident: 982_CR7
– volume: 14
  start-page: 871
  issue: 2
  year: 2013
  ident: 982_CR19
  publication-title: TITS
– ident: 982_CR60
  doi: 10.1109/CVPR52729.2023.02298
– ident: 982_CR3
– volume: 121
  start-page: 249
  issue: 3
  year: 1995
  ident: 982_CR12
  publication-title: J Transp Eng
  doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
– volume: 472
  start-page: 280
  year: 2022
  ident: 982_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.136
– ident: 982_CR29
  doi: 10.1145/3360322.3360853
– ident: 982_CR14
  doi: 10.1145/3459637.3482000
– ident: 982_CR34
– volume: 117
  year: 2020
  ident: 982_CR9
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2020.102671
– ident: 982_CR22
  doi: 10.1145/3534678.3539422
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 982_CR47
  publication-title: J Transp Eng
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 33
  start-page: 1877
  year: 2020
  ident: 982_CR5
  publication-title: NeurIPS
– ident: 982_CR20
  doi: 10.1145/3557915.3560939
– ident: 982_CR30
  doi: 10.1145/3576842.3582362
– ident: 982_CR58
– ident: 982_CR43
  doi: 10.1007/978-3-031-19803-8_11
– ident: 982_CR52
  doi: 10.24963/ijcai.2018/505
– volume: 4
  start-page: 307
  issue: 5
  year: 1996
  ident: 982_CR41
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/S0968-090X(97)82903-8
– ident: 982_CR11
  doi: 10.1109/YAC.2016.7804912
– ident: 982_CR26
– ident: 982_CR50
– volume: 22
  start-page: 103
  year: 2012
  ident: 982_CR6
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2011.12.006
– volume: 1857
  start-page: 74
  issue: 1
  year: 2003
  ident: 982_CR15
  publication-title: Transp Res Record
  doi: 10.3141/1857-09
– ident: 982_CR48
  doi: 10.1145/3394486.3403118
– ident: 982_CR33
– volume: 29
  start-page: 3844
  year: 2016
  ident: 982_CR10
  publication-title: NeurIPS
– ident: 982_CR61
  doi: 10.1109/CVPR52688.2022.00887
– ident: 982_CR28
  doi: 10.1007/978-3-031-43430-3_1
– volume: 15
  start-page: 2733
  issue: 11
  year: 2022
  ident: 982_CR36
  publication-title: Proc VLDB Endow
  doi: 10.14778/3551793.3551827
– ident: 982_CR17
– ident: 982_CR42
– ident: 982_CR44
  doi: 10.1007/978-3-031-26316-3_19
– ident: 982_CR56
  doi: 10.1145/3534678.3539425
– ident: 982_CR59
– ident: 982_CR1
– ident: 982_CR49
  doi: 10.24963/ijcai.2019/264
– ident: 982_CR27
– ident: 982_CR32
  doi: 10.1109/ICDMW58026.2022.00101
– ident: 982_CR37
  doi: 10.1145/3347146.3359079
– ident: 982_CR57
  doi: 10.1609/aaai.v37i9.26336
– volume: 100
  start-page: 90
  issue: 1
  year: 1974
  ident: 982_CR2
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1974.223784
– ident: 982_CR51
  doi: 10.1609/aaai.v36i8.20881
– ident: 982_CR18
  doi: 10.1007/978-3-030-01219-9_38
– volume: 14
  start-page: 1700
  issue: 4
  year: 2013
  ident: 982_CR13
  publication-title: TITS
– ident: 982_CR53
  doi: 10.1007/978-3-030-69538-5_23
– ident: 982_CR54
  doi: 10.1007/978-3-031-20044-1_18
– ident: 982_CR62
– volume: 16
  start-page: 865
  issue: 2
  year: 2014
  ident: 982_CR23
  publication-title: T-ITS
– ident: 982_CR45
– ident: 982_CR8
– ident: 982_CR4
– volume: 1776
  start-page: 194
  issue: 1
  year: 2001
  ident: 982_CR46
  publication-title: Transp Res Record
  doi: 10.3141/1776-25
– volume: 2674
  start-page: 473
  issue: 9
  year: 2020
  ident: 982_CR24
  publication-title: Transp Res Record
  doi: 10.1177/0361198120930010
– ident: 982_CR31
SSID ssj0005230
Score 2.4679236
Snippet New roads are being constructed all the time. However, the capabilities of previous deep forecasting models to generalize to new roads not seen in the training...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 913
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Coders
Computer Science
Data Mining and Knowledge Discovery
Forecasting
Inference
Information Storage and Retrieval
Mathematical models
Physics
Road construction
S.i. : Ecml Pkdd 2023
Statistics for Engineering
Traffic information
Traffic signals
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbz4qIrVKjl4UDSwee0mx1IsRfABttDbstkk3rbSrf4ef4u_zMk-aBU9eN7sHCaP-T7mmxmELphWxvlEEhGbkGY0ETFOecIBLsOb7GLNQ3Hy_UM8noq7mZw1RWFlq3ZvU5LVS71W7BZTRSDGkNAEkxEg6psSuHs411M2WBN28Lo2WAkiFY2aUpnfbXwPRyuM-SMtWkWb0R7aaWAiHtT7uo82XNFFu-0IBtzcyC7aqhSceXmAHiHqhHYQGFCoy7MyyJnxvMAAm_FintkSB4n7Cy6DhBpMVxr1sOzd4SAFaWdFfH5cPg-fJleHaDq6nQzHpJmWQHJOxZJkIcMYWSOU9tZKyoH5JZGgwIe0FNZkiQCuBXTY8zxzVlMnrGA0Z0YYH3nGj1CnmBfuGGGjPbOx9cBfAXDQTClgTVZqgCIa_mQ9dN06LX2tm2Kkq_bHwcUpuDitXJxGPdRv_Zo2F6RMeZigl-hIiB66aX29-vy3tZP_LT9F23BERC1R7KPOcvHmzgBGLM15dWq-AI5_vM4
  priority: 102
  providerName: Springer Nature
Title Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)
URI https://link.springer.com/article/10.1007/s10618-023-00982-0
https://www.proquest.com/docview/3050579044
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAAAovYcRJ7QqXqQyCqCloJpiiOHba0NIXfzzlxVECCJZHy8HC2777zfXeH0DmTQpksCggPlQ0zKo8oIzLiA1wGnWxC6dvk5MdxOJrx-5fgxR24FY5WWevEUlHreWrPyG9823Itkh7nt4t3YrtG2eiqa6GxiZoULI1d4WIw_Ebx8KssYcFJIKjnkmZc6lxIBQGLRWxJTUa8n4ZpjTZ_BUhLuzPYRdsOMOJuNcN7aMPk-2inbsaA3d48QGOwOrYcBAYUatKksHRmPM8xwGa8nCe6wJbi_oYLS6GGAUuOuv3s02BLBal7ReCL595kenmIZoP-tDcirlkCSX3KVySxAUZPKy5kpnVAfXD8Io9TcIdkwLVKIg6uFnjDmZ8mRktquOaMpkxxlXkZ849QI5_n5hhhJTOmQ52B-wp4gyZCgNOkAwlIRMKfrIWuaknFi6omRryufmzlGoNc41KusddC7VqYsdsfRbyezRa6rgW8fv33aCf_j3aKthigjoqR2EaN1fLDnAFqWKlOuTQ6qNkdvj704X7XH0-e4Gkv7MF1xrpflHXAlw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1F9EAvpdBWDU1hD1Rq1a5q766d3QNCKBCSQqJKDRI31-tdc0vSOID4U_zGzvhDoZXglrPtPTyPZ9543swAHAijrc-7EVexpTKjDbj1OucS6TL6ZB8bSc3Jo3E8uFQ_rqKrFjw0vTAkq2x8Yumo3Syjf-TfJa1c65pAqaP5H05bo6i62qzQqMzi3N_fYcpWHA5P8P1-EqJ_OukNeL1VgGcyVEueUiUucFZpkzsXhRIzpG6gQswbTKScTbsKcxJMG3OZpd6Z0CunRJgJq2we5DToAF3-CyWlIQmh7p89kpTIqitZKx7pMKibdOpWvTjUHCMkpxGeggf_BsIVu_2vIFvGuf5reFUTVHZcWdQ2tPx0B7aa5Q-s9gVvYIxRjsZPMGS9PksLkk-z2ZQhTWeLWeoKRpL6a1aQZBsPLDXxdNutZyQ9aXZTsM-_ej8nX97C5VpgfAcb09nUvwdmTS5c7HJMl5HfhKnWmKS5yCDzMfikaMPXBqlkXs3gSFbTlgnXBHFNSlyToA2dBsyk_h6LZGU9bfjWALy6_PRpu8-ftg-bg8noIrkYjs8_wEuBjKdSQ3ZgY7m48R-RsSztXmkmDH6v2y7_Ak4c9w8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hKiEulFIQy0fxAaRW1MJxnMQ-oAoBC5R2hVSQuIU4trntUrJQ8df665jJhxaQ4MY5iQ-TycybzJt5AJvSaOtDlnCVWmozWsGt14HHCJcxJvvUxDSc_HuQHl-on5fJ5RT872ZhiFbZxcQ6ULtRSf_Id2KSXMuMUGontLSIs4P-j5u_nBSkqNPayWk0LnLqH_5h-Vbtnhzgu96Ssn94vn_MW4UBXsaRGvOCunLCWaVNcC6JYqyWMqEirCFMopwtMoX1CZaQIS4L70zklVMyKqVVNohASw8w_H_IYi1IPUH3j57QS-JmQlkrnuhItAM77dheGmmO2ZLTOk_JxfOkOEG6L5qzdc7rz8NcC1bZXuNdn2DKDxfgYycEwdq48BkGmPFoFQVDBOzLoiIqNRsNGUJ2djsqXMWIXn_NKqJv44E1P55uu_eMaCidTgX7-mf_7PzbIly8ixmXYHo4GvplYNYE6VIXsHRGrBMVWmPB5hKDKMjgk7IH252l8ptmH0c-2bxMds3Rrnlt11z0YK0zZt5-m1U-8aQefO8MPLn8-mkrb5-2ATPokfmvk8HpKsxKBD8NMXINpse3d34dwcvYfqm9hMHVe7vlI8wF-zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+forecasting+on+new+roads+using+spatial+contrastive+pre-training+%28SCPT%29&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Prabowo%2C+Arian&rft.au=Xue%2C+Hao&rft.au=Shao%2C+Wei&rft.au=Koniusz%2C+Piotr&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=3&rft.spage=913&rft.epage=937&rft_id=info:doi/10.1007%2Fs10618-023-00982-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon