Multikernel Graph Structure Learning for Multispectral Point Cloud Classification

Multispectral point cloud, with spatial and multiple-band spectral information, provides the data basis for finer land cover 3-D classification. However, spectral information is not well utilized by traditional methods of point cloud classification. Benefiting from the excellent performance of graph...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 5637 - 5650
Main Authors Wang, Qingwang, Zhang, Zifeng, Huang, Jiangbo, Shen, Tao, Gu, Yanfeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multispectral point cloud, with spatial and multiple-band spectral information, provides the data basis for finer land cover 3-D classification. However, spectral information is not well utilized by traditional methods of point cloud classification. Benefiting from the excellent performance of graph neural networks on non-Euclidean data, it is well suited to the joint use of spatial and spectral information from multispectral point clouds to achieve better classification performance. However, existing graph-based methods for point cloud classification rely on manual experience to construct input graph and cannot adapt to the complexity of remote sensing scenes. In this article, we propose a novel multikernel graph structure learning (MKGSL) framework for multispectral point cloud classification. Specifically, we explore the high-dimensional feature distribution properties of multispectral point clouds in Hilbert space through the use of kernel method. An innovative multiple-kernel learning mechanism is embedded into our network, which allows to obtain better mappings adaptively. Simultaneously, a series of prior constraints designed based on land cover distribution characteristics are imposed on the network training process, which leads the learned graph of the multispectral point cloud to facilitate better classification. Our method is dedicated to adaptively constructing task-oriented graph structures to improve the performance of multispectral point cloud classification. Experimental comparisons demonstrate that the proposed MKGSL performs better than several state-of-the-art methods on two real multispectral point cloud datasets.
AbstractList Multispectral point cloud, with spatial and multiple-band spectral information, provides the data basis for finer land cover 3-D classification. However, spectral information is not well utilized by traditional methods of point cloud classification. Benefiting from the excellent performance of graph neural networks on non-Euclidean data, it is well suited to the joint use of spatial and spectral information from multispectral point clouds to achieve better classification performance. However, existing graph-based methods for point cloud classification rely on manual experience to construct input graph and cannot adapt to the complexity of remote sensing scenes. In this article, we propose a novel multikernel graph structure learning (MKGSL) framework for multispectral point cloud classification. Specifically, we explore the high-dimensional feature distribution properties of multispectral point clouds in Hilbert space through the use of kernel method. An innovative multiple-kernel learning mechanism is embedded into our network, which allows to obtain better mappings adaptively. Simultaneously, a series of prior constraints designed based on land cover distribution characteristics are imposed on the network training process, which leads the learned graph of the multispectral point cloud to facilitate better classification. Our method is dedicated to adaptively constructing task-oriented graph structures to improve the performance of multispectral point cloud classification. Experimental comparisons demonstrate that the proposed MKGSL performs better than several state-of-the-art methods on two real multispectral point cloud datasets.
Author Shen, Tao
Gu, Yanfeng
Wang, Qingwang
Zhang, Zifeng
Huang, Jiangbo
Author_xml – sequence: 1
  givenname: Qingwang
  orcidid: 0000-0001-5820-5357
  surname: Wang
  fullname: Wang, Qingwang
  email: wangqingwang@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming, China
– sequence: 2
  givenname: Zifeng
  orcidid: 0009-0003-7312-0492
  surname: Zhang
  fullname: Zhang, Zifeng
  email: 20212104057@stu.kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming, China
– sequence: 3
  givenname: Jiangbo
  orcidid: 0000-0002-6103-7769
  surname: Huang
  fullname: Huang, Jiangbo
  email: jiangbohuang@stu.kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming, China
– sequence: 4
  givenname: Tao
  orcidid: 0000-0003-1273-7950
  surname: Shen
  fullname: Shen, Tao
  email: shentao@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming, China
– sequence: 5
  givenname: Yanfeng
  orcidid: 0000-0003-1625-7989
  surname: Gu
  fullname: Gu, Yanfeng
  email: guyf@hit.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
BookMark eNpNkU1P3DAQhi1EpS6UX1AOkThnm_FX7CNaFUq1qB8LZ8txxtTbEC-2c-DfNxBUcZmRRu_7zmieE3I8xhEJ-QzNGqDRX77v7i5_79a0oXzNmFS8pUdkRUFADYKJY7ICzXQNvOEfyUnO-6aRtNVsRX7dTkMJfzGNOFTXyR7-VLuSJlemhNUWbRrD-FD5mKpXYT6gK8kO1c8YxlJthjj1c7U5Bx-cLSGOn8gHb4eMZ2_9lNxffb3bfKu3P65vNpfb2jHgpbYCsOOUeYlKKyGV64A5r3wPTFPRS9dybFFSFF0HWoDWQktPG-171inPTsnNkttHuzeHFB5tejbRBvM6iOnB2FSCG9BIBtR2EgC851oqi9xrJQGt0663bs66WLIOKT5NmIvZxymN8_mGaiGZmn_Vziq2qFyKOSf0_7dCY144mIWDeeFg3jjMrvPFFRDxnYNzxjVl_wC_e4bS
CODEN IJSTHZ
Cites_doi 10.1109/TAFFC.2019.2937768
10.1016/j.knosys.2021.107299
10.3390/rs15184417
10.3390/rs14010238
10.1007/s11431-020-1871-8
10.3390/rs9040373
10.1109/TGRS.2021.3076107
10.3390/s17050958
10.3390/rs14153808
10.1016/j.jag.2022.102723
10.1109/TNNLS.2020.2978386
10.3390/rs13132516
10.1038/323533a0
10.1016/j.jag.2021.102634
10.1109/JSTARS.2018.2835483
10.1109/TGRS.2015.2421051
10.1016/j.jag.2022.102837
10.1109/JSTARS.2023.3335300
10.1109/LGRS.2023.3322452
10.1109/TNNLS.2017.2673241
10.1109/IGARSS.2017.8128189
10.3390/rs8110936
10.1109/WHISPERS.2018.8747262
10.1109/LGRS.2019.2940505
10.1109/JSTARS.2019.2899033
10.1016/j.rsase.2020.100449
10.1016/j.isprsjprs.2017.04.005
10.1109/CVPR.2018.00029
10.1007/s11431-023-2528-8
10.1016/j.isprsjprs.2020.05.022
10.1109/LGRS.2021.3071252
10.1109/TGRS.2019.2947081
10.3390/rs12193186
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3368472
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5650
ExternalDocumentID oai_doaj_org_article_6312ab6111ff4968ae4f9861eac9cdac
10_1109_JSTARS_2024_3368472
10443492
Genre orig-research
GrantInformation_xml – fundername: Major Science and Technology Projects in Yunnan Province
  grantid: 202202AD080013; 202302AG050009
  funderid: 10.13039/501100018531
– fundername: Yunnan Fundamental Research Projects
  grantid: 202101BE070001-008; 202301AV070003
– fundername: Youth Project of the Xingdian Talent Support Plan of Yunnan Province
  grantid: KKRD202203068
– fundername: National Natural Science Foundation of China
  grantid: 62201237; 42067029
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ACIWK
AENEX
AETIX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
AGSQL
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c314t-a51eb423f6e898568cb13cf8fd13925d6c74e7e62e5bb195199596f209fd3b8f3
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Tue Oct 22 15:14:33 EDT 2024
Mon Oct 14 19:03:28 EDT 2024
Fri Dec 06 04:57:15 EST 2024
Mon Nov 04 11:48:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a51eb423f6e898568cb13cf8fd13925d6c74e7e62e5bb195199596f209fd3b8f3
ORCID 0000-0003-1273-7950
0000-0003-1625-7989
0009-0003-7312-0492
0000-0002-6103-7769
0000-0001-5820-5357
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10443492
PQID 2956387937
PQPubID 75722
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_6312ab6111ff4968ae4f9861eac9cdac
proquest_journals_2956387937
crossref_primary_10_1109_JSTARS_2024_3368472
ieee_primary_10443492
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Kipf (ref29) 2017
ref28
ref27
ref8
ref7
ref9
Qi (ref22) 2017; 30
ref4
Qi (ref21) 2017
ref3
ref6
Velickovic (ref31) 2017; 1050
Bakua (ref5) 2016; 41
Chen (ref32) 2020
References_xml – ident: ref38
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref34
  doi: 10.1016/j.knosys.2021.107299
– ident: ref28
  doi: 10.3390/rs15184417
– ident: ref1
  doi: 10.3390/rs14010238
– ident: ref24
  doi: 10.1007/s11431-020-1871-8
– ident: ref16
  doi: 10.3390/rs9040373
– ident: ref33
  doi: 10.1109/TGRS.2021.3076107
– ident: ref36
  doi: 10.3390/s17050958
– ident: ref18
  doi: 10.3390/rs14153808
– ident: ref26
  doi: 10.1016/j.jag.2022.102723
– ident: ref3
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref20
  doi: 10.3390/rs13132516
– ident: ref35
  doi: 10.1038/323533a0
– ident: ref23
  doi: 10.1016/j.jag.2021.102634
– ident: ref2
  doi: 10.1109/JSTARS.2018.2835483
– ident: ref8
  doi: 10.1109/TGRS.2015.2421051
– ident: ref19
  doi: 10.1016/j.jag.2022.102837
– ident: ref27
  doi: 10.1109/JSTARS.2023.3335300
– ident: ref39
  doi: 10.1109/LGRS.2023.3322452
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref21
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  contributor:
    fullname: Qi
– ident: ref30
  doi: 10.1109/TNNLS.2017.2673241
– ident: ref17
  doi: 10.1109/IGARSS.2017.8128189
– ident: ref4
  doi: 10.3390/rs8110936
– ident: ref7
  doi: 10.1109/WHISPERS.2018.8747262
– ident: ref13
  doi: 10.1109/LGRS.2019.2940505
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref29
  article-title: Semi-supervised classification with graph convolutional networks
  contributor:
    fullname: Kipf
– ident: ref11
  doi: 10.1109/JSTARS.2019.2899033
– volume: 1050
  start-page: 10
  issue: 20
  volume-title: stat
  year: 2017
  ident: ref31
  article-title: Graph attention networks
  contributor:
    fullname: Velickovic
– start-page: 1725
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref32
  article-title: Simple and deep graph convolutional networks
  contributor:
    fullname: Chen
– ident: ref9
  doi: 10.1016/j.rsase.2020.100449
– ident: ref10
  doi: 10.1016/j.isprsjprs.2017.04.005
– ident: ref6
  doi: 10.1109/CVPR.2018.00029
– volume: 41
  year: 2016
  ident: ref5
  article-title: Testing of land cover classification from multispectral airborne laser scanning data. international archives of the photogrammetry
  publication-title: Remote Sens. Spatial Inf. Sci.
  contributor:
    fullname: Bakua
– ident: ref37
  doi: 10.1007/s11431-023-2528-8
– ident: ref12
  doi: 10.1016/j.isprsjprs.2020.05.022
– ident: ref14
  doi: 10.1109/LGRS.2021.3071252
– ident: ref15
  doi: 10.1109/TGRS.2019.2947081
– ident: ref25
  doi: 10.3390/rs12193186
– volume: 30
  year: 2017
  ident: ref22
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Qi
SSID ssj0062793
Score 2.3916574
Snippet Multispectral point cloud, with spatial and multiple-band spectral information, provides the data basis for finer land cover 3-D classification. However,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 5637
SubjectTerms Classification
Convolutional neural networks
Distribution
Graph neural networks
Graph structure learning
Hilbert space
Information processing
Kernel
Land cover
Land surface
Learning
multiple kernel learning
multispectral LiDAR data
Neural networks
Optimization
Performance enhancement
point cloud classification
Point cloud compression
prior constraint
Remote sensing
Three-dimensional displays
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIPyZOp-Tg0bo2Sd_S4xxuQ1DUOdgtNGki4uhkbgf_e1_STiYevHgtoUm_L3n5Xkm-R8iFP9nezf3tdsOySKTWRdLhekSCdS6ddEWoEnF3D6OJuJ2m041SX_5MWGUPXAHXAZ6wXAMuSedEBjK3wmUSEgwYmSlyE6JvzNbJVBWDgeG0qz2Gkjjr4CTvPY0xG2TiinPAiMx-7EPBrr-ur_IrKIedZrBHdmuJSHvV0PbJli0PyPYwlOD9PCSP4c7sm12UdkaH3m-ajoMJ7GphaW2X-kJRi9LQMFylXOD7Huav5ZL2Z_NVQUMpTH9IKPDSJJPBzXN_FNWFESLDE7GM8jSxGnWQAyszmYI0OuHGA4t6jqUFmK6wXQvMplonqKG8qRg4Fmeu4Fo6fkQa5by0x4TmACw2SQGQg7AImzZpwSwmRajLNIcWuVzDpN4r_wsV8oY4UxWqyqOqalRb5NpD-d3Um1eHB0ipqilVf1HaIk1PxEZ_QngTxRZpr5lR9Ur7UAwTPC69y9_Jf_R9Snb891Q_WdqkgfzZM5QdS30eZtgXybnThw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multikernel Graph Structure Learning for Multispectral Point Cloud Classification
URI https://ieeexplore.ieee.org/document/10443492
https://www.proquest.com/docview/2956387937
https://doaj.org/article/6312ab6111ff4968ae4f9861eac9cdac
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJaReeJRWLJTKhx7JsrGdiX0sFW2FRNUHlXqzYmeMUKtstewe4NcznnhRASFxiyLn5c9jf-PMfCPEQY5sb7uc3R6Vq0yDqbKJ7JEADp1NNvVcJeLTGZxem483zU1JVudcGETk4DOc5kP-l9_P4ypvlZGFG5PV9DbERutgTNZaT7ugWlbYJULiqqwZUySG6pl7R2P88PKKnEFlploDTcjqt2WI1fpLeZW_5mReaI6firP1K47xJbfT1TJM448_1Bv_-xueiSeFcsrDcYw8F49w2BaPT7ik7_cX4oJzcG9xMeCdPMn61fKKRWVXC5RFfvWLJG4ruSGnZi7ofufzr8NSHt3NV73k0po56Ihx3hHXxx8-H51WpdBCFXVtllXX1BiIVyVA62wDNoZaxwwU8UPV9BBbgy2CwiaEmjhZFimDpGYu9TrYpHfF5jAf8KWQHYCaxboH6MAgYRJi0yskJ4t4XtAwEW_X_e7vRz0Nz37IzPkRJp9h8gWmiXifsfnVNIth8wnqU19sy4OuVReAZu2UjAPboUnOQk1riot9FydiJ-Pw4HkjBBOxt4baF8v95hU5jNpm1cBX_7jstdjKrzjuw-yJTYIE3xAzWYZ99uj3eVz-BOz834Q
link.rule.ids 314,780,784,796,864,2102,4024,27923,27924,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEaIXnkUsFPCBI1k2tjNrH0tFu0C7AtpKvVmxM0aoVbZadg_w6xk7XsRDSNyiyHn589jfODPfALxIke3TNmW3B2kr3VCsTGR7ZIB9a6KJXa4ScTzH2Zl-d96cl2T1nAtDRDn4jMbpMP_L7xZhnbbK2MK1Tmp61-FGo5noDulam4kX5TRr7DIlsVVSjSkiQ_XEvuJRvvfphN1BqcdKIU_J8reFKOv1lwIrf83Keak5uAPzzUsOESYX4_XKj8P3P_Qb__sr7sLtQjrF3jBK7sE16u_DzcNc1PfbA_iYs3AvaNnTpThMCtbiJMvKrpckigDrZ8HsVuSGOTlzyff7sPjSr8T-5WLdiVxcM4UdZaR34Ozgzen-rCqlFqqgar2q2qYmz8wqIhlrGjTB1yokqJghyqbDMNU0JZTUeF8zK0syZRjlxMZOeRPVQ9jqFz09AtEiykmoO8QWNTEmPjSdJHazmOl5hSN4uel3dzUoarjsiUysG2ByCSZXYBrB64TNz6ZJDjuf4D51xbocqlq2HnnejlFbNC3paA3WvKrY0LVhBDsJh1-eN0Awgt0N1K7Y7lcn2WVUJukGPv7HZc_h1uz0-MgdvZ2_fwLb6XWHXZld2GJ46CnzlJV_lkfnD5KJ4eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multikernel+Graph+Structure+Learning+for+Multispectral+Point+Cloud+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Qingwang&rft.au=Zhang%2C+Zifeng&rft.au=Huang%2C+Jiangbo&rft.au=Shen%2C+Tao&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=5637&rft.epage=5650&rft_id=info:doi/10.1109%2FJSTARS.2024.3368472&rft.externalDocID=10443492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon