Identifying Key Training Load and Intensity Indicators in Ice Hockey Using Unsupervised Machine Learning
To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish p...
Saved in:
Published in | Research quarterly for exercise and sport Vol. 96; no. 1; pp. 21 - 33 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Routledge
02.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish players (n = 427 observations). Within-individual correlations among accelerometer- (total accelerations [Acc
tot
], accelerations >2 m·s
−2
[Acc2], total accelerations [Dec
tot
], decelerations <- 2 m·s
−2
[Dec2]), among HR-derived (time >85% maximum HR [t85%HR
max
], Edwards' TL and modified training impulse) TL indicators, and between acceleration- and HR-derived TL parameters were large to almost perfect (r = 0.69-0.99). No significant correlations were observed between accelerometer- and HR-derived intensity indicators. Three between- and two within-components were found. The K-means++ cluster analysis revealed five and four clusters for between- and within-loadings, respectively. The least Euclidean distance from their centroid for each cluster was reported by session-duration, Acc
tot
, Dec2, TRIMP
MOD
, %t85HR
max
for between-loadings, whereas session-duration, Acc2, t85HR
max
and Dec2/min for within-loadings. Specific TL or intensity variables might be relevant to identify similar between-subject groups (e.g. individual player, playing positions), or temporal patterns (e.g. changes in TL or intensity over time). Our study provides insights about the redundancy associated with the use of multiple TL and intensity variables in ice hockey. |
---|---|
AbstractList | To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish players (n = 427 observations). Within-individual correlations among accelerometer- (total accelerations [Acctot], accelerations >2 m·s-2 [Acc2], total accelerations [Dectot], decelerations <- 2 m·s-2 [Dec2]), among HR-derived (time >85% maximum HR [t85%HRmax], Edwards' TL and modified training impulse) TL indicators, and between acceleration- and HR-derived TL parameters were large to almost perfect (r = 0.69-0.99). No significant correlations were observed between accelerometer- and HR-derived intensity indicators. Three between- and two within-components were found. The K-means++ cluster analysis revealed five and four clusters for between- and within-loadings, respectively. The least Euclidean distance from their centroid for each cluster was reported by session-duration, Acctot, Dec2, TRIMPMOD, %t85HRmax for between-loadings, whereas session-duration, Acc2, t85HRmax and Dec2/min for within-loadings. Specific TL or intensity variables might be relevant to identify similar between-subject groups (e.g. individual player, playing positions), or temporal patterns (e.g. changes in TL or intensity over time). Our study provides insights about the redundancy associated with the use of multiple TL and intensity variables in ice hockey.To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish players (n = 427 observations). Within-individual correlations among accelerometer- (total accelerations [Acctot], accelerations >2 m·s-2 [Acc2], total accelerations [Dectot], decelerations <- 2 m·s-2 [Dec2]), among HR-derived (time >85% maximum HR [t85%HRmax], Edwards' TL and modified training impulse) TL indicators, and between acceleration- and HR-derived TL parameters were large to almost perfect (r = 0.69-0.99). No significant correlations were observed between accelerometer- and HR-derived intensity indicators. Three between- and two within-components were found. The K-means++ cluster analysis revealed five and four clusters for between- and within-loadings, respectively. The least Euclidean distance from their centroid for each cluster was reported by session-duration, Acctot, Dec2, TRIMPMOD, %t85HRmax for between-loadings, whereas session-duration, Acc2, t85HRmax and Dec2/min for within-loadings. Specific TL or intensity variables might be relevant to identify similar between-subject groups (e.g. individual player, playing positions), or temporal patterns (e.g. changes in TL or intensity over time). Our study provides insights about the redundancy associated with the use of multiple TL and intensity variables in ice hockey. To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish players ( = 427 observations). Within-individual correlations among accelerometer- (total accelerations [Acc ], accelerations >2 m·s [Acc2], total accelerations [Dec ], decelerations <- 2 m·s [Dec2]), among HR-derived (time >85% maximum HR [t85%HR ], Edwards' TL and modified training impulse) TL indicators, and between acceleration- and HR-derived TL parameters were large to almost perfect ( = 0.69-0.99). No significant correlations were observed between accelerometer- and HR-derived intensity indicators. Three between- and two within-components were found. The K-means++ cluster analysis revealed five and four clusters for between- and within-loadings, respectively. The least Euclidean distance from their centroid for each cluster was reported by session-duration, Acc , Dec2, TRIMP , %t85HR for between-loadings, whereas session-duration, Acc2, t85HR and Dec2/min for within-loadings. Specific TL or intensity variables might be relevant to identify similar between-subject groups (e.g. individual player, playing positions), or temporal patterns (e.g. changes in TL or intensity over time). Our study provides insights about the redundancy associated with the use of multiple TL and intensity variables in ice hockey. To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and heart rate (HR) recording throughout a four-week (29 days) competitive period (23 practice sessions and 8 competitive games in 17 elite Danish players (n = 427 observations). Within-individual correlations among accelerometer- (total accelerations [Acc tot ], accelerations >2 m·s −2 [Acc2], total accelerations [Dec tot ], decelerations <- 2 m·s −2 [Dec2]), among HR-derived (time >85% maximum HR [t85%HR max ], Edwards' TL and modified training impulse) TL indicators, and between acceleration- and HR-derived TL parameters were large to almost perfect (r = 0.69-0.99). No significant correlations were observed between accelerometer- and HR-derived intensity indicators. Three between- and two within-components were found. The K-means++ cluster analysis revealed five and four clusters for between- and within-loadings, respectively. The least Euclidean distance from their centroid for each cluster was reported by session-duration, Acc tot , Dec2, TRIMP MOD , %t85HR max for between-loadings, whereas session-duration, Acc2, t85HR max and Dec2/min for within-loadings. Specific TL or intensity variables might be relevant to identify similar between-subject groups (e.g. individual player, playing positions), or temporal patterns (e.g. changes in TL or intensity over time). Our study provides insights about the redundancy associated with the use of multiple TL and intensity variables in ice hockey. |
Author | Mohr, Magni Rago, Vincenzo Fernandes, Tiago |
Author_xml | – sequence: 1 givenname: Vincenzo orcidid: 0000-0002-9445-4008 surname: Rago fullname: Rago, Vincenzo email: vincenzo.rago@universidadeeuropeia.pt organization: Universidade Europeia – sequence: 2 givenname: Tiago orcidid: 0000-0001-5714-410X surname: Fernandes fullname: Fernandes, Tiago organization: Karlsruhe Institute of Technology – sequence: 3 givenname: Magni orcidid: 0000-0002-1749-8533 surname: Mohr fullname: Mohr, Magni organization: University of Southern Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38959981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFvEzEQha2qiKaFnwDykcsGj71eOzdQRWlEEJfmvJrYs61hYwd7Q7X_nl0l5chcZkb63tNo3jW7jCkSY-9ALEFY8VFII0A1ZimFrJdSNQIaecEWEhpbKSvrS7aYmWqGrth1KT_FVKDgNbtSdqVXKwsL9rT2FIfQjSE-8m808oeMIc7LJqHnGD1fx4FiCcM4TT44HFIuPES-dsTvk_s1ibZlVmxjOR4o_wmFPP-O7ilE4hvCPPu9Ya867Au9Pfcbtr378nB7X21-fF3fft5UTkE9VCurPVjcOVk3TmuJGsHvlATrAZ11pLzxWjRgANHsrCGixgrhoTYgVa1u2IeT7yGn30cqQ7sPxVHfY6R0LK0SRhshdAMT-v6MHnd78u0hhz3msX35zgToE-ByKiVT9w8B0c4ptC8ptHMK7TmFSffppAuxS3mPzyn3vh1w7FPuMkYXpjv-b_EXXSCNEQ |
Cites_doi | 10.1007/s40279-017-0830-z 10.1007/978-0-387-95922-1_14 10.1519/jsc.0000000000001999 10.1249/mss.0000000000002370 10.1080/02640410903178344 10.3390/sports9090117 10.1123/ijspp.2018-0571 10.21500/20112084.844 10.1123/ijspp.2021-0188 10.1136/bmj.310.6977.446 10.1348/000711005x67599 10.1186/s40798-019-0202-3 10.5114/biolsport.2023.114282 10.1123/ijspp.2015-0791 10.1080/10691898.2005.11910642 10.1519/jsc.0000000000001611 10.1080/15438627.2021.1954517 10.2165/00007256-200333070-00004 10.1287/inte.1110.0612 10.1093/biomet/87.4.954 10.1519/jsc.0000000000003915 10.1016/0377-0427(87)90125-7 10.1126/science.aaa8415 10.1080/02640414.2017.1306090 10.1519/jsc.0000000000001081 10.1519/JSC.0000000000003324 10.21595/jme.2020.21433 10.1016/j.aca.2004.09.074 10.2478/hukin-2022-000078 10.1123/ijspp.2017-0299 10.1519/jsc.0000000000003490 10.1348/000711007x265894 10.1080/02640410600811817 10.1111/sms.14284 10.1515/hukin-2015-0040 10.1007/s40279-019-01170-1 10.1007/s40279-014-0230-6 |
ContentType | Journal Article |
Copyright | 2024 SHAPE America 2024 |
Copyright_xml | – notice: 2024 SHAPE America 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/02701367.2024.2360162 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Recreation & Sports |
EISSN | 2168-3824 |
EndPage | 33 |
ExternalDocumentID | 38959981 10_1080_02701367_2024_2360162 2360162 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Portuguese Foundation for Science and Technology grantid: 2021.0581.BD |
GroupedDBID | --- -ET -~X .QK 0BK 0R~ 123 186 29P 2FS 4.4 7RV 85S 8R4 8R5 AADCL AAJMT AALDU AAMIU AAPUL AAQRR AAWTL ABCCY ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ACCUC ACGFO ACGFS ACGOD ACHQT ACNCT ACPRK ACTIO ACTOA ADCVX ADGTB ADYSH AEISY AEKEX AENEX AEYOC AGDLA AGMYJ AHDZW AHMBA AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ASUFR AVBZW AWYRJ BEJHT BKOMP BLC BLEHA BMOTO CCCUG CJNVE DGFLZ DKSSO DU5 DXH EBD EBS EX3 E~B E~C F5P FJW G-F GTTXZ HF~ HZ~ IPNFZ KYCEM LJTGL M0P M4Z NHB O9- P2P PRG Q2X RIG RNANH ROSJB RTWRZ RWL RXW S-F S10 STATR TAE TBQAZ TDBHL TFL TFT TFW TN5 TNTFI TRJHH TTHFI TUROJ TWZ U5U UHB UKR ULE UMD UT5 VQA WH7 WOW XZL YCJ YNT YR5 ZCA ZGOLN ~01 ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW AMPGV CITATION DGEBU H13 NX. .GJ 0-V 07C 07N 2KS 3EH 3O- 41~ 53G 6TJ 7X7 88E 88I 8A4 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 9M8 AAYJJ AAYLN ABBYM ABGOO ABUWG ACBWF ACLAH ACOJY ACSVP ADBBV ADXHL AERWE AETEA AFHKK AFKRA AFYVU AGNAY AIDAL AIIKL AIKWM AJUXI AKCKI ALEEW ALSLI AMATQ APROO ARALO AYGLJ AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BPHCQ BRMHY BUAEY BVXVI BWQWQ CCPQU CGR CUY CVF C~Y DADXH DCMBD DWQXO D~A ECM EIF EJD EORKJ FYUFA GNUQQ GUQSH HCIFZ HMCUK HTOLE IBTYS K9- LK8 LPU M0R M1P M2O M2P M2Q M7P MVM NAPCQ NEJ NPM NUSFT OHT OMK ONUMK P-O PEA PHGZM PHGZT PMFND PQEDU PQQKQ PROAC PSQYO S0X SJFOW SKT UAP UKHRP ULY UQL VJK XOL YQJ YYP YYQ ZCG ZGI ZHY ZKB ZY4 7X8 |
ID | FETCH-LOGICAL-c314t-985d18abc246c552a5a1db3218d1ac8ce3d7d506171aa7b87eee6800d14712343 |
ISSN | 0270-1367 2168-3824 |
IngestDate | Fri Jul 11 07:21:10 EDT 2025 Tue Jun 10 01:31:03 EDT 2025 Tue Jul 01 05:25:37 EDT 2025 Thu Mar 06 04:56:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heart rate physiology team sports wearable technology tracking |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-985d18abc246c552a5a1db3218d1ac8ce3d7d506171aa7b87eee6800d14712343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1749-8533 0000-0002-9445-4008 0000-0001-5714-410X |
PMID | 38959981 |
PQID | 3075700561 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3075700561 crossref_primary_10_1080_02701367_2024_2360162 informaworld_taylorfrancis_310_1080_02701367_2024_2360162 pubmed_primary_38959981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Research quarterly for exercise and sport |
PublicationTitleAlternate | Res Q Exerc Sport |
PublicationYear | 2025 |
Publisher | Routledge |
Publisher_xml | – name: Routledge |
References | e_1_3_3_30_1 Edwards S. (e_1_3_3_12_1) 1993 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – ident: e_1_3_3_22_1 doi: 10.1007/s40279-017-0830-z – ident: e_1_3_3_32_1 doi: 10.1007/978-0-387-95922-1_14 – ident: e_1_3_3_21_1 doi: 10.1519/jsc.0000000000001999 – ident: e_1_3_3_35_1 doi: 10.1249/mss.0000000000002370 – ident: e_1_3_3_38_1 doi: 10.1080/02640410903178344 – ident: e_1_3_3_16_1 doi: 10.3390/sports9090117 – ident: e_1_3_3_11_1 doi: 10.1123/ijspp.2018-0571 – ident: e_1_3_3_10_1 doi: 10.21500/20112084.844 – ident: e_1_3_3_25_1 doi: 10.1123/ijspp.2021-0188 – ident: e_1_3_3_6_1 doi: 10.1136/bmj.310.6977.446 – ident: e_1_3_3_31_1 doi: 10.1348/000711005x67599 – ident: e_1_3_3_9_1 doi: 10.1186/s40798-019-0202-3 – ident: e_1_3_3_24_1 doi: 10.5114/biolsport.2023.114282 – ident: e_1_3_3_5_1 doi: 10.1123/ijspp.2015-0791 – ident: e_1_3_3_15_1 doi: 10.1080/10691898.2005.11910642 – ident: e_1_3_3_34_1 doi: 10.1519/jsc.0000000000001611 – ident: e_1_3_3_23_1 doi: 10.1080/15438627.2021.1954517 – ident: e_1_3_3_2_1 doi: 10.2165/00007256-200333070-00004 – ident: e_1_3_3_8_1 doi: 10.1287/inte.1110.0612 – ident: e_1_3_3_39_1 doi: 10.1093/biomet/87.4.954 – ident: e_1_3_3_27_1 doi: 10.1519/jsc.0000000000003915 – ident: e_1_3_3_28_1 doi: 10.1016/0377-0427(87)90125-7 – ident: e_1_3_3_19_1 doi: 10.1126/science.aaa8415 – ident: e_1_3_3_20_1 doi: 10.1080/02640414.2017.1306090 – ident: e_1_3_3_30_1 doi: 10.1519/jsc.0000000000001081 – ident: e_1_3_3_4_1 doi: 10.1519/JSC.0000000000003324 – ident: e_1_3_3_13_1 doi: 10.21595/jme.2020.21433 – ident: e_1_3_3_17_1 doi: 10.1016/j.aca.2004.09.074 – ident: e_1_3_3_26_1 doi: 10.2478/hukin-2022-000078 – ident: e_1_3_3_18_1 doi: 10.1123/ijspp.2017-0299 – start-page: 113 volume-title: The heart rate monitor book year: 1993 ident: e_1_3_3_12_1 – ident: e_1_3_3_3_1 doi: 10.1519/jsc.0000000000003490 – ident: e_1_3_3_33_1 doi: 10.1348/000711007x265894 – ident: e_1_3_3_29_1 doi: 10.1080/02640410600811817 – ident: e_1_3_3_36_1 doi: 10.1111/sms.14284 – ident: e_1_3_3_7_1 doi: 10.1515/hukin-2015-0040 – ident: e_1_3_3_14_1 doi: 10.1007/s40279-019-01170-1 – ident: e_1_3_3_37_1 doi: 10.1007/s40279-014-0230-6 |
SSID | ssj0000131 |
Score | 2.411338 |
Snippet | To identify key training load (TL) and intensity indicators in ice hockey, practice, and game data were collected using a wearable 200-Hz accelerometer and... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 21 |
SubjectTerms | Acceleration Accelerometry Adult Athletic Performance - physiology Competitive Behavior - physiology Heart rate Heart Rate - physiology Hockey - physiology Humans Machine Learning Male Physical Conditioning, Human - methods Physical Conditioning, Human - physiology physiology team sports tracking Wearable Electronic Devices wearable technology Young Adult |
Title | Identifying Key Training Load and Intensity Indicators in Ice Hockey Using Unsupervised Machine Learning |
URI | https://www.tandfonline.com/doi/abs/10.1080/02701367.2024.2360162 https://www.ncbi.nlm.nih.gov/pubmed/38959981 https://www.proquest.com/docview/3075700561 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdgu3BBUF7lJSMhLlWqObYT54jQpm6UIaEU7RY5jtvlkkxretlfz-dXkqIiBpeocusm6u_nr9_7Q-gjUTQVFZMRvHsSsZSDHEw0jUqa6hMmiWK2jvvbZbJYsYsrPgq02-qSrpyru4N1Jf-DKqwBrqZK9h-Q7b8UFuA14AtXQBiu98LYVdm6SqWvcLhzP-9htmxl5TN9bYY6aNrnjYnI2Nk6dTM7h-O8aM0JnrmkgVWz3d0YubHVJvHCZFjq0Hx1M9ZgQ6qeKcd06aCua7gf3WTvak3lIYK0se7YnzXwq7lrf_dguzylGj7Vg99e37o6ok1Tj90SMbduiZGnMiaJiKhwBdJzfWDNi1830HaPZkGWHhTxPicyTm23ObDwYzaPqekqEw__aSGOf_m9OFstl0V-epU_RMcx2BIgDI_zHxeLxajLmB1b2T9dKPQyLdgP3WZPhdlrcPtnM8WqK_kT9NjbGfizI81T9EA3EzOi26fzTNBkMBjwJ2yH3W-foesRpTBQCgdKYUMpDHjhnlJ4oBSuGwyUwo5S2FIKjymFPaVwoNRztDo7zb8sIj-MI1KUsC7KBK-IkKWKWaI4jyWXpCopaIgVkUooTau04kYhJlKmpUi11glYIxUB9SemjL5AR03b6FcIU840CHsNYkAwlmSZWnO1pjQB1VioREzRPPy-xY3ruVKQ0MrWA1IYQAoPyBRlYxSKzjq71m4yTUH_svdDgKwAyWrCZbLR7Q72gTad2la5U_TSYdk_Dqj5PMsEeX2P3W_Qo-GAvEVH3e1OvwNNtivfeyb-AhIvmoA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V7QEuPJbX8jQScMtSvxLnwKHqQ9l2twe0K_UWHNsLVaVsxWaFys_ir_CHGDtOaStVPVQ9cIsUORl7Hp6xZ74BeE8Nz5QVOsG3G4nIJNrB1PGk4pnbEJoaEeq4JwdpMRN7h_JwDX53tTA-rdLH0PMWKCLYaq_c_jC6S4n7hKFUgBrD8I6JIeMeUoTFxMp9d_oTw7bl59E28vgDY7s7060iiZ0FEsOpaJJcSUuVrgwTqZGSaamprThud5Zqo4zjNrPS7-5U66xSmXMuRdfKUrTljAuO370D6zIXXPVgffplryjOgVa1XRCRyMRT2dUNXUX4hR3xAl7q1V5v2P12H8Cfbt3apJfj4aqphubXJUjJ_2thH8L96IyTzVZ7HsGaq_u-j3XMeelD_59XTT6S0BF--Ri-t9XNoUKMIMFkGvtskPFCW4LTJ7EyoDnFJ38T5nsakaOajIwjxcJbThKSNcisXq5OvL1eOksmIbPVkQh6--0JzG5l-k-hVy9q9xwIl8KhRXSoKwpD9jw3c2nmnKfoPyqTqgEMO6kpT1pgkpJ2eK-RjaVnYxnZOID8vGyVTTgRmrftW0p-zdh3nSCWaH78nZKu3WKF49DlzAKe7ACetRJ6Rg76whKjefriBn9-C3eL6WRcjkcH-y_hHvPdl_0BGHsFvebHyr1Gl7Cp3kQdJPD1tqXzL9nFX9o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXQlx4VFe5TlIwC1l_UrSAwfEUqX7EkKttLfg2A4gpLSiqdDyr_gr_CLGjgO7SCsOaA_cIkVOxp6HZ-yZbwCeMiOy3Eqd0NudRGaK7GDqRFKJzO1IzYwMddyHR2mxkHvH6ngLvve1MD6t0sfQdQcUEWy1V-6VrfuMuBcUSQWkMYruuBxz4RFFeMyr3HcnXylqW7-c7RKLn3E-fTN_XSSxsUBiBJNtMsmVZbmuDJepUYprpZmtBO12lmmTGydsZpXf3JnWWZVnzrmUPCvLyJRzIQV99xJspx5-bwDb83d7RXEKs6prgkhEJp7KvmzoPMLPbIhn4FLPd3rD5je9Bj_6ZetyXj6PN201Nt_-QJT8r9b1OlyNrji-6nTnBmy5Zui7WMeMlyEMf_vU-BxDP_j1TfjY1TaH-jAkgnEeu2zgwVJbpNljrAtoT-jJ34P5jkb4qcGZcVgsvd3EkKqBi2a9WXlrvXYWD0Neq8MIefvhFiwuZPq3YdAsG3cXUCjpyB460pScAvbJxNTK1EKk5D3mJs1HMO6Fplx1sCQl69FeIxtLz8YysnEEk9OiVbbhPKjumreU4i9jn_RyWJLx8TdKunHLDY0jhzMLaLIjuNMJ6C9yyBNWFMuze__w58dw-e3utDyYHe3fhyvct172p1_8AQzaLxv3kPzBtnoUNRDh_UUL50__jF5- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Key+Training+Load+and+Intensity+Indicators+in+Ice+Hockey+Using+Unsupervised+Machine+Learning&rft.jtitle=Research+quarterly+for+exercise+and+sport&rft.au=Rago%2C+Vincenzo&rft.au=Fernandes%2C+Tiago&rft.au=Mohr%2C+Magni&rft.date=2025-01-02&rft.issn=2168-3824&rft.eissn=2168-3824&rft.volume=96&rft.issue=1&rft.spage=21&rft_id=info:doi/10.1080%2F02701367.2024.2360162&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-1367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-1367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-1367&client=summon |