Oriented construction of efficient intrinsic proton transport pathways in MOF-808

The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 36; pp. 18592 - 18597
Main Authors Li, Xiao-Min, Wang, Yameng, Mu, Yongbiao, Gao, Junkuo, Zeng, Lin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 20.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1 H -imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC . The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10 −2 S cm −1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. An oriented strategy to build efficient intrinsic proton transport pathways in MOF-808 by functionalizing the MOF skeleton has been proposed.
AbstractList The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1 H -imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10 −2 S cm −1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors.
The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1H-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10⁻² S cm⁻¹ at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors.
The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1 H -imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC . The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10 −2 S cm −1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. An oriented strategy to build efficient intrinsic proton transport pathways in MOF-808 by functionalizing the MOF skeleton has been proposed.
The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1H-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10−2 S cm−1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors.
Author Li, Xiao-Min
Gao, Junkuo
Wang, Yameng
Zeng, Lin
Mu, Yongbiao
AuthorAffiliation Southern University of Science and Technology
SUSTech Energy Institute for Carbon Neutrality
Zhejiang Sci-Tech University
School of Materials Science and Engineering
Institute of Functional Porous Materials
Department of Mechanical and Energy Engineering
AuthorAffiliation_xml – name: Southern University of Science and Technology
– name: Department of Mechanical and Energy Engineering
– name: SUSTech Energy Institute for Carbon Neutrality
– name: School of Materials Science and Engineering
– name: Institute of Functional Porous Materials
– name: Zhejiang Sci-Tech University
Author_xml – sequence: 1
  givenname: Xiao-Min
  surname: Li
  fullname: Li, Xiao-Min
– sequence: 2
  givenname: Yameng
  surname: Wang
  fullname: Wang, Yameng
– sequence: 3
  givenname: Yongbiao
  surname: Mu
  fullname: Mu, Yongbiao
– sequence: 4
  givenname: Junkuo
  surname: Gao
  fullname: Gao, Junkuo
– sequence: 5
  givenname: Lin
  surname: Zeng
  fullname: Zeng, Lin
BookMark eNptkUFLAzEQhYNUsNZevAsLXkRYTbKbbHIs1apQKUI9L9lsginbpCZZpP_e1EqF4lxm4H0zPN6cg4F1VgFwieAdggW_b3EUsCQVFidgiCGBeVVyOjjMjJ2BcQgrmIpBSDkfgreFN8pG1WbS2RB9L6NxNnM6U1obudMyY6M3NhiZbbyLSY1e2LBxPmYbET--xDYkJntdzHIG2QU41aILavzbR-B99ricPufzxdPLdDLPZYHKmPOqbZhuC6k0QckM0VBg2GBMaSM05lhxWhWyVUgT0rSqoQ2jCGlaaaZx0xYjcLO_m0x99irEem2CVF0nrHJ9qHGFC4Q4J2VCr4_Qleu9Te4ShSjBEBKaqNs9Jb0LwStdb7xZC7-tEax3AdcPeDn5CXiSYHgESxPFLrsUjun-X7nar_ggD6f_flZ8A6PgiNw
CitedBy_id crossref_primary_10_1016_j_foodchem_2023_137417
crossref_primary_10_1002_smll_202206999
crossref_primary_10_1016_j_seppur_2023_125957
crossref_primary_10_1002_ange_202313855
crossref_primary_10_1016_j_jssc_2023_123970
crossref_primary_10_1016_j_watres_2024_122102
crossref_primary_10_1021_acs_inorgchem_4c00444
crossref_primary_10_1021_acsanm_2c05389
crossref_primary_10_1021_acs_inorgchem_3c02099
crossref_primary_10_1016_j_ccr_2022_214930
crossref_primary_10_1002_zaac_202300008
crossref_primary_10_1016_j_colsurfa_2025_136722
crossref_primary_10_1002_ange_202413030
crossref_primary_10_1016_j_seppur_2023_123108
crossref_primary_10_1021_acs_inorgchem_4c02958
crossref_primary_10_1016_j_scib_2024_02_032
crossref_primary_10_1016_j_jssc_2022_123740
crossref_primary_10_1016_j_micromeso_2023_112495
crossref_primary_10_1021_acs_inorgchem_3c03315
crossref_primary_10_1038_s44160_024_00638_x
crossref_primary_10_3390_molecules27248750
crossref_primary_10_1039_D3CE00761H
crossref_primary_10_1016_j_cclet_2023_108474
crossref_primary_10_1039_D2CC06214C
crossref_primary_10_1016_j_mser_2024_100785
crossref_primary_10_1039_D3DT01150J
crossref_primary_10_1021_acs_inorgchem_4c04469
crossref_primary_10_1016_j_apmt_2025_102676
crossref_primary_10_1021_acs_nanolett_2c04697
crossref_primary_10_1021_acsaem_4c02795
crossref_primary_10_1016_j_fuel_2024_132115
crossref_primary_10_1002_smll_202308641
crossref_primary_10_1021_acs_inorgchem_4c00388
crossref_primary_10_1016_j_seppur_2024_130607
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1021_acssuschemeng_4c10189
crossref_primary_10_1016_j_est_2024_111600
crossref_primary_10_1016_j_cjsc_2023_100018
crossref_primary_10_1002_adfm_202308534
crossref_primary_10_1016_j_apcata_2023_119064
crossref_primary_10_1002_cssc_202301862
crossref_primary_10_1016_j_cej_2024_155411
crossref_primary_10_1021_acs_inorgchem_5c00120
crossref_primary_10_1016_j_seppur_2024_131332
crossref_primary_10_1016_j_ijhydene_2023_12_094
crossref_primary_10_1021_acs_inorgchem_3c04370
crossref_primary_10_1021_acsami_4c07878
crossref_primary_10_1021_acsami_4c07876
crossref_primary_10_1039_D2NJ05693C
crossref_primary_10_1002_anie_202313855
crossref_primary_10_1002_agt2_525
crossref_primary_10_1016_j_memsci_2024_123306
crossref_primary_10_1021_acs_inorgchem_4c02470
crossref_primary_10_1016_j_chroma_2023_464435
crossref_primary_10_1002_chem_202403296
crossref_primary_10_1021_acs_cgd_3c00135
crossref_primary_10_1002_anie_202413030
Cites_doi 10.1021/jacs.8b11525
10.1021/ja305587n
10.1021/acsami.9b01026
10.1021/ja2110152
10.1038/s41560-017-0018-7
10.1021/acsami.9b01075
10.1021/jacs.5b10999
10.1002/anie.201102997
10.1002/anie.201206410
10.1021/ja109810w
10.1002/anie.196904991
10.1021/jacs.6b12847
10.1002/anie.201309077
10.1016/j.ssnmr.2016.06.001
10.1021/ja9040016
10.1002/anie.201411703
10.1039/D0TA01733G
10.1002/anie.201404164
10.1002/cplu.201600243
10.1021/ja500330a
10.1039/c3cs60028a
10.1021/acs.chemrev.9b00842
10.1002/anie.202103191
10.1021/acsaem.1c01541
10.1039/C6TA04160D
10.1039/C4CS00093E
10.1039/C8SC03022G
10.1021/acs.chemmater.0c04823
10.1002/anie.201600123
10.1039/C9TA08253K
10.3724/j.issn.1000-0518.2009.12.14281434
10.1021/ar300291s
10.1007/s40820-020-00514-1
10.1021/jacs.7b01559
10.1002/anie.202112922
10.1038/s42004-020-0329-7
10.1039/C8SC04475A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d2ta04572a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 18597
ExternalDocumentID 10_1039_D2TA04572A
d2ta04572a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c314t-97db8fd3cef510065f0a20b2266baf292e9673cde1f55bdeb6b8611f67f8f2bd3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:18:46 EDT 2025
Mon Jun 30 12:04:01 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Tue Jul 01 01:13:29 EDT 2025
Fri Sep 23 04:21:16 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-97db8fd3cef510065f0a20b2266baf292e9673cde1f55bdeb6b8611f67f8f2bd3
Notes https://doi.org/10.1039/d2ta04572a
Electronic supplementary information (ESI) available: Experimental methods and supporting figures and tables. See
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9778-4312
0000-0002-0510-1754
PQID 2716520056
PQPubID 2047523
PageCount 6
ParticipantIDs proquest_miscellaneous_2723119954
crossref_primary_10_1039_D2TA04572A
proquest_journals_2716520056
rsc_primary_d2ta04572a
crossref_citationtrail_10_1039_D2TA04572A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sadakiyo (D2TA04572A/cit8/1) 2009; 131
Jensen (D2TA04572A/cit33/1) 2016; 78
Nagarkar (D2TA04572A/cit11/1) 2014; 53
Lim (D2TA04572A/cit5/1) 2019; 10
Wei (D2TA04572A/cit9/1) 2017; 139
Shan (D2TA04572A/cit29/1) 2009; 26
Aunan (D2TA04572A/cit32/1) 2021; 33
Horike (D2TA04572A/cit2/1) 2013; 46
Rought (D2TA04572A/cit18/1) 2019; 10
Furukawa (D2TA04572A/cit25/1) 2014; 136
Zhang (D2TA04572A/cit21/1) 2017; 139
Yamada (D2TA04572A/cit4/1) 2013; 42
Chen (D2TA04572A/cit15/1) 2016; 55
Sadakiyo (D2TA04572A/cit6/1) 2016; 81
Giubertoni (D2TA04572A/cit31/1) 2020; 3
Sharma (D2TA04572A/cit28/1) 2021; 60
Nguyen (D2TA04572A/cit10/1) 2015; 137
Kang (D2TA04572A/cit23/1) 2020; 8
Lee (D2TA04572A/cit16/1) 2019; 11
Li (D2TA04572A/cit36/1) 2021; 60
Li (D2TA04572A/cit35/1) 2021; 4
Yang (D2TA04572A/cit19/1) 2017; 2
Wang (D2TA04572A/cit7/1) 2019; 7
Baek (D2TA04572A/cit26/1) 2018; 140
Ramaswamy (D2TA04572A/cit1/1) 2014; 43
Zundel (D2TA04572A/cit37/1) 1969; 8
Ponomareva (D2TA04572A/cit12/1) 2012; 134
Shigematsu (D2TA04572A/cit17/1) 2011; 133
Jeong (D2TA04572A/cit20/1) 2012; 134
Luo (D2TA04572A/cit27/1) 2019; 11
Yoon (D2TA04572A/cit3/1) 2013; 52
Phang (D2TA04572A/cit22/1) 2015; 54
Healey (D2TA04572A/cit30/1) 2016; 4
Lim (D2TA04572A/cit24/1) 2020; 120
Umeyama (D2TA04572A/cit14/1) 2011; 50
Phang (D2TA04572A/cit13/1) 2014; 53
Liu (D2TA04572A/cit34/1) 2020; 12
References_xml – volume: 140
  start-page: 18208
  year: 2018
  ident: D2TA04572A/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11525
– volume: 134
  start-page: 15640
  year: 2012
  ident: D2TA04572A/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305587n
– volume: 11
  start-page: 12639
  year: 2019
  ident: D2TA04572A/cit16/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01026
– volume: 134
  start-page: 51
  year: 2012
  ident: D2TA04572A/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2110152
– volume: 2
  start-page: 877
  year: 2017
  ident: D2TA04572A/cit19/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0018-7
– volume: 11
  start-page: 9164
  year: 2019
  ident: D2TA04572A/cit27/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01075
– volume: 137
  start-page: 15394
  year: 2015
  ident: D2TA04572A/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10999
– volume: 50
  start-page: 11706
  year: 2011
  ident: D2TA04572A/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102997
– volume: 52
  start-page: 2688
  year: 2013
  ident: D2TA04572A/cit3/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206410
– volume: 133
  start-page: 2034
  year: 2011
  ident: D2TA04572A/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109810w
– volume: 8
  start-page: 499
  year: 1969
  ident: D2TA04572A/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.196904991
– volume: 139
  start-page: 3505
  year: 2017
  ident: D2TA04572A/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12847
– volume: 53
  start-page: 2638
  year: 2014
  ident: D2TA04572A/cit11/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309077
– volume: 78
  start-page: 9
  year: 2016
  ident: D2TA04572A/cit33/1
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2016.06.001
– volume: 131
  start-page: 9906
  year: 2009
  ident: D2TA04572A/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9040016
– volume: 54
  start-page: 5142
  year: 2015
  ident: D2TA04572A/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411703
– volume: 8
  start-page: 7474
  year: 2020
  ident: D2TA04572A/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01733G
– volume: 53
  start-page: 8383
  year: 2014
  ident: D2TA04572A/cit13/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404164
– volume: 81
  start-page: 691
  year: 2016
  ident: D2TA04572A/cit6/1
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600243
– volume: 136
  start-page: 4369
  year: 2014
  ident: D2TA04572A/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500330a
– volume: 42
  start-page: 6655
  year: 2013
  ident: D2TA04572A/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60028a
– volume: 120
  start-page: 8416
  year: 2020
  ident: D2TA04572A/cit24/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00842
– volume: 60
  start-page: 14334
  year: 2021
  ident: D2TA04572A/cit28/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103191
– volume: 4
  start-page: 8303
  year: 2021
  ident: D2TA04572A/cit35/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01541
– volume: 4
  start-page: 10816
  year: 2016
  ident: D2TA04572A/cit30/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04160D
– volume: 43
  start-page: 5913
  year: 2014
  ident: D2TA04572A/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 10
  start-page: 1492
  year: 2019
  ident: D2TA04572A/cit18/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03022G
– volume: 33
  start-page: 1471
  year: 2021
  ident: D2TA04572A/cit32/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04823
– volume: 55
  start-page: 5195
  year: 2016
  ident: D2TA04572A/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600123
– volume: 7
  start-page: 24059
  year: 2019
  ident: D2TA04572A/cit7/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08253K
– volume: 26
  start-page: 1428
  year: 2009
  ident: D2TA04572A/cit29/1
  publication-title: Chin. J. Appl. Chem
  doi: 10.3724/j.issn.1000-0518.2009.12.14281434
– volume: 46
  start-page: 2376
  year: 2013
  ident: D2TA04572A/cit2/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300291s
– volume: 12
  start-page: 176
  year: 2020
  ident: D2TA04572A/cit34/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00514-1
– volume: 139
  start-page: 6183
  year: 2017
  ident: D2TA04572A/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01559
– volume: 60
  start-page: 26577
  year: 2021
  ident: D2TA04572A/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112922
– volume: 3
  start-page: 84
  year: 2020
  ident: D2TA04572A/cit31/1
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-020-0329-7
– volume: 10
  start-page: 16
  year: 2019
  ident: D2TA04572A/cit5/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04475A
SSID ssj0000800699
Score 2.5756407
Snippet The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the...
The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18592
SubjectTerms Carboxylic acids
Conduction
Conductivity
Conductors
durability
Formates
Imidazole
Proton conduction
R&D
Research & development
research and development
structure-activity relationships
Zirconium
Title Oriented construction of efficient intrinsic proton transport pathways in MOF-808
URI https://www.proquest.com/docview/2716520056
https://www.proquest.com/docview/2723119954
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeJr4mOgYyghc0ZSROYjePFQwNtDIhdaI8Vf4cFZCgkQrBD-J3cm3HToAiDV6i1nGdOvfYPravz0XoMZDyTFZZnshMwASlYCzhpckSqSomM1Vo6eSaZq_pyXnxalEuRqMfA6-ldSuO5PeN50r-x6qQBna1p2T_wbKxUEiAz2BfuIKF4XolG59ZkWJLGWXTC8Fa-qedMITd5l_V7eWqBlNYTywrodEGNXMrqfr-K__mHGJnZ1CfdPIXqgqs1lfnUIb4cEeHU3_UJ9xx0uH-IKFbiw8Hs6zvbVy2P3W-A4sVb5LZKsLybbdm_Y5_0t1A6iDg0pr6QkD-6CfE_VbRuv6wboZLFjDbtbs4ad-zkbRMrYipr5UepvnwtrFrTgcQzIcdLdAMH0OvG7Xtd7ZxSEhzq6j6nMynwF4ZiaKqve72b-Nh9FJ0-_N5tex_u4V2CExHoD_dmR7PX57G1TzLu6kLVhrrFrRw8-ppX8Cv7Kef0mxdhngzjtfMb6Ddzsp46tF1E410fQtdH8hU3kZvAs7wEGe4MTjiDEecYY8zHHGGA84gD-5wdgedvziePztJulAcicyzok0qpsTEqFxqA5040FaTcpIK4O5UcEMqoivKcql0ZspSKC2omEAvYCgzE0OEyvfQdt3U-i7CvDKaFJwZU-oi01LklKoKSisLVQGdHaMn4RUtZadTb8OlfFz-aY8xehTzfvbqLBtzHYQ3vexa75clYRm1kmMlHaOH8TY0IbthxmvdrG0emP1YDYNijPbAQvEZirTclc33r_QP7qFrfTs4QNtgKX0fyGwrHnRI-glRpJ-J
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+construction+of+efficient+intrinsic+proton+transport+pathways+in+MOF-808&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xiao-Min&rft.au=Wang%2C+Yameng&rft.au=Mu%2C+Yongbiao&rft.au=Gao%2C+Junkuo&rft.date=2022-09-20&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=10&rft.issue=36&rft.spage=18592&rft.epage=18597&rft_id=info:doi/10.1039%2FD2TA04572A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA04572A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon