Oriented construction of efficient intrinsic proton transport pathways in MOF-808
The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 36; pp. 18592 - 18597 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
20.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1
H
-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize
MOF-808-IMC
and
MOF-808-IMDC
. The proton conduction performances of
MOF-808-IMC
and
MOF-808-IMDC
are much higher than that of the original MOF-808. Specifically,
MOF-808-IMDC
exhibits an intrinsic proton conductivity of 1.11 × 10
−2
S cm
−1
at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of
MOF-808-IMDC
has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors.
An oriented strategy to build efficient intrinsic proton transport pathways in MOF-808 by functionalizing the MOF skeleton has been proposed. |
---|---|
AbstractList | The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1
H
-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10
−2
S cm
−1
at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1H-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10⁻² S cm⁻¹ at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1 H -imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC . The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10 −2 S cm −1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. An oriented strategy to build efficient intrinsic proton transport pathways in MOF-808 by functionalizing the MOF skeleton has been proposed. The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the experimental scheme, measuring the performance and feeding back the design ideas. Therefore, understanding the proton conduction mechanism and orientally constructing efficient intrinsic proton transport pathways are very important for the research and development of proton conductors. Herein, we propose an effective and feasible strategy of replacing the formates and hydroxide groups coordinated with Zr in MOF-808 with 1H-imidazole-4-carboxylic acid (IMC) and 4,5-imidazoledicarboxylic acid (IMDC) containing imidazole groups to synthesize MOF-808-IMC and MOF-808-IMDC. The proton conduction performances of MOF-808-IMC and MOF-808-IMDC are much higher than that of the original MOF-808. Specifically, MOF-808-IMDC exhibits an intrinsic proton conductivity of 1.11 × 10−2 S cm−1 at 80 °C and 98% RH, which can be comparable with the performances of commercial perfluorosulfonic acid resin and other MOF-based proton conductors. It is also noted that the proton conductivity of MOF-808-IMDC has good cycling stability and durability, which suggests that it has the potential to be used as a PEM. Furthermore, the proton transfer mechanism has been clarified in detail, which can provide a theoretical basis for the preparation of excellent proton conductors. |
Author | Li, Xiao-Min Gao, Junkuo Wang, Yameng Zeng, Lin Mu, Yongbiao |
AuthorAffiliation | Southern University of Science and Technology SUSTech Energy Institute for Carbon Neutrality Zhejiang Sci-Tech University School of Materials Science and Engineering Institute of Functional Porous Materials Department of Mechanical and Energy Engineering |
AuthorAffiliation_xml | – name: Southern University of Science and Technology – name: Department of Mechanical and Energy Engineering – name: SUSTech Energy Institute for Carbon Neutrality – name: School of Materials Science and Engineering – name: Institute of Functional Porous Materials – name: Zhejiang Sci-Tech University |
Author_xml | – sequence: 1 givenname: Xiao-Min surname: Li fullname: Li, Xiao-Min – sequence: 2 givenname: Yameng surname: Wang fullname: Wang, Yameng – sequence: 3 givenname: Yongbiao surname: Mu fullname: Mu, Yongbiao – sequence: 4 givenname: Junkuo surname: Gao fullname: Gao, Junkuo – sequence: 5 givenname: Lin surname: Zeng fullname: Zeng, Lin |
BookMark | eNptkUFLAzEQhYNUsNZevAsLXkRYTbKbbHIs1apQKUI9L9lsginbpCZZpP_e1EqF4lxm4H0zPN6cg4F1VgFwieAdggW_b3EUsCQVFidgiCGBeVVyOjjMjJ2BcQgrmIpBSDkfgreFN8pG1WbS2RB9L6NxNnM6U1obudMyY6M3NhiZbbyLSY1e2LBxPmYbET--xDYkJntdzHIG2QU41aILavzbR-B99ricPufzxdPLdDLPZYHKmPOqbZhuC6k0QckM0VBg2GBMaSM05lhxWhWyVUgT0rSqoQ2jCGlaaaZx0xYjcLO_m0x99irEem2CVF0nrHJ9qHGFC4Q4J2VCr4_Qleu9Te4ShSjBEBKaqNs9Jb0LwStdb7xZC7-tEax3AdcPeDn5CXiSYHgESxPFLrsUjun-X7nar_ggD6f_flZ8A6PgiNw |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2023_137417 crossref_primary_10_1002_smll_202206999 crossref_primary_10_1016_j_seppur_2023_125957 crossref_primary_10_1002_ange_202313855 crossref_primary_10_1016_j_jssc_2023_123970 crossref_primary_10_1016_j_watres_2024_122102 crossref_primary_10_1021_acs_inorgchem_4c00444 crossref_primary_10_1021_acsanm_2c05389 crossref_primary_10_1021_acs_inorgchem_3c02099 crossref_primary_10_1016_j_ccr_2022_214930 crossref_primary_10_1002_zaac_202300008 crossref_primary_10_1016_j_colsurfa_2025_136722 crossref_primary_10_1002_ange_202413030 crossref_primary_10_1016_j_seppur_2023_123108 crossref_primary_10_1021_acs_inorgchem_4c02958 crossref_primary_10_1016_j_scib_2024_02_032 crossref_primary_10_1016_j_jssc_2022_123740 crossref_primary_10_1016_j_micromeso_2023_112495 crossref_primary_10_1021_acs_inorgchem_3c03315 crossref_primary_10_1038_s44160_024_00638_x crossref_primary_10_3390_molecules27248750 crossref_primary_10_1039_D3CE00761H crossref_primary_10_1016_j_cclet_2023_108474 crossref_primary_10_1039_D2CC06214C crossref_primary_10_1016_j_mser_2024_100785 crossref_primary_10_1039_D3DT01150J crossref_primary_10_1021_acs_inorgchem_4c04469 crossref_primary_10_1016_j_apmt_2025_102676 crossref_primary_10_1021_acs_nanolett_2c04697 crossref_primary_10_1021_acsaem_4c02795 crossref_primary_10_1016_j_fuel_2024_132115 crossref_primary_10_1002_smll_202308641 crossref_primary_10_1021_acs_inorgchem_4c00388 crossref_primary_10_1016_j_seppur_2024_130607 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1021_acssuschemeng_4c10189 crossref_primary_10_1016_j_est_2024_111600 crossref_primary_10_1016_j_cjsc_2023_100018 crossref_primary_10_1002_adfm_202308534 crossref_primary_10_1016_j_apcata_2023_119064 crossref_primary_10_1002_cssc_202301862 crossref_primary_10_1016_j_cej_2024_155411 crossref_primary_10_1021_acs_inorgchem_5c00120 crossref_primary_10_1016_j_seppur_2024_131332 crossref_primary_10_1016_j_ijhydene_2023_12_094 crossref_primary_10_1021_acs_inorgchem_3c04370 crossref_primary_10_1021_acsami_4c07878 crossref_primary_10_1021_acsami_4c07876 crossref_primary_10_1039_D2NJ05693C crossref_primary_10_1002_anie_202313855 crossref_primary_10_1002_agt2_525 crossref_primary_10_1016_j_memsci_2024_123306 crossref_primary_10_1021_acs_inorgchem_4c02470 crossref_primary_10_1016_j_chroma_2023_464435 crossref_primary_10_1002_chem_202403296 crossref_primary_10_1021_acs_cgd_3c00135 crossref_primary_10_1002_anie_202413030 |
Cites_doi | 10.1021/jacs.8b11525 10.1021/ja305587n 10.1021/acsami.9b01026 10.1021/ja2110152 10.1038/s41560-017-0018-7 10.1021/acsami.9b01075 10.1021/jacs.5b10999 10.1002/anie.201102997 10.1002/anie.201206410 10.1021/ja109810w 10.1002/anie.196904991 10.1021/jacs.6b12847 10.1002/anie.201309077 10.1016/j.ssnmr.2016.06.001 10.1021/ja9040016 10.1002/anie.201411703 10.1039/D0TA01733G 10.1002/anie.201404164 10.1002/cplu.201600243 10.1021/ja500330a 10.1039/c3cs60028a 10.1021/acs.chemrev.9b00842 10.1002/anie.202103191 10.1021/acsaem.1c01541 10.1039/C6TA04160D 10.1039/C4CS00093E 10.1039/C8SC03022G 10.1021/acs.chemmater.0c04823 10.1002/anie.201600123 10.1039/C9TA08253K 10.3724/j.issn.1000-0518.2009.12.14281434 10.1021/ar300291s 10.1007/s40820-020-00514-1 10.1021/jacs.7b01559 10.1002/anie.202112922 10.1038/s42004-020-0329-7 10.1039/C8SC04475A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d2ta04572a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 18597 |
ExternalDocumentID | 10_1039_D2TA04572A d2ta04572a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ~ H~N J3I O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-97db8fd3cef510065f0a20b2266baf292e9673cde1f55bdeb6b8611f67f8f2bd3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:18:46 EDT 2025 Mon Jun 30 12:04:01 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Tue Jul 01 01:13:29 EDT 2025 Fri Sep 23 04:21:16 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-97db8fd3cef510065f0a20b2266baf292e9673cde1f55bdeb6b8611f67f8f2bd3 |
Notes | https://doi.org/10.1039/d2ta04572a Electronic supplementary information (ESI) available: Experimental methods and supporting figures and tables. See ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9778-4312 0000-0002-0510-1754 |
PQID | 2716520056 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2723119954 crossref_primary_10_1039_D2TA04572A proquest_journals_2716520056 rsc_primary_d2ta04572a crossref_citationtrail_10_1039_D2TA04572A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sadakiyo (D2TA04572A/cit8/1) 2009; 131 Jensen (D2TA04572A/cit33/1) 2016; 78 Nagarkar (D2TA04572A/cit11/1) 2014; 53 Lim (D2TA04572A/cit5/1) 2019; 10 Wei (D2TA04572A/cit9/1) 2017; 139 Shan (D2TA04572A/cit29/1) 2009; 26 Aunan (D2TA04572A/cit32/1) 2021; 33 Horike (D2TA04572A/cit2/1) 2013; 46 Rought (D2TA04572A/cit18/1) 2019; 10 Furukawa (D2TA04572A/cit25/1) 2014; 136 Zhang (D2TA04572A/cit21/1) 2017; 139 Yamada (D2TA04572A/cit4/1) 2013; 42 Chen (D2TA04572A/cit15/1) 2016; 55 Sadakiyo (D2TA04572A/cit6/1) 2016; 81 Giubertoni (D2TA04572A/cit31/1) 2020; 3 Sharma (D2TA04572A/cit28/1) 2021; 60 Nguyen (D2TA04572A/cit10/1) 2015; 137 Kang (D2TA04572A/cit23/1) 2020; 8 Lee (D2TA04572A/cit16/1) 2019; 11 Li (D2TA04572A/cit36/1) 2021; 60 Li (D2TA04572A/cit35/1) 2021; 4 Yang (D2TA04572A/cit19/1) 2017; 2 Wang (D2TA04572A/cit7/1) 2019; 7 Baek (D2TA04572A/cit26/1) 2018; 140 Ramaswamy (D2TA04572A/cit1/1) 2014; 43 Zundel (D2TA04572A/cit37/1) 1969; 8 Ponomareva (D2TA04572A/cit12/1) 2012; 134 Shigematsu (D2TA04572A/cit17/1) 2011; 133 Jeong (D2TA04572A/cit20/1) 2012; 134 Luo (D2TA04572A/cit27/1) 2019; 11 Yoon (D2TA04572A/cit3/1) 2013; 52 Phang (D2TA04572A/cit22/1) 2015; 54 Healey (D2TA04572A/cit30/1) 2016; 4 Lim (D2TA04572A/cit24/1) 2020; 120 Umeyama (D2TA04572A/cit14/1) 2011; 50 Phang (D2TA04572A/cit13/1) 2014; 53 Liu (D2TA04572A/cit34/1) 2020; 12 |
References_xml | – volume: 140 start-page: 18208 year: 2018 ident: D2TA04572A/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11525 – volume: 134 start-page: 15640 year: 2012 ident: D2TA04572A/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305587n – volume: 11 start-page: 12639 year: 2019 ident: D2TA04572A/cit16/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01026 – volume: 134 start-page: 51 year: 2012 ident: D2TA04572A/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2110152 – volume: 2 start-page: 877 year: 2017 ident: D2TA04572A/cit19/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0018-7 – volume: 11 start-page: 9164 year: 2019 ident: D2TA04572A/cit27/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01075 – volume: 137 start-page: 15394 year: 2015 ident: D2TA04572A/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10999 – volume: 50 start-page: 11706 year: 2011 ident: D2TA04572A/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102997 – volume: 52 start-page: 2688 year: 2013 ident: D2TA04572A/cit3/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206410 – volume: 133 start-page: 2034 year: 2011 ident: D2TA04572A/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109810w – volume: 8 start-page: 499 year: 1969 ident: D2TA04572A/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.196904991 – volume: 139 start-page: 3505 year: 2017 ident: D2TA04572A/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12847 – volume: 53 start-page: 2638 year: 2014 ident: D2TA04572A/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309077 – volume: 78 start-page: 9 year: 2016 ident: D2TA04572A/cit33/1 publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2016.06.001 – volume: 131 start-page: 9906 year: 2009 ident: D2TA04572A/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9040016 – volume: 54 start-page: 5142 year: 2015 ident: D2TA04572A/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411703 – volume: 8 start-page: 7474 year: 2020 ident: D2TA04572A/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01733G – volume: 53 start-page: 8383 year: 2014 ident: D2TA04572A/cit13/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404164 – volume: 81 start-page: 691 year: 2016 ident: D2TA04572A/cit6/1 publication-title: ChemPlusChem doi: 10.1002/cplu.201600243 – volume: 136 start-page: 4369 year: 2014 ident: D2TA04572A/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500330a – volume: 42 start-page: 6655 year: 2013 ident: D2TA04572A/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60028a – volume: 120 start-page: 8416 year: 2020 ident: D2TA04572A/cit24/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00842 – volume: 60 start-page: 14334 year: 2021 ident: D2TA04572A/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103191 – volume: 4 start-page: 8303 year: 2021 ident: D2TA04572A/cit35/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01541 – volume: 4 start-page: 10816 year: 2016 ident: D2TA04572A/cit30/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04160D – volume: 43 start-page: 5913 year: 2014 ident: D2TA04572A/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 10 start-page: 1492 year: 2019 ident: D2TA04572A/cit18/1 publication-title: Chem. Sci. doi: 10.1039/C8SC03022G – volume: 33 start-page: 1471 year: 2021 ident: D2TA04572A/cit32/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04823 – volume: 55 start-page: 5195 year: 2016 ident: D2TA04572A/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600123 – volume: 7 start-page: 24059 year: 2019 ident: D2TA04572A/cit7/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08253K – volume: 26 start-page: 1428 year: 2009 ident: D2TA04572A/cit29/1 publication-title: Chin. J. Appl. Chem doi: 10.3724/j.issn.1000-0518.2009.12.14281434 – volume: 46 start-page: 2376 year: 2013 ident: D2TA04572A/cit2/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300291s – volume: 12 start-page: 176 year: 2020 ident: D2TA04572A/cit34/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00514-1 – volume: 139 start-page: 6183 year: 2017 ident: D2TA04572A/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01559 – volume: 60 start-page: 26577 year: 2021 ident: D2TA04572A/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112922 – volume: 3 start-page: 84 year: 2020 ident: D2TA04572A/cit31/1 publication-title: Commun. Chem. doi: 10.1038/s42004-020-0329-7 – volume: 10 start-page: 16 year: 2019 ident: D2TA04572A/cit5/1 publication-title: Chem. Sci. doi: 10.1039/C8SC04475A |
SSID | ssj0000800699 |
Score | 2.5756407 |
Snippet | The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure-activity relationship, designing the... The development of advanced materials needs to be continuously promoted by the cyclic process of mastering the structure–activity relationship, designing the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18592 |
SubjectTerms | Carboxylic acids Conduction Conductivity Conductors durability Formates Imidazole Proton conduction R&D Research & development research and development structure-activity relationships Zirconium |
Title | Oriented construction of efficient intrinsic proton transport pathways in MOF-808 |
URI | https://www.proquest.com/docview/2716520056 https://www.proquest.com/docview/2723119954 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeJr4mOgYyghc0ZSROYjePFQwNtDIhdaI8Vf4cFZCgkQrBD-J3cm3HToAiDV6i1nGdOvfYPravz0XoMZDyTFZZnshMwASlYCzhpckSqSomM1Vo6eSaZq_pyXnxalEuRqMfA6-ldSuO5PeN50r-x6qQBna1p2T_wbKxUEiAz2BfuIKF4XolG59ZkWJLGWXTC8Fa-qedMITd5l_V7eWqBlNYTywrodEGNXMrqfr-K__mHGJnZ1CfdPIXqgqs1lfnUIb4cEeHU3_UJ9xx0uH-IKFbiw8Hs6zvbVy2P3W-A4sVb5LZKsLybbdm_Y5_0t1A6iDg0pr6QkD-6CfE_VbRuv6wboZLFjDbtbs4ad-zkbRMrYipr5UepvnwtrFrTgcQzIcdLdAMH0OvG7Xtd7ZxSEhzq6j6nMynwF4ZiaKqve72b-Nh9FJ0-_N5tex_u4V2CExHoD_dmR7PX57G1TzLu6kLVhrrFrRw8-ppX8Cv7Kef0mxdhngzjtfMb6Ddzsp46tF1E410fQtdH8hU3kZvAs7wEGe4MTjiDEecYY8zHHGGA84gD-5wdgedvziePztJulAcicyzok0qpsTEqFxqA5040FaTcpIK4O5UcEMqoivKcql0ZspSKC2omEAvYCgzE0OEyvfQdt3U-i7CvDKaFJwZU-oi01LklKoKSisLVQGdHaMn4RUtZadTb8OlfFz-aY8xehTzfvbqLBtzHYQ3vexa75clYRm1kmMlHaOH8TY0IbthxmvdrG0emP1YDYNijPbAQvEZirTclc33r_QP7qFrfTs4QNtgKX0fyGwrHnRI-glRpJ-J |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+construction+of+efficient+intrinsic+proton+transport+pathways+in+MOF-808&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xiao-Min&rft.au=Wang%2C+Yameng&rft.au=Mu%2C+Yongbiao&rft.au=Gao%2C+Junkuo&rft.date=2022-09-20&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=10&rft.issue=36&rft.spage=18592&rft.epage=18597&rft_id=info:doi/10.1039%2FD2TA04572A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA04572A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |