Electronic, mechanical and gas sensing properties of two-dimensional γ-SnSe
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 42; pp. 28716 - 28726 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO
2
, and SO
2
compared to CO, CO
2
, H
2
S and NH
3
. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. |
---|---|
AbstractList | Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO
2
, and SO
2
compared to CO, CO
2
, H
2
S and NH
3
. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide. Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (-0.023/-0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (-0.023/-0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide. Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO 2 , and SO 2 compared to CO, CO 2 , H 2 S and NH 3 . These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide. |
Author | Zhang, Pan Yuan, Jun-Hui Feng, Tianhang Liu, Chao Wang, Jiafu Li, Gang Zhu, Chunyan Jiang, Xinying |
AuthorAffiliation | South-Central Minzu University School of Integrated Circuits Peking University Wuhan Railway Vocational College of Technology Wuhan University of Technology College of Biomedical Engineering School of Science National Key Laboratory of Advanced Micro and Nano Manufacture Technology Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment Key Laboratory of Cognitive Science of State Ethnic Affairs Commission College of Railway Rolling Stock |
AuthorAffiliation_xml | – sequence: 0 name: Wuhan Railway Vocational College of Technology – sequence: 0 name: School of Integrated Circuits – sequence: 0 name: College of Biomedical Engineering – sequence: 0 name: Peking University – sequence: 0 name: Wuhan University of Technology – sequence: 0 name: College of Railway Rolling Stock – sequence: 0 name: Key Laboratory of Cognitive Science of State Ethnic Affairs Commission – sequence: 0 name: South-Central Minzu University – sequence: 0 name: School of Science – sequence: 0 name: National Key Laboratory of Advanced Micro and Nano Manufacture Technology – sequence: 0 name: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment |
Author_xml | – sequence: 1 givenname: Chunyan surname: Zhu fullname: Zhu, Chunyan – sequence: 2 givenname: Tianhang surname: Feng fullname: Feng, Tianhang – sequence: 3 givenname: Xinying surname: Jiang fullname: Jiang, Xinying – sequence: 4 givenname: Gang surname: Li fullname: Li, Gang – sequence: 5 givenname: Jun-Hui surname: Yuan fullname: Yuan, Jun-Hui – sequence: 6 givenname: Chao surname: Liu fullname: Liu, Chao – sequence: 7 givenname: Pan surname: Zhang fullname: Zhang, Pan – sequence: 8 givenname: Jiafu surname: Wang fullname: Wang, Jiafu |
BookMark | eNpt0UFLwzAUB_AgE5zTi3eh4EXEatKXtulR5qbCQGF6Lm9pMjvaZCYd4ufye_iZzJxMGJ7ySH4v_PNySHrGGkXICaNXjEJxXYFcUuAC9B7pM55BXFDBe9s6zw7IofcLSilLGfTJZNQo2TlrankZtUq-YqiwidBU0Rx95JXxtZlHS2eXynW18pHVUfdu46pu12fWBP31GU_NVB2RfY2NV8e_64C8jEfPw_t48nj3MLyZxBIY7-IiBSwgSYGjylIOOkGe5zONWs6ACsg4srDHUkxowlDnkOmQvKqwYFwkMxiQ8829IdXbSvmubGsvVdOgUXbly0TkImesEFmgZzt0YVcuZF4rkVIuaJoGRTdKOuu9U7qUdYddeFznsG5KRsv1eMtbGD79jHccWi52WpaubtF9_I9PN9h5uXV_fwXf0GyFwQ |
CitedBy_id | crossref_primary_10_1039_D3CP05325C |
Cites_doi | 10.1126/science.aad3749 10.1021/acsami.2c22134 10.1016/j.nanoen.2022.107188 10.1039/C6NR08550D 10.1038/nature13184 10.1063/1.2404663 10.1103/PhysRevLett.77.3865 10.1002/adma.201706285 10.1002/adma.201501676 10.1039/C8TC05164J 10.1039/D1TC00966D 10.1007/s12274-017-1712-2 10.1126/science.1157996 10.1021/acs.nanolett.0c02357 10.1038/ncomms5727 10.1039/D2CC06656D 10.1063/1.3382344 10.1039/C7NR04766E 10.1103/PhysRevB.54.11169 10.1021/acs.nanolett.6b05143 10.1021/acsaelm.2c01121 10.1021/acs.jpclett.9b01611 10.1039/D1QM00410G 10.1103/PhysRev.136.B864 10.1016/j.snb.2016.06.033 10.1002/advs.202203956 10.3390/s18113638 10.1002/adfm.202200516 10.3390/coatings9060390 10.1016/j.apsusc.2022.154176 10.1021/acsami.9b10472 10.1103/PhysRev.140.A1133 10.1103/PhysRevMaterials.3.054002 10.1039/D0NH00395F 10.1016/0927-0256(96)00008-0 10.1002/adma.201103965 10.1126/science.aad1080 10.1016/j.jallcom.2023.168919 10.1016/j.apsusc.2019.03.346 10.1103/PhysRevB.13.5188 10.1016/j.cej.2020.127572 10.1016/j.cplett.2017.08.030 10.1109/LED.2018.2806367 10.1002/admi.202000474 10.1088/2053-1591/3/10/105038 10.1039/C8NR08046A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cp03483f |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 28726 |
ExternalDocumentID | 10_1039_D3CP03483F d3cp03483f |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-953a932534ae6543f2a477bfafcb308364a1f2a15a2021af736f076dda91482b3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu Jul 10 22:42:33 EDT 2025 Mon Jun 30 05:44:51 EDT 2025 Tue Jul 01 00:48:08 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Dec 17 20:58:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-953a932534ae6543f2a477bfafcb308364a1f2a15a2021af736f076dda91482b3 |
Notes | https://doi.org/10.1039/d3cp03483f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0007-4553-4806 0000-0001-7732-5979 |
PQID | 2885048055 |
PQPubID | 2047499 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_D3CP03483F rsc_primary_d3cp03483f crossref_citationtrail_10_1039_D3CP03483F proquest_miscellaneous_2878711986 proquest_journals_2885048055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Castellanos-Gomez (D3CP03483F/cit40/1) 2012; 24 Wang (D3CP03483F/cit41/1) 2017; 9 Chang (D3CP03483F/cit1/1) 2021; 37 Zhang (D3CP03483F/cit38/1) 2022; 601 Kohn (D3CP03483F/cit22/1) 1965; 140 Wang (D3CP03483F/cit48/1) 2018; 39 Donarelli (D3CP03483F/cit14/1) 2018; 18 Jiang (D3CP03483F/cit44/1) 2014; 5 Liu (D3CP03483F/cit12/1) 2019; 3 Krukau (D3CP03483F/cit26/1) 2006; 125 Liu (D3CP03483F/cit45/1) 2019; 9 Davitt (D3CP03483F/cit5/1) 2020; 7 Shokri (D3CP03483F/cit15/1) 2016; 236 Batool (D3CP03483F/cit32/1) 2023; 10 Yuan (D3CP03483F/cit36/1) 2019; 10 Zhao (D3CP03483F/cit3/1) 2016; 351 Chang (D3CP03483F/cit10/1) 2020; 20 Liu (D3CP03483F/cit16/1) 2023; 59 Monkhorst (D3CP03483F/cit27/1) 1976; 13 Miao (D3CP03483F/cit34/1) 2020; 5 Li (D3CP03483F/cit2/1) 2022; 32 Hohenberg (D3CP03483F/cit21/1) 1964; 136 Pham (D3CP03483F/cit18/1) 2023; 940 Yuan (D3CP03483F/cit30/1) 2023; 5 Song (D3CP03483F/cit33/1) 2019; 11 Grimme (D3CP03483F/cit28/1) 2010; 132 Abutbul (D3CP03483F/cit8/1) 2018; 30 Lee (D3CP03483F/cit39/1) 2008; 321 Guo (D3CP03483F/cit46/1) 2017; 686 Yang (D3CP03483F/cit4/1) 2018; 11 Mannix (D3CP03483F/cit43/1) 2015; 350 Ye (D3CP03483F/cit47/1) 2019; 484 Zhao (D3CP03483F/cit6/1) 2014; 508 Zhao (D3CP03483F/cit37/1) 2021; 9 Jing (D3CP03483F/cit35/1) 2017; 17 Kresse (D3CP03483F/cit24/1) 1996; 6 Wang (D3CP03483F/cit42/1) 2019; 11 Dai (D3CP03483F/cit31/1) 2016; 6 Pawbake (D3CP03483F/cit17/1) 2016; 3 Kresse (D3CP03483F/cit23/1) 1996; 54 Hu (D3CP03483F/cit9/1) 2017; 9 Perdew (D3CP03483F/cit25/1) 1996; 77 Zhou (D3CP03483F/cit13/1) 2021; 420 Wang (D3CP03483F/cit7/1) 2015; 27 Koren (D3CP03483F/cit19/1) 2021; 5 Yan (D3CP03483F/cit11/1) 2022; 97 Tang (D3CP03483F/cit49/1) 2009; 21 Zakay (D3CP03483F/cit20/1) 2023; 15 Yuan (D3CP03483F/cit29/1) 2019; 7 |
References_xml | – volume: 351 start-page: 141 year: 2016 ident: D3CP03483F/cit3/1 publication-title: Science doi: 10.1126/science.aad3749 – volume: 15 start-page: 15668 year: 2023 ident: D3CP03483F/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c22134 – volume: 21 start-page: 084204 year: 2009 ident: D3CP03483F/cit49/1 publication-title: J. Phys.: Condens. Matter – volume: 97 start-page: 107188 year: 2022 ident: D3CP03483F/cit11/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107188 – volume: 9 start-page: 850 year: 2017 ident: D3CP03483F/cit41/1 publication-title: Nanoscale doi: 10.1039/C6NR08550D – volume: 508 start-page: 373 year: 2014 ident: D3CP03483F/cit6/1 publication-title: Nature doi: 10.1038/nature13184 – volume: 125 start-page: 224106 year: 2006 ident: D3CP03483F/cit26/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 77 start-page: 3865 year: 1996 ident: D3CP03483F/cit25/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 30 start-page: 1706285 year: 2018 ident: D3CP03483F/cit8/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706285 – volume: 27 start-page: 4150 year: 2015 ident: D3CP03483F/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.201501676 – volume: 6 start-page: 211 year: 2016 ident: D3CP03483F/cit31/1 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 7 start-page: 639 year: 2019 ident: D3CP03483F/cit29/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC05164J – volume: 9 start-page: 6068 year: 2021 ident: D3CP03483F/cit37/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00966D – volume: 11 start-page: 554 year: 2018 ident: D3CP03483F/cit4/1 publication-title: Nano Res. doi: 10.1007/s12274-017-1712-2 – volume: 321 start-page: 385 year: 2008 ident: D3CP03483F/cit39/1 publication-title: Science doi: 10.1126/science.1157996 – volume: 20 start-page: 6590 year: 2020 ident: D3CP03483F/cit10/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02357 – volume: 5 start-page: 4727 year: 2014 ident: D3CP03483F/cit44/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5727 – volume: 59 start-page: 2931 year: 2023 ident: D3CP03483F/cit16/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06656D – volume: 132 start-page: 154104 year: 2010 ident: D3CP03483F/cit28/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 9 start-page: 16093 year: 2017 ident: D3CP03483F/cit9/1 publication-title: Nanoscale doi: 10.1039/C7NR04766E – volume: 54 start-page: 11169 year: 1996 ident: D3CP03483F/cit23/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 17 start-page: 1833 year: 2017 ident: D3CP03483F/cit35/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05143 – volume: 5 start-page: 1405 year: 2023 ident: D3CP03483F/cit30/1 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c01121 – volume: 10 start-page: 4455 year: 2019 ident: D3CP03483F/cit36/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01611 – volume: 5 start-page: 5004 year: 2021 ident: D3CP03483F/cit19/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00410G – volume: 136 start-page: B864 year: 1964 ident: D3CP03483F/cit21/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 236 start-page: 378 year: 2016 ident: D3CP03483F/cit15/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.06.033 – volume: 10 start-page: 2203956 year: 2023 ident: D3CP03483F/cit32/1 publication-title: Adv. Sci. doi: 10.1002/advs.202203956 – volume: 18 start-page: 3638 year: 2018 ident: D3CP03483F/cit14/1 publication-title: Sensors doi: 10.3390/s18113638 – volume: 32 start-page: 2200516 year: 2022 ident: D3CP03483F/cit2/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200516 – volume: 9 start-page: 390 year: 2019 ident: D3CP03483F/cit45/1 publication-title: Coatings doi: 10.3390/coatings9060390 – volume: 601 start-page: 154176 year: 2022 ident: D3CP03483F/cit38/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154176 – volume: 11 start-page: 33231 year: 2019 ident: D3CP03483F/cit42/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10472 – volume: 37 start-page: 210801 year: 2021 ident: D3CP03483F/cit1/1 publication-title: Acta Phys.-Chim. Sin. – volume: 140 start-page: A1133 year: 1965 ident: D3CP03483F/cit22/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 3 start-page: 054002 year: 2019 ident: D3CP03483F/cit12/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.054002 – volume: 5 start-page: 1566 year: 2020 ident: D3CP03483F/cit34/1 publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00395F – volume: 6 start-page: 15 year: 1996 ident: D3CP03483F/cit24/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 24 start-page: 772 year: 2012 ident: D3CP03483F/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.201103965 – volume: 350 start-page: 1513 year: 2015 ident: D3CP03483F/cit43/1 publication-title: Science doi: 10.1126/science.aad1080 – volume: 940 start-page: 168919 year: 2023 ident: D3CP03483F/cit18/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.168919 – volume: 484 start-page: 33 year: 2019 ident: D3CP03483F/cit47/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.346 – volume: 13 start-page: 5188 year: 1976 ident: D3CP03483F/cit27/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.13.5188 – volume: 420 start-page: 127572 year: 2021 ident: D3CP03483F/cit13/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127572 – volume: 686 start-page: 83 year: 2017 ident: D3CP03483F/cit46/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.08.030 – volume: 39 start-page: 599 year: 2018 ident: D3CP03483F/cit48/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2806367 – volume: 7 start-page: 2000474 year: 2020 ident: D3CP03483F/cit5/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000474 – volume: 3 start-page: 105038 year: 2016 ident: D3CP03483F/cit17/1 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/3/10/105038 – volume: 11 start-page: 1131 year: 2019 ident: D3CP03483F/cit33/1 publication-title: Nanoscale doi: 10.1039/C8NR08046A |
SSID | ssj0001513 |
Score | 2.4392538 |
Snippet | Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28716 |
SubjectTerms | Adsorption Ammonia Anisotropy Carbon dioxide Charge transfer Energy gap First principles Flexible components Gas sensors Gases Interlayers Mechanical analysis Mechanical properties Monolayers Multilayers Nitrogen dioxide Nitrogen oxides Poisson's ratio Sensitivity enhancement Sulfur dioxide Two dimensional materials |
Title | Electronic, mechanical and gas sensing properties of two-dimensional γ-SnSe |
URI | https://www.proquest.com/docview/2885048055 https://www.proquest.com/docview/2878711986 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBGsAc0wpLYTpPHEToGKqjSOqniJXIuHpVYUq2p0Phb_A9-E-fEjr3BkICXKD124_acL76e7xxCnldlGEg_5l6pQulhem0viaPY41IFomKSixy5wx8-Rkcn_P1czN2JbscuafNXxbdreSX_Y1WQgV2RJfsPlrUPBQHcg33hChaG61_ZeGxz2KCmzipk8Vr2_6lc7a3QPb2jmzdLdKDWEWbbr41XYlR_HZFjbzcd775m3nF9fMUvaNqbsOiTwuk7FOkNkVW3oTBNU0sS-_R5rQ_x1_WFwx0o7VQDQ9a4QW3ddhZmt3q-qC8WTj7pXAze9jXNpkTIDDvP9aM8Yh6su02U68synRGu73w169mATMfZ6rtSXMpdGpfhs-bW_9bp-wxjppasWPqMx0y5oc06HLrCDbIZwooiHJDNg_Hs3cQO2zD1YZqKpn95H8uWJfvu21dnL25JsnHe54vp5iWzO-S2WVDQA42Ou-RGVd8jN9PeZPfJxKHkJXUYoYARChihBiPUYYQ2iv6CEfrje4ePB-TkcDxLjzyTQ8MrWMBbPJ2XMEUXjMsKacTwRvLRKFdSFTnDyORcBiALhAQzBlKNWKTgz5elTDBCbM62yKBu6uohoWrEC-GXkUpyzMEgY1b6fh6wQkgBbYghedHrJitMgHnMc_Il6xwdWJK9Yem00-PhkDyzdZc6rMq1tXZ6FWfmtVtlYRwLDIQgoMGnthh0iiddsq6aNdaBcSgIoNcZki0wjW3DWfLRnwq2yS2H6B0yaM_X1WOYeLb5EwOZn0QTgnM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic%2C+mechanical+and+gas+sensing+properties+of+two-dimensional+%CE%B3-SnSe&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhu%2C+Chunyan&rft.au=Feng%2C+Tianhang&rft.au=Jiang%2C+Xinying&rft.au=Li%2C+Gang&rft.date=2023-11-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=42&rft.spage=28716&rft.epage=28726&rft_id=info:doi/10.1039%2Fd3cp03483f&rft.externalDocID=d3cp03483f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |