Electronic, mechanical and gas sensing properties of two-dimensional γ-SnSe

Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 42; pp. 28716 - 28726
Main Authors Zhu, Chunyan, Feng, Tianhang, Jiang, Xinying, Li, Gang, Yuan, Jun-Hui, Liu, Chao, Zhang, Pan, Wang, Jiafu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO 2 , and SO 2 compared to CO, CO 2 , H 2 S and NH 3 . These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide. Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors.
AbstractList Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO 2 , and SO 2 compared to CO, CO 2 , H 2 S and NH 3 . These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide. Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors.
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (-0.023/-0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (-0.023/-0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO2, and SO2 compared to CO, CO2, H2S and NH3. These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.
Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the layer-dependent electronic structures, mechanical properties and gas sensing characteristics of the newly synthesized γ-SnSe based on first-principles calculations. Bulk γ-SnSe is a typical van der Waals layered material with an indirect narrow band gap, while monolayer and multilayer γ-SnSe can be obtained through mechanical exfoliation due to its low cleavage energy. The band gap of γ-SnSe gradually increases with decreasing layers, reaching a value of 2.25 eV for the monolayer due to weakened interlayer coupling. Mechanical analysis reveals strong anisotropy in multilayer γ-SnSe, whereas the monolayer exhibits a negative Poisson's ratio (−0.023/−0.025). Additionally, based on the analysis of electronic structures, adsorption energies and charge transfer of the host materials after adsorption of various gases, it is found that the γ-SnSe monolayer demonstrates enhanced sensitivity and selectivity towards NO, NO 2 , and SO 2 compared to CO, CO 2 , H 2 S and NH 3 . These findings highlight the potential of γ-SnSe as an excellent gas-sensitive material for the detection of nitrogen oxides and sulfur dioxide.
Author Zhang, Pan
Yuan, Jun-Hui
Feng, Tianhang
Liu, Chao
Wang, Jiafu
Li, Gang
Zhu, Chunyan
Jiang, Xinying
AuthorAffiliation South-Central Minzu University
School of Integrated Circuits
Peking University
Wuhan Railway Vocational College of Technology
Wuhan University of Technology
College of Biomedical Engineering
School of Science
National Key Laboratory of Advanced Micro and Nano Manufacture Technology
Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment
Key Laboratory of Cognitive Science of State Ethnic Affairs Commission
College of Railway Rolling Stock
AuthorAffiliation_xml – sequence: 0
  name: Wuhan Railway Vocational College of Technology
– sequence: 0
  name: School of Integrated Circuits
– sequence: 0
  name: College of Biomedical Engineering
– sequence: 0
  name: Peking University
– sequence: 0
  name: Wuhan University of Technology
– sequence: 0
  name: College of Railway Rolling Stock
– sequence: 0
  name: Key Laboratory of Cognitive Science of State Ethnic Affairs Commission
– sequence: 0
  name: South-Central Minzu University
– sequence: 0
  name: School of Science
– sequence: 0
  name: National Key Laboratory of Advanced Micro and Nano Manufacture Technology
– sequence: 0
  name: Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment
Author_xml – sequence: 1
  givenname: Chunyan
  surname: Zhu
  fullname: Zhu, Chunyan
– sequence: 2
  givenname: Tianhang
  surname: Feng
  fullname: Feng, Tianhang
– sequence: 3
  givenname: Xinying
  surname: Jiang
  fullname: Jiang, Xinying
– sequence: 4
  givenname: Gang
  surname: Li
  fullname: Li, Gang
– sequence: 5
  givenname: Jun-Hui
  surname: Yuan
  fullname: Yuan, Jun-Hui
– sequence: 6
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
– sequence: 7
  givenname: Pan
  surname: Zhang
  fullname: Zhang, Pan
– sequence: 8
  givenname: Jiafu
  surname: Wang
  fullname: Wang, Jiafu
BookMark eNpt0UFLwzAUB_AgE5zTi3eh4EXEatKXtulR5qbCQGF6Lm9pMjvaZCYd4ufye_iZzJxMGJ7ySH4v_PNySHrGGkXICaNXjEJxXYFcUuAC9B7pM55BXFDBe9s6zw7IofcLSilLGfTJZNQo2TlrankZtUq-YqiwidBU0Rx95JXxtZlHS2eXynW18pHVUfdu46pu12fWBP31GU_NVB2RfY2NV8e_64C8jEfPw_t48nj3MLyZxBIY7-IiBSwgSYGjylIOOkGe5zONWs6ACsg4srDHUkxowlDnkOmQvKqwYFwkMxiQ8829IdXbSvmubGsvVdOgUXbly0TkImesEFmgZzt0YVcuZF4rkVIuaJoGRTdKOuu9U7qUdYddeFznsG5KRsv1eMtbGD79jHccWi52WpaubtF9_I9PN9h5uXV_fwXf0GyFwQ
CitedBy_id crossref_primary_10_1039_D3CP05325C
Cites_doi 10.1126/science.aad3749
10.1021/acsami.2c22134
10.1016/j.nanoen.2022.107188
10.1039/C6NR08550D
10.1038/nature13184
10.1063/1.2404663
10.1103/PhysRevLett.77.3865
10.1002/adma.201706285
10.1002/adma.201501676
10.1039/C8TC05164J
10.1039/D1TC00966D
10.1007/s12274-017-1712-2
10.1126/science.1157996
10.1021/acs.nanolett.0c02357
10.1038/ncomms5727
10.1039/D2CC06656D
10.1063/1.3382344
10.1039/C7NR04766E
10.1103/PhysRevB.54.11169
10.1021/acs.nanolett.6b05143
10.1021/acsaelm.2c01121
10.1021/acs.jpclett.9b01611
10.1039/D1QM00410G
10.1103/PhysRev.136.B864
10.1016/j.snb.2016.06.033
10.1002/advs.202203956
10.3390/s18113638
10.1002/adfm.202200516
10.3390/coatings9060390
10.1016/j.apsusc.2022.154176
10.1021/acsami.9b10472
10.1103/PhysRev.140.A1133
10.1103/PhysRevMaterials.3.054002
10.1039/D0NH00395F
10.1016/0927-0256(96)00008-0
10.1002/adma.201103965
10.1126/science.aad1080
10.1016/j.jallcom.2023.168919
10.1016/j.apsusc.2019.03.346
10.1103/PhysRevB.13.5188
10.1016/j.cej.2020.127572
10.1016/j.cplett.2017.08.030
10.1109/LED.2018.2806367
10.1002/admi.202000474
10.1088/2053-1591/3/10/105038
10.1039/C8NR08046A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cp03483f
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 28726
ExternalDocumentID 10_1039_D3CP03483F
d3cp03483f
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-953a932534ae6543f2a477bfafcb308364a1f2a15a2021af736f076dda91482b3
ISSN 1463-9076
1463-9084
IngestDate Thu Jul 10 22:42:33 EDT 2025
Mon Jun 30 05:44:51 EDT 2025
Tue Jul 01 00:48:08 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Dec 17 20:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-953a932534ae6543f2a477bfafcb308364a1f2a15a2021af736f076dda91482b3
Notes https://doi.org/10.1039/d3cp03483f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-4553-4806
0000-0001-7732-5979
PQID 2885048055
PQPubID 2047499
PageCount 11
ParticipantIDs crossref_primary_10_1039_D3CP03483F
rsc_primary_d3cp03483f
crossref_citationtrail_10_1039_D3CP03483F
proquest_miscellaneous_2878711986
proquest_journals_2885048055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Castellanos-Gomez (D3CP03483F/cit40/1) 2012; 24
Wang (D3CP03483F/cit41/1) 2017; 9
Chang (D3CP03483F/cit1/1) 2021; 37
Zhang (D3CP03483F/cit38/1) 2022; 601
Kohn (D3CP03483F/cit22/1) 1965; 140
Wang (D3CP03483F/cit48/1) 2018; 39
Donarelli (D3CP03483F/cit14/1) 2018; 18
Jiang (D3CP03483F/cit44/1) 2014; 5
Liu (D3CP03483F/cit12/1) 2019; 3
Krukau (D3CP03483F/cit26/1) 2006; 125
Liu (D3CP03483F/cit45/1) 2019; 9
Davitt (D3CP03483F/cit5/1) 2020; 7
Shokri (D3CP03483F/cit15/1) 2016; 236
Batool (D3CP03483F/cit32/1) 2023; 10
Yuan (D3CP03483F/cit36/1) 2019; 10
Zhao (D3CP03483F/cit3/1) 2016; 351
Chang (D3CP03483F/cit10/1) 2020; 20
Liu (D3CP03483F/cit16/1) 2023; 59
Monkhorst (D3CP03483F/cit27/1) 1976; 13
Miao (D3CP03483F/cit34/1) 2020; 5
Li (D3CP03483F/cit2/1) 2022; 32
Hohenberg (D3CP03483F/cit21/1) 1964; 136
Pham (D3CP03483F/cit18/1) 2023; 940
Yuan (D3CP03483F/cit30/1) 2023; 5
Song (D3CP03483F/cit33/1) 2019; 11
Grimme (D3CP03483F/cit28/1) 2010; 132
Abutbul (D3CP03483F/cit8/1) 2018; 30
Lee (D3CP03483F/cit39/1) 2008; 321
Guo (D3CP03483F/cit46/1) 2017; 686
Yang (D3CP03483F/cit4/1) 2018; 11
Mannix (D3CP03483F/cit43/1) 2015; 350
Ye (D3CP03483F/cit47/1) 2019; 484
Zhao (D3CP03483F/cit6/1) 2014; 508
Zhao (D3CP03483F/cit37/1) 2021; 9
Jing (D3CP03483F/cit35/1) 2017; 17
Kresse (D3CP03483F/cit24/1) 1996; 6
Wang (D3CP03483F/cit42/1) 2019; 11
Dai (D3CP03483F/cit31/1) 2016; 6
Pawbake (D3CP03483F/cit17/1) 2016; 3
Kresse (D3CP03483F/cit23/1) 1996; 54
Hu (D3CP03483F/cit9/1) 2017; 9
Perdew (D3CP03483F/cit25/1) 1996; 77
Zhou (D3CP03483F/cit13/1) 2021; 420
Wang (D3CP03483F/cit7/1) 2015; 27
Koren (D3CP03483F/cit19/1) 2021; 5
Yan (D3CP03483F/cit11/1) 2022; 97
Tang (D3CP03483F/cit49/1) 2009; 21
Zakay (D3CP03483F/cit20/1) 2023; 15
Yuan (D3CP03483F/cit29/1) 2019; 7
References_xml – volume: 351
  start-page: 141
  year: 2016
  ident: D3CP03483F/cit3/1
  publication-title: Science
  doi: 10.1126/science.aad3749
– volume: 15
  start-page: 15668
  year: 2023
  ident: D3CP03483F/cit20/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c22134
– volume: 21
  start-page: 084204
  year: 2009
  ident: D3CP03483F/cit49/1
  publication-title: J. Phys.: Condens. Matter
– volume: 97
  start-page: 107188
  year: 2022
  ident: D3CP03483F/cit11/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107188
– volume: 9
  start-page: 850
  year: 2017
  ident: D3CP03483F/cit41/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR08550D
– volume: 508
  start-page: 373
  year: 2014
  ident: D3CP03483F/cit6/1
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 125
  start-page: 224106
  year: 2006
  ident: D3CP03483F/cit26/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 77
  start-page: 3865
  year: 1996
  ident: D3CP03483F/cit25/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 30
  start-page: 1706285
  year: 2018
  ident: D3CP03483F/cit8/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706285
– volume: 27
  start-page: 4150
  year: 2015
  ident: D3CP03483F/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501676
– volume: 6
  start-page: 211
  year: 2016
  ident: D3CP03483F/cit31/1
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 7
  start-page: 639
  year: 2019
  ident: D3CP03483F/cit29/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC05164J
– volume: 9
  start-page: 6068
  year: 2021
  ident: D3CP03483F/cit37/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC00966D
– volume: 11
  start-page: 554
  year: 2018
  ident: D3CP03483F/cit4/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1712-2
– volume: 321
  start-page: 385
  year: 2008
  ident: D3CP03483F/cit39/1
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 20
  start-page: 6590
  year: 2020
  ident: D3CP03483F/cit10/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02357
– volume: 5
  start-page: 4727
  year: 2014
  ident: D3CP03483F/cit44/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5727
– volume: 59
  start-page: 2931
  year: 2023
  ident: D3CP03483F/cit16/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06656D
– volume: 132
  start-page: 154104
  year: 2010
  ident: D3CP03483F/cit28/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 9
  start-page: 16093
  year: 2017
  ident: D3CP03483F/cit9/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR04766E
– volume: 54
  start-page: 11169
  year: 1996
  ident: D3CP03483F/cit23/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 17
  start-page: 1833
  year: 2017
  ident: D3CP03483F/cit35/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05143
– volume: 5
  start-page: 1405
  year: 2023
  ident: D3CP03483F/cit30/1
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c01121
– volume: 10
  start-page: 4455
  year: 2019
  ident: D3CP03483F/cit36/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01611
– volume: 5
  start-page: 5004
  year: 2021
  ident: D3CP03483F/cit19/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00410G
– volume: 136
  start-page: B864
  year: 1964
  ident: D3CP03483F/cit21/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 236
  start-page: 378
  year: 2016
  ident: D3CP03483F/cit15/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.06.033
– volume: 10
  start-page: 2203956
  year: 2023
  ident: D3CP03483F/cit32/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202203956
– volume: 18
  start-page: 3638
  year: 2018
  ident: D3CP03483F/cit14/1
  publication-title: Sensors
  doi: 10.3390/s18113638
– volume: 32
  start-page: 2200516
  year: 2022
  ident: D3CP03483F/cit2/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200516
– volume: 9
  start-page: 390
  year: 2019
  ident: D3CP03483F/cit45/1
  publication-title: Coatings
  doi: 10.3390/coatings9060390
– volume: 601
  start-page: 154176
  year: 2022
  ident: D3CP03483F/cit38/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154176
– volume: 11
  start-page: 33231
  year: 2019
  ident: D3CP03483F/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10472
– volume: 37
  start-page: 210801
  year: 2021
  ident: D3CP03483F/cit1/1
  publication-title: Acta Phys.-Chim. Sin.
– volume: 140
  start-page: A1133
  year: 1965
  ident: D3CP03483F/cit22/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 3
  start-page: 054002
  year: 2019
  ident: D3CP03483F/cit12/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.054002
– volume: 5
  start-page: 1566
  year: 2020
  ident: D3CP03483F/cit34/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00395F
– volume: 6
  start-page: 15
  year: 1996
  ident: D3CP03483F/cit24/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 24
  start-page: 772
  year: 2012
  ident: D3CP03483F/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103965
– volume: 350
  start-page: 1513
  year: 2015
  ident: D3CP03483F/cit43/1
  publication-title: Science
  doi: 10.1126/science.aad1080
– volume: 940
  start-page: 168919
  year: 2023
  ident: D3CP03483F/cit18/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.168919
– volume: 484
  start-page: 33
  year: 2019
  ident: D3CP03483F/cit47/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.346
– volume: 13
  start-page: 5188
  year: 1976
  ident: D3CP03483F/cit27/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 420
  start-page: 127572
  year: 2021
  ident: D3CP03483F/cit13/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127572
– volume: 686
  start-page: 83
  year: 2017
  ident: D3CP03483F/cit46/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.08.030
– volume: 39
  start-page: 599
  year: 2018
  ident: D3CP03483F/cit48/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2806367
– volume: 7
  start-page: 2000474
  year: 2020
  ident: D3CP03483F/cit5/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000474
– volume: 3
  start-page: 105038
  year: 2016
  ident: D3CP03483F/cit17/1
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/3/10/105038
– volume: 11
  start-page: 1131
  year: 2019
  ident: D3CP03483F/cit33/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR08046A
SSID ssj0001513
Score 2.4392538
Snippet Two-dimensional (2D) materials are excellent candidates for advanced flexible electronics and gas sensors. Herein, we systematically investigate the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28716
SubjectTerms Adsorption
Ammonia
Anisotropy
Carbon dioxide
Charge transfer
Energy gap
First principles
Flexible components
Gas sensors
Gases
Interlayers
Mechanical analysis
Mechanical properties
Monolayers
Multilayers
Nitrogen dioxide
Nitrogen oxides
Poisson's ratio
Sensitivity enhancement
Sulfur dioxide
Two dimensional materials
Title Electronic, mechanical and gas sensing properties of two-dimensional γ-SnSe
URI https://www.proquest.com/docview/2885048055
https://www.proquest.com/docview/2878711986
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtE2UBGsAc0wpLYTpPHEToGKqjSOqniJXIuHpVYUq2p0Phb_A9-E-fEjr3BkICXKD124_acL76e7xxCnldlGEg_5l6pQulhem0viaPY41IFomKSixy5wx8-Rkcn_P1czN2JbscuafNXxbdreSX_Y1WQgV2RJfsPlrUPBQHcg33hChaG61_ZeGxz2KCmzipk8Vr2_6lc7a3QPb2jmzdLdKDWEWbbr41XYlR_HZFjbzcd775m3nF9fMUvaNqbsOiTwuk7FOkNkVW3oTBNU0sS-_R5rQ_x1_WFwx0o7VQDQ9a4QW3ddhZmt3q-qC8WTj7pXAze9jXNpkTIDDvP9aM8Yh6su02U68synRGu73w169mATMfZ6rtSXMpdGpfhs-bW_9bp-wxjppasWPqMx0y5oc06HLrCDbIZwooiHJDNg_Hs3cQO2zD1YZqKpn95H8uWJfvu21dnL25JsnHe54vp5iWzO-S2WVDQA42Ou-RGVd8jN9PeZPfJxKHkJXUYoYARChihBiPUYYQ2iv6CEfrje4ePB-TkcDxLjzyTQ8MrWMBbPJ2XMEUXjMsKacTwRvLRKFdSFTnDyORcBiALhAQzBlKNWKTgz5elTDBCbM62yKBu6uohoWrEC-GXkUpyzMEgY1b6fh6wQkgBbYghedHrJitMgHnMc_Il6xwdWJK9Yem00-PhkDyzdZc6rMq1tXZ6FWfmtVtlYRwLDIQgoMGnthh0iiddsq6aNdaBcSgIoNcZki0wjW3DWfLRnwq2yS2H6B0yaM_X1WOYeLb5EwOZn0QTgnM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic%2C+mechanical+and+gas+sensing+properties+of+two-dimensional+%CE%B3-SnSe&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhu%2C+Chunyan&rft.au=Feng%2C+Tianhang&rft.au=Jiang%2C+Xinying&rft.au=Li%2C+Gang&rft.date=2023-11-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=42&rft.spage=28716&rft.epage=28726&rft_id=info:doi/10.1039%2Fd3cp03483f&rft.externalDocID=d3cp03483f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon