Phase analysis of tungsten and phonon behavior of beryllium layers in W/Be periodic multilayers

In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was predominant for the ultrathin layer of W, while β-W evolved along with the α-W phase for higher film thickness. For the thicker layers, the th...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 23; no. 4; pp. 2333 - 23312
Main Authors Kumar, Niranjan, Pleshkov, Roman S, Nezhdanov, Aleksey V, Yunin, Pavel A, Polkovnikov, Vladimir N, Chkhalo, Nikolay I, Mashin, Aleksandr I
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 20.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was predominant for the ultrathin layer of W, while β-W evolved along with the α-W phase for higher film thickness. For the thicker layers, the thermodynamically metastable β-W vanished and a single well-defined preferably oriented stable α-W phase was observed. The lattice spacing revealed that these phases exist in the tensile stressed condition. With the increase in thickness of Be layers, the blueshift and narrow linewidth of the transverse optical (TO) phonon mode was observed in Raman scattering studies. However, the TO mode was redshifted and the linewidth was further narrowed consistently with an increase in the thermal annealing temperature of the multilayers. The investigation has quantified an increase in compressive strain and reduction of defects with an increase in thickness of the Be layers. However, for thermally annealed samples, the compressive strain in the Be layers was relaxed and crystalline quality was improved. In periodic multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers.
AbstractList In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was predominant for the ultrathin layer of W, while β-W evolved along with the α-W phase for higher film thickness. For the thicker layers, the thermodynamically metastable β-W vanished and a single well-defined preferably oriented stable α-W phase was observed. The lattice spacing revealed that these phases exist in the tensile stressed condition. With the increase in thickness of Be layers, the blueshift and narrow linewidth of the transverse optical (TO) phonon mode was observed in Raman scattering studies. However, the TO mode was redshifted and the linewidth was further narrowed consistently with an increase in the thermal annealing temperature of the multilayers. The investigation has quantified an increase in compressive strain and reduction of defects with an increase in thickness of the Be layers. However, for thermally annealed samples, the compressive strain in the Be layers was relaxed and crystalline quality was improved.
In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was predominant for the ultrathin layer of W, while β-W evolved along with the α-W phase for higher film thickness. For the thicker layers, the thermodynamically metastable β-W vanished and a single well-defined preferably oriented stable α-W phase was observed. The lattice spacing revealed that these phases exist in the tensile stressed condition. With the increase in thickness of Be layers, the blueshift and narrow linewidth of the transverse optical (TO) phonon mode was observed in Raman scattering studies. However, the TO mode was redshifted and the linewidth was further narrowed consistently with an increase in the thermal annealing temperature of the multilayers. The investigation has quantified an increase in compressive strain and reduction of defects with an increase in thickness of the Be layers. However, for thermally annealed samples, the compressive strain in the Be layers was relaxed and crystalline quality was improved. In periodic multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers.
Author Chkhalo, Nikolay I
Mashin, Aleksandr I
Pleshkov, Roman S
Kumar, Niranjan
Nezhdanov, Aleksey V
Yunin, Pavel A
Polkovnikov, Vladimir N
AuthorAffiliation Laboratory of Functional Nanomaterials
Faculty of Radiophysics
Institute for Physics of Microstructures RAS
Lobachevsky State University
Afonino
AuthorAffiliation_xml – name: Lobachevsky State University
– name: Institute for Physics of Microstructures RAS
– name: Faculty of Radiophysics
– name: Laboratory of Functional Nanomaterials
– name: Afonino
Author_xml – sequence: 1
  givenname: Niranjan
  surname: Kumar
  fullname: Kumar, Niranjan
– sequence: 2
  givenname: Roman S
  surname: Pleshkov
  fullname: Pleshkov, Roman S
– sequence: 3
  givenname: Aleksey V
  surname: Nezhdanov
  fullname: Nezhdanov, Aleksey V
– sequence: 4
  givenname: Pavel A
  surname: Yunin
  fullname: Yunin, Pavel A
– sequence: 5
  givenname: Vladimir N
  surname: Polkovnikov
  fullname: Polkovnikov, Vladimir N
– sequence: 6
  givenname: Nikolay I
  surname: Chkhalo
  fullname: Chkhalo, Nikolay I
– sequence: 7
  givenname: Aleksandr I
  surname: Mashin
  fullname: Mashin, Aleksandr I
BookMark eNpdkd1LwzAUxYNMcJu--C4EfBGhmjQ3bfqom18wcA-KjyVNU5fRNjVphf73dqtM8Ole7vlxLpwzQ5Pa1hqhc0puKGHJbU5VQ0JBeX6EphQiFiREwOSwx9EJmnm_JYRQTtkUpeuN9BrLWpa9Nx7bArdd_elbXQ_HHDcbO7zAmd7Ib2PdTs-068vSdBUuZa-dx6bGH7f3GjfaGZsbhauubM0onqLjQpZen_3OOXp_fHhbPAer16eXxd0qUIxCG4iMJkxQoXNQMgkhLnIekoxDHBYZQAKSZoqzKGKkIFwxDiKHGGIJwGkkOJujq9G3cfar075NK-OVLktZa9v5NOSCJEAiFg3o5T90azs3BLCnGEuAxTvD65FSznrvdJE2zlTS9Skl6S7rdEkX633WywG-GGHn1YH764L9AB8ce6U
CitedBy_id crossref_primary_10_1088_1361_6463_ac5944
crossref_primary_10_1039_D2CP01697D
crossref_primary_10_1088_1361_6463_ac4729
crossref_primary_10_1007_s12648_023_02752_6
crossref_primary_10_1016_j_surfin_2023_103414
Cites_doi 10.1021/acs.jpcc.0c10210
10.1063/1.354842
10.1063/1.2400665
10.1063/1.5130708
10.1007/BF02652968
10.1016/S1005-0302(10)60014-X
10.1364/OL.42.005070
10.1002/jrs.1250220602
10.1021/acs.jpcc.0c03904
10.1063/1.371841
10.1016/j.nme.2018.11.008
10.1016/j.tsf.2015.01.030
10.1116/1.582287
10.1016/j.tsf.2005.12.252
10.1103/PhysRevLett.21.607
10.1088/1741-4326/aa70bb
10.1166/jnn.2019.16471
10.1103/PhysRevB.64.075414
10.1116/6.0000408
10.1039/D1CP01986D
10.1103/PhysRevB.76.245404
10.1063/1.1381559
10.1103/PhysRevB.72.094113
10.3367/UFNe.2019.05.038623
10.1016/j.vacuum.2005.08.017
10.1063/1.362745
10.1364/AO.56.007462
10.1364/AO.25.001730
10.1063/1.5143397
10.1063/1.111318
10.1063/1.1140866
10.1063/1.5007008
10.1016/j.intermet.2020.106872
10.1016/0022-4596(87)90359-8
10.1166/jnn.2019.16473
10.1364/OE.26.033718
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cp02815d
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 23312
ExternalDocumentID 10_1039_D1CP02815D
d1cp02815d
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-JG
-~X
0R~
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
2WC
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-8b193818ed4ca9247fd520b5472fb4494a1bc536630f05c3548d4747a44516853
ISSN 1463-9076
IngestDate Fri Oct 25 23:40:29 EDT 2024
Thu Oct 10 16:31:25 EDT 2024
Thu Sep 12 17:02:28 EDT 2024
Mon Apr 11 04:40:54 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-8b193818ed4ca9247fd520b5472fb4494a1bc536630f05c3548d4747a44516853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5399-3152
0000-0002-7484-106X
PQID 2583394375
PQPubID 2047499
PageCount 1
ParticipantIDs rsc_primary_d1cp02815d
crossref_primary_10_1039_D1CP02815D
proquest_miscellaneous_2580940636
proquest_journals_2583394375
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References van de Kruijs (D1CP02815D/cit16) 2006; 515
Medvedev (D1CP02815D/cit1) 2020; 10
Polkovnikov (D1CP02815D/cit31) 2020; 63
Underwood (D1CP02815D/cit3) 1986; 25
Qi (D1CP02815D/cit10) 2019; 19
Nechay (D1CP02815D/cit19) 2018; 8
O’Keefe (D1CP02815D/cit22) 1995; 24
Kumar (D1CP02815D/cit12) 2021; 23
Bajt (D1CP02815D/cit13) 2001; 90
Yu (D1CP02815D/cit8) 2017; 56
Sun (D1CP02815D/cit23) 2010; 26
Svechnikov (D1CP02815D/cit7) 2018; 26
Chkhalo (D1CP02815D/cit6) 2017; 42
Schwan (D1CP02815D/cit36) 1996; 80
Kopylets (D1CP02815D/cit4) 2019; 19
Smertin (D1CP02815D/cit20) 2020; 90
Shen (D1CP02815D/cit24) 2000; 87
Nedelcu (D1CP02815D/cit15) 2007; 76
Devanarayanan (D1CP02815D/cit30) 1991; 22
Kumar (D1CP02815D/cit18) 2020; 38
Evans (D1CP02815D/cit29) 2005; 72
Kumar (D1CP02815D/cit33) 2018; 17
Baumann (D1CP02815D/cit2) 2020; 91
Olijnyk (D1CP02815D/cit28) 2000; 12
Kumar (D1CP02815D/cit38) 2020; 124
Windt (D1CP02815D/cit11) 2000; 18
Kumar (D1CP02815D/cit17) 2021; 125
Kumar (D1CP02815D/cit14) 2020; 125
Daniel (D1CP02815D/cit35) 1987; 67
Feldman (D1CP02815D/cit32) 1968; 2
Weerasekera (D1CP02815D/cit25) 1994; 64
Vüllers (D1CP02815D/cit21) 2015; 577
Stollberg (D1CP02815D/cit5) 2006; 77
Rusu (D1CP02815D/cit34) 2017; 57
Ferrari (D1CP02815D/cit37) 2001; 64
Djerdj (D1CP02815D/cit26) 2005; 80
Utsumi (D1CP02815D/cit9) 1989; 60
Vink (D1CP02815D/cit27) 1993; 74
References_xml – volume: 125
  start-page: 2729
  year: 2021
  ident: D1CP02815D/cit17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10210
  contributor:
    fullname: Kumar
– volume: 74
  start-page: 988
  year: 1993
  ident: D1CP02815D/cit27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.354842
  contributor:
    fullname: Vink
– volume: 77
  start-page: 123101
  year: 2006
  ident: D1CP02815D/cit5
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2400665
  contributor:
    fullname: Stollberg
– volume: 91
  start-page: 16102
  year: 2020
  ident: D1CP02815D/cit2
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5130708
  contributor:
    fullname: Baumann
– volume: 24
  start-page: 961
  year: 1995
  ident: D1CP02815D/cit22
  publication-title: J. Electron. Mater.
  doi: 10.1007/BF02652968
  contributor:
    fullname: O’Keefe
– volume: 26
  start-page: 87
  year: 2010
  ident: D1CP02815D/cit23
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60014-X
  contributor:
    fullname: Sun
– volume: 42
  start-page: 5070
  year: 2017
  ident: D1CP02815D/cit6
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.005070
  contributor:
    fullname: Chkhalo
– volume: 22
  start-page: 311
  year: 1991
  ident: D1CP02815D/cit30
  publication-title: J. Raman Spectr.
  doi: 10.1002/jrs.1250220602
  contributor:
    fullname: Devanarayanan
– volume: 124
  start-page: 17795
  year: 2020
  ident: D1CP02815D/cit38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c03904
  contributor:
    fullname: Kumar
– volume: 87
  start-page: 177
  year: 2000
  ident: D1CP02815D/cit24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371841
  contributor:
    fullname: Shen
– volume: 17
  start-page: 295
  year: 2018
  ident: D1CP02815D/cit33
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2018.11.008
  contributor:
    fullname: Kumar
– volume: 577
  start-page: 26
  year: 2015
  ident: D1CP02815D/cit21
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.01.030
  contributor:
    fullname: Vüllers
– volume: 18
  start-page: 980
  year: 2000
  ident: D1CP02815D/cit11
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.582287
  contributor:
    fullname: Windt
– volume: 515
  start-page: 430
  year: 2006
  ident: D1CP02815D/cit16
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.12.252
  contributor:
    fullname: van de Kruijs
– volume: 2
  start-page: 607
  year: 1968
  ident: D1CP02815D/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.21.607
  contributor:
    fullname: Feldman
– volume: 57
  start-page: 76035
  year: 2017
  ident: D1CP02815D/cit34
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aa70bb
  contributor:
    fullname: Rusu
– volume: 19
  start-page: 518
  year: 2019
  ident: D1CP02815D/cit4
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16471
  contributor:
    fullname: Kopylets
– volume: 64
  start-page: 75414
  year: 2001
  ident: D1CP02815D/cit37
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.075414
  contributor:
    fullname: Ferrari
– volume: 38
  start-page: 63408
  year: 2020
  ident: D1CP02815D/cit18
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/6.0000408
  contributor:
    fullname: Kumar
– volume: 23
  start-page: 15076
  year: 2021
  ident: D1CP02815D/cit12
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP01986D
  contributor:
    fullname: Kumar
– volume: 76
  start-page: 245404
  year: 2007
  ident: D1CP02815D/cit15
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.245404
  contributor:
    fullname: Nedelcu
– volume: 12
  start-page: 8913
  year: 2000
  ident: D1CP02815D/cit28
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Olijnyk
– volume: 90
  start-page: 1017
  year: 2001
  ident: D1CP02815D/cit13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1381559
  contributor:
    fullname: Bajt
– volume: 72
  start-page: 94113
  year: 2005
  ident: D1CP02815D/cit29
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.72.094113
  contributor:
    fullname: Evans
– volume: 63
  start-page: 83
  year: 2020
  ident: D1CP02815D/cit31
  publication-title: Phys.-Usp.
  doi: 10.3367/UFNe.2019.05.038623
  contributor:
    fullname: Polkovnikov
– volume: 90
  start-page: 1884
  year: 2020
  ident: D1CP02815D/cit20
  publication-title: Phys. Nanostr.
  contributor:
    fullname: Smertin
– volume: 80
  start-page: 151
  year: 2005
  ident: D1CP02815D/cit26
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2005.08.017
  contributor:
    fullname: Djerdj
– volume: 80
  start-page: 440
  year: 1996
  ident: D1CP02815D/cit36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362745
  contributor:
    fullname: Schwan
– volume: 56
  start-page: 7462
  year: 2017
  ident: D1CP02815D/cit8
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.007462
  contributor:
    fullname: Yu
– volume: 25
  start-page: 1730
  year: 1986
  ident: D1CP02815D/cit3
  publication-title: Appl. Opt.
  doi: 10.1364/AO.25.001730
  contributor:
    fullname: Underwood
– volume: 10
  start-page: 45305
  year: 2020
  ident: D1CP02815D/cit1
  publication-title: AIP Adv.
  doi: 10.1063/1.5143397
  contributor:
    fullname: Medvedev
– volume: 64
  start-page: 3231
  year: 1994
  ident: D1CP02815D/cit25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111318
  contributor:
    fullname: Weerasekera
– volume: 60
  start-page: 2024
  year: 1989
  ident: D1CP02815D/cit9
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1140866
  contributor:
    fullname: Utsumi
– volume: 8
  start-page: 75202
  year: 2018
  ident: D1CP02815D/cit19
  publication-title: AIP Adv.
  doi: 10.1063/1.5007008
  contributor:
    fullname: Nechay
– volume: 125
  start-page: 106872
  year: 2020
  ident: D1CP02815D/cit14
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106872
  contributor:
    fullname: Kumar
– volume: 67
  start-page: 235
  year: 1987
  ident: D1CP02815D/cit35
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(87)90359-8
  contributor:
    fullname: Daniel
– volume: 19
  start-page: 568
  year: 2019
  ident: D1CP02815D/cit10
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16473
  contributor:
    fullname: Qi
– volume: 26
  start-page: 33718
  year: 2018
  ident: D1CP02815D/cit7
  publication-title: Opt. Express
  doi: 10.1364/OE.26.033718
  contributor:
    fullname: Svechnikov
SSID ssj0001513
Score 2.4451032
Snippet In periodic W/Be multilayers, thickness-dependent microstructural and phase modifications were investigated in W and Be layers. In X-ray diffraction, α-W was...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 2333
SubjectTerms Annealing
Beryllium
Compressive properties
Crystal defects
Film thickness
Multilayers
Phonons
Raman spectra
Title Phase analysis of tungsten and phonon behavior of beryllium layers in W/Be periodic multilayers
URI https://www.proquest.com/docview/2583394375
https://search.proquest.com/docview/2580940636
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gAXxK-JsoGM4DaFJbGdNseSdRqoKjm0WjlF8Y-qZSGd2mQa--t5juMkCA6DS5TabVL5ffb7bH_vGaEPAaOSw8URJFQOUGrlpFK5DifcEyIMOBeV2mIWXC7olyVb9np3HdVSWfCP4v6vcSX_Y1UoA7vqKNl_sGzzUCiAe7AvXMHCcH2QjeM1-KDTtJNXpIC-C3YzCmMtOwfj2kh8Xc_V7meWbcofp1mqybZe7rjSCm2lExhvtnJTawxNdZe6xtaiwp4RZ-50kVkf2VfrC3EUNTFjjYB7tgGf-L1FYpyp_fp6e2vE3XofoSGlM3W_lmlu6saZut7DsNVIcb-Vucl6EKe3KqtXYutVC7-SzflmA0aZkZYGxAldcz6cHYpN6HENOZPGyQ6shLik46Xhs5Ff_-ECXKIzqEpP3AB18phsHZ3d3J99TS4W02kynyznB-jQhyFq1EeH48n887Tx4sCEiE1nS8Kz9nm_E5h2VnKws0fGVNRk_hQ9qecUeGwA8gz1VP4cPYqsmV6gpAIKtkDB2xW2QIFCiQ1QsAWKrm-Agg0S8CbHV2efFLYwwR2YvESLi8k8unTqkzWgS3q0cEYceDtQNSWpSGEGPlxJ5ruc0aG_4pSGNPW4YATYqLtymSAwrZUUJp6pTmcXAMM7Qn34X-oVwjDd8BWweKKGjHrC51QwOQJHoBSTTMoBem-bK7kxCVSSSvhAwuTci-KqUc8H6MS2ZFJ3sH3i64jAkJIhG6B3TTU0nd7TSnO1Lavv6AyQAQkG6Ags0LyjNdjrB_z4GD1uUXqC-sWuVG-AbRb8bQ2MX_NZhWg
link.rule.ids 315,783,787,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+analysis+of+tungsten+and+phonon+behavior+of+beryllium+layers+in+W%2FBe+periodic+multilayers&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Kumar%2C+Niranjan&rft.au=Pleshkov%2C+Roman+S&rft.au=Nezhdanov%2C+Aleksey+V&rft.au=Yunin%2C+Pavel+A&rft.date=2021-10-20&rft.eissn=1463-9084&rft.volume=23&rft.issue=40&rft.spage=23303&rft.epage=23312&rft_id=info:doi/10.1039%2Fd1cp02815d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon