Overview of the physics design of the EHL-2 spherical torus
ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p- 11 B fusion, establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p...
Saved in:
Published in | Plasma science & technology Vol. 27; no. 2; pp. 24001 - 24020 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 2058-6272 |
DOI | 10.1088/2058-6272/ad981a |
Cover
Abstract | ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p- 11 B fusion, establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p- 11 B fusion burning plasma. Based on 0-dimensional (0-D) system design and 1.5-dimensional transport modelling analyses, the main target parameters of EHL-2 have been basically determined, including the plasma major radius, R 0 , of 1.05 m, the aspect ratio, A , of 1.85, the maximum central toroidal magnetic field strength, B 0 , of 3 T, and the plasma toroidal current, I p , of 3 MA. The main heating system will be the neutral beam injection at a total power of 17 MW. In addition, 6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control. The physics design of EHL-2 is focused on addressing three main operating scenarios, i.e., (1) high ion temperature scenario, (2) high-performance steady-state scenario and (3) high triple product scenario. Each scenario will integrate solutions to different important issues, including equilibrium configuration, heating and current drive, confinement and transport, MHD instability, p- 11 B fusion reaction, plasma-wall interactions, etc. Beyond that, there are several unique and significant challenges to address, including
establish a plasma with extremely high core ion temperature ( T i,0 > 30 keV), and ensure a large ion-to-electron temperature ratio ( T i,0 / T e,0 > 2), and a boron concentration of 10%‒15% at the plasma core; realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. This is because the volt-seconds that the central solenoid of the ST can provide are very limited; achieve divertor heat and particle fluxes control including complete detachment under high P / R (> 20 MW/m) at relatively low electron densities.
This overview will introduce the advanced progress in the physics design of EHL-2. |
---|---|
AbstractList | ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p- 11 B fusion, establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p- 11 B fusion burning plasma. Based on 0-dimensional (0-D) system design and 1.5-dimensional transport modelling analyses, the main target parameters of EHL-2 have been basically determined, including the plasma major radius, R 0 , of 1.05 m, the aspect ratio, A , of 1.85, the maximum central toroidal magnetic field strength, B 0 , of 3 T, and the plasma toroidal current, I p , of 3 MA. The main heating system will be the neutral beam injection at a total power of 17 MW. In addition, 6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control. The physics design of EHL-2 is focused on addressing three main operating scenarios, i.e., (1) high ion temperature scenario, (2) high-performance steady-state scenario and (3) high triple product scenario. Each scenario will integrate solutions to different important issues, including equilibrium configuration, heating and current drive, confinement and transport, MHD instability, p- 11 B fusion reaction, plasma-wall interactions, etc. Beyond that, there are several unique and significant challenges to address, including
establish a plasma with extremely high core ion temperature ( T i,0 > 30 keV), and ensure a large ion-to-electron temperature ratio ( T i,0 / T e,0 > 2), and a boron concentration of 10%‒15% at the plasma core; realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. This is because the volt-seconds that the central solenoid of the ST can provide are very limited; achieve divertor heat and particle fluxes control including complete detachment under high P / R (> 20 MW/m) at relatively low electron densities.
This overview will introduce the advanced progress in the physics design of EHL-2. |
Author | DONG, Lili WANG, Yumin JIANG, Xinchen LIANG, Yunfeng SHI, Yuejiang Team, the EHL-2 LI, Yingying YANG, Yuanming SONG, Shaodong XIE, Huasheng CAI, Jianqing CHEN, Zhengyuan DONG, Jiaqi TAN, Muzhi ZHAO, Hanyue SUN, Tiantian LUO, Di LIU, Wenjun LI, Zhi LIU, Minsheng WANG, Xueyun PENG, Yueng-Kay Martin GU, Xiang SONG, Xianming YANG, Guang YANG, Danke LIU, Bing |
Author_xml | – sequence: 1 givenname: Yunfeng surname: LIANG fullname: LIANG, Yunfeng organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management- Plasmaphysik , Jülich 52425, Germany – sequence: 2 givenname: Huasheng surname: XIE fullname: XIE, Huasheng organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 3 givenname: Yuejiang surname: SHI fullname: SHI, Yuejiang organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 4 givenname: Xiang surname: GU fullname: GU, Xiang organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 5 givenname: Xinchen surname: JIANG fullname: JIANG, Xinchen organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 6 givenname: Lili surname: DONG fullname: DONG, Lili organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 7 givenname: Xueyun surname: WANG fullname: WANG, Xueyun organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 8 givenname: Danke surname: YANG fullname: YANG, Danke organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 9 givenname: Wenjun surname: LIU fullname: LIU, Wenjun organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 10 givenname: Tiantian surname: SUN fullname: SUN, Tiantian organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 11 givenname: Yumin surname: WANG fullname: WANG, Yumin organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 12 givenname: Zhi surname: LI fullname: LI, Zhi organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 13 givenname: Jianqing surname: CAI fullname: CAI, Jianqing organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management- Plasmaphysik , Jülich 52425, Germany – sequence: 14 givenname: Xianming surname: SONG fullname: SONG, Xianming organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 15 givenname: Muzhi surname: TAN fullname: TAN, Muzhi organization: Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management- Plasmaphysik , Jülich 52425, Germany – sequence: 16 givenname: Guang surname: YANG fullname: YANG, Guang organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 17 givenname: Hanyue surname: ZHAO fullname: ZHAO, Hanyue organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 18 givenname: Jiaqi surname: DONG fullname: DONG, Jiaqi organization: Southwestern Institute of Physics, Chengdu 610225, People’s Republic of China – sequence: 19 givenname: Yueng-Kay Martin surname: PENG fullname: PENG, Yueng-Kay Martin organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 20 givenname: Shaodong surname: SONG fullname: SONG, Shaodong organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 21 givenname: Zhengyuan surname: CHEN fullname: CHEN, Zhengyuan organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 22 givenname: Yingying surname: LI fullname: LI, Yingying organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 23 givenname: Bing surname: LIU fullname: LIU, Bing organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 24 givenname: Di surname: LUO fullname: LUO, Di organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 25 givenname: Yuanming surname: YANG fullname: YANG, Yuanming organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 26 givenname: Minsheng surname: LIU fullname: LIU, Minsheng organization: ENN Science and Technology Development Co., Ltd., Langfang 065001, People’s Republic of China – sequence: 27 givenname: the EHL-2 surname: Team fullname: Team, the EHL-2 organization: Hebei Key Laboratory of Compact Fusion, Langfang 065001, People’s Republic of China |
BookMark | eNp9kE1LAzEYhINUsK3ePe7Ni2vffGw-8CSlWqHQi55DNpvYlLpZkq3Sf29L1YOop4FhnoGZERq0sXUIXWK4wSDlhEAlS04EmZhGSWxO0PDbGqAhBlAlcApnaJTzGqBiStIhul2-ufQW3HsRfdGvXNGtdjnYXDQuh5f2y53NFyUpcrdyKVizKfqYtvkcnXqzye7iU8fo-X72NJ2Xi-XD4_RuUVqKWV9KIyhVRqnKSK8YwwJzVXNLGu-VNKTGjWesNqom1lpFqBeecSE4ZbgidUXHiB97bYo5J-e1Db3pQ2z7ZMJGY9CHC_Rhrz7s1ccL9iD8ALsUXk3a_YdcHZEQO72O29Tul-ku95oITTQQBoB11_h98vqX5J_FH0zVemc |
CitedBy_id | crossref_primary_10_1088_2058_6272_ada9c3 crossref_primary_10_1088_2058_6272_adadb8 crossref_primary_10_1088_2058_6272_ad8dfb crossref_primary_10_1088_2058_6272_ada421 crossref_primary_10_1088_2058_6272_adad1a crossref_primary_10_1088_2058_6272_adae43 crossref_primary_10_1088_2058_6272_adb40b crossref_primary_10_1088_2058_6272_ad9da2 crossref_primary_10_1088_2058_6272_adae71 crossref_primary_10_1088_2058_6272_adae72 crossref_primary_10_1088_2058_6272_ad9e8f crossref_primary_10_1088_1361_6587_ada824 |
Cites_doi | 10.1088/0029-5515/49/10/104021 10.1088/2058-6272/adb40b 10.1023/A:1022513215080 10.1088/1741-4326/ac71b6 10.1103/PhysRevLett.105.065001 10.1063/1.871256 10.1063/5.0058809 10.1088/2058-6272/ad9f27 10.1088/0029-5515/39/11Y/329 10.1088/0029-5515/41/10/311 10.1088/1361-6587/ad877f 10.1088/1741-4326/ac38c9 10.1088/1741-4326/ad3e16 10.1088/1748-0221/18/03/C03019 10.1038/s41467-023-36655-1 10.1063/1.872228 10.1103/PhysRevLett.72.2709 10.1088/0029-5515/32/2/I01 10.1088/0029-5515/40/4/310 10.1088/0029-5515/39/2/306 10.1098/rsta.2023.0416 10.1080/15361055.2021.1964309 10.1063/5.0158503 10.1088/0029-5515/26/6/005 10.1063/5.0199112 10.1007/s10894-016-0069-y 10.1103/PhysRevLett.80.3972 10.1088/2058-6272/adae72 10.1088/2058-6272/ada9c3 10.1007/BF01284459 10.1088/0741-3335/55/12/124003 10.1088/0029-5515/47/9/L02 10.1016/j.radphyschem.2019.03.028 10.1088/1741-4326/aa600a 10.13182/FST11-A11699 10.1088/2058-6272/adae43 10.1088/2058-6272/ad1571 10.1016/j.physletb.2010.12.015 10.1088/2058-6272/acaa8d 10.1088/1741-4326/aa686a 10.1063/1.4799535 10.1088/1741-4326/acbec8 10.1063/5.0184945 10.1088/0741-3335/37/11A/022 10.1088/1741-4326/aa5fb7 10.1088/0029-5515/55/3/033001 10.1088/1361-6587/ada824 10.1088/2058-6272/adad1a 10.1088/1361-6587/ad3f4b 10.1088/2058-6272/ad8dfb 10.1063/5.0073439 10.1007/s41614-023-00126-3 10.3390/app12031444 10.1088/1741-4326/abaf31 10.1088/1741-4326/ab1a60 10.1088/2058-6272/ad9da2 10.1063/1.3008045 10.1088/0029-5515/45/8/026 10.1088/0256-307X/38/5/055201 10.1088/1741-4326/ad6011 10.1088/2058-6272/ada421 10.1063/1.1352595 10.1088/2058-6272/ad9e8f 10.1088/1741-4326/ac0f97 10.1103/PhysRevLett.98.265004 10.1063/1.872825 10.1017/lpb.2024.2 10.1016/j.jcp.2011.05.034 10.1017/S0022377820001257 10.1088/2058-6272/adae71 10.1088/1741-4326/ab1a72 10.1038/s41567-021-01460-4 10.1103/PhysRevLett.49.1408 10.1016/j.fusengdes.2019.111254 10.1088/2058-6272/adadb8 10.1088/0741-3335/40/12/009 |
ContentType | Journal Article |
Copyright | 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
Copyright_xml | – notice: 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/ad981a |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-6272 |
ExternalDocumentID | 10_1088_2058_6272_ad981a pstad981a |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c314t-8a7339a995a8f94417169b6c2dff98a2b1df44ba9b2ccc923f7f4677634152b53 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 05:30:00 EDT 2025 Wed Feb 26 07:53:22 EST 2025 Wed Feb 26 07:59:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-8a7339a995a8f94417169b6c2dff98a2b1df44ba9b2ccc923f7f4677634152b53 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1088_2058_6272_ad981a crossref_primary_10_1088_2058_6272_ad981a iop_journals_10_1088_2058_6272_ad981a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250201 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2025 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | pst_27_2_024001_bib70 pst_27_2_024001_bib72 Liang (pst_27_2_024001_bib63) 2019; 59 Bondeson (pst_27_2_024001_bib67) 1994; 72 Ochs (pst_27_2_024001_bib10) 2024; 31 Sikora (pst_27_2_024001_bib39) 2016; 35 Liang (pst_27_2_024001_bib64) 2007; 98 Song (pst_27_2_024001_bib43) 2019; 147 Wu (pst_27_2_024001_bib38) 2022; 29 Chapman (pst_27_2_024001_bib5) 2024; 382 Xie (pst_27_2_024001_bib40) 2024; 66 Li (pst_27_2_024001_bib61) 2021; 61 Liu (pst_27_2_024001_bib28) 2024; 31 Nespoli (pst_27_2_024001_bib54) 2022; 18 Wagner (pst_27_2_024001_bib59) 1982; 49 Becker (pst_27_2_024001_bib33) 1987; 327 Costley (pst_27_2_024001_bib41) 2015; 55 Zohm (pst_27_2_024001_bib73) 1995; 37 pst_27_2_024001_bib77 Keilhacker (pst_27_2_024001_bib2) 1999; 39 pst_27_2_024001_bib30 Theiler (pst_27_2_024001_bib29) 2017; 57 Tan (pst_27_2_024001_bib56) 2025; 67 pst_27_2_024001_bib76 Sun (pst_27_2_024001_bib53) 2021; 28 Ono (pst_27_2_024001_bib23) 2001; 41 Margarone (pst_27_2_024001_bib11) 2022; 12 Wang (pst_27_2_024001_bib31) 2021; 38 Liang (pst_27_2_024001_bib74) 2007; 47 Putvinski (pst_27_2_024001_bib9) 2019; 59 Menard (pst_27_2_024001_bib24) 2017; 57 Cai (pst_27_2_024001_bib75) 2024; 26 Sykes (pst_27_2_024001_bib21) 2001; 8 Nevins (pst_27_2_024001_bib34) 2000; 40 Li (pst_27_2_024001_bib35) 2024; 42 Nevins (pst_27_2_024001_bib8) 1998; 17 Magee (pst_27_2_024001_bib13) 2023; 14 pst_27_2_024001_bib48 Liang (pst_27_2_024001_bib60) 2011; 59 Cai (pst_27_2_024001_bib14) 2022; 78 Harrison (pst_27_2_024001_bib22) 2024; 64 Xie (pst_27_2_024001_bib15) 2024; 66 pst_27_2_024001_bib45 pst_27_2_024001_bib44 Creely (pst_27_2_024001_bib6) 2020; 86 pst_27_2_024001_bib46 Bortolon (pst_27_2_024001_bib52) 2020; 60 Suzuki (pst_27_2_024001_bib36) 1998; 40 pst_27_2_024001_bib42 Tamano (pst_27_2_024001_bib37) 1995; 2 Hu (pst_27_2_024001_bib32) 2023; 30 pst_27_2_024001_bib50 Kurskiev (pst_27_2_024001_bib58) 2022; 62 Shi (pst_27_2_024001_bib49) 2022; 62 JET (pst_27_2_024001_bib16) 1999; 39 Peng (pst_27_2_024001_bib19) 1986; 26 Görler (pst_27_2_024001_bib55) 2011; 230 Kishimoto (pst_27_2_024001_bib17) 2005; 45 Gusev (pst_27_2_024001_bib25) 2009; 49 McNamara (pst_27_2_024001_bib26) 2023; 63 Ida (pst_27_2_024001_bib51) 2023; 7 Gryaznevich (pst_27_2_024001_bib20) 1998; 80 Liu (pst_27_2_024001_bib68) 2013; 20 pst_27_2_024001_bib57 Maggi (pst_27_2_024001_bib3) 2024; 64 Stave (pst_27_2_024001_bib12) 2011; 696 Wood (pst_27_2_024001_bib27) 2023; 18 Liu (pst_27_2_024001_bib69) 2008; 15 Kirk (pst_27_2_024001_bib66) 2013; 55 Geser (pst_27_2_024001_bib7) 2020; 167 Liang (pst_27_2_024001_bib71) 2022; 24 Wan (pst_27_2_024001_bib4) 2017; 57 Liang (pst_27_2_024001_bib65) 2010; 105 Waltz (pst_27_2_024001_bib47) 1997; 4 Hawryluk (pst_27_2_024001_bib18) 1998; 5 JET (pst_27_2_024001_bib1) 1992; 32 pst_27_2_024001_bib62 |
References_xml | – volume: 49 start-page: 104021 year: 2009 ident: pst_27_2_024001_bib25 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/10/104021 – ident: pst_27_2_024001_bib76 doi: 10.1088/2058-6272/adb40b – volume: 17 start-page: 25 year: 1998 ident: pst_27_2_024001_bib8 publication-title: J. Fusion Energy doi: 10.1023/A:1022513215080 – volume: 62 start-page: 086047 year: 2022 ident: pst_27_2_024001_bib49 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac71b6 – volume: 105 start-page: 065001 year: 2010 ident: pst_27_2_024001_bib65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.065001 – volume: 2 start-page: 2321 year: 1995 ident: pst_27_2_024001_bib37 publication-title: Phys. Plasmas doi: 10.1063/1.871256 – volume: 28 start-page: 082512 year: 2021 ident: pst_27_2_024001_bib53 publication-title: Phys. Plasmas doi: 10.1063/5.0058809 – ident: pst_27_2_024001_bib62 doi: 10.1088/2058-6272/ad9f27 – volume: 39 start-page: 1875 year: 1999 ident: pst_27_2_024001_bib16 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/11Y/329 – volume: 41 start-page: 1435 year: 2001 ident: pst_27_2_024001_bib23 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/10/311 – volume: 66 start-page: 125005 year: 2024 ident: pst_27_2_024001_bib40 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad877f – volume: 62 start-page: 016011 year: 2022 ident: pst_27_2_024001_bib58 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac38c9 – volume: 64 start-page: 112012 year: 2024 ident: pst_27_2_024001_bib3 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad3e16 – volume: 18 start-page: C03019 year: 2023 ident: pst_27_2_024001_bib27 publication-title: J. Instrum. doi: 10.1088/1748-0221/18/03/C03019 – volume: 14 start-page: 955 year: 2023 ident: pst_27_2_024001_bib13 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36655-1 – volume: 4 start-page: 2482 year: 1997 ident: pst_27_2_024001_bib47 publication-title: Phys. Plasmas doi: 10.1063/1.872228 – volume: 72 start-page: 2709 year: 1994 ident: pst_27_2_024001_bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2709 – volume: 32 start-page: 187 year: 1992 ident: pst_27_2_024001_bib1 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/32/2/I01 – volume: 40 start-page: 865 year: 2000 ident: pst_27_2_024001_bib34 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/40/4/310 – volume: 39 start-page: 209 year: 1999 ident: pst_27_2_024001_bib2 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/2/306 – volume: 382 start-page: 20230416 year: 2024 ident: pst_27_2_024001_bib5 publication-title: Philos. Trans. Roy. Soc. A doi: 10.1098/rsta.2023.0416 – volume: 78 start-page: 149 year: 2022 ident: pst_27_2_024001_bib14 publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2021.1964309 – volume: 30 start-page: 092507 year: 2023 ident: pst_27_2_024001_bib32 publication-title: Phys. Plasmas doi: 10.1063/5.0158503 – volume: 26 start-page: 769 year: 1986 ident: pst_27_2_024001_bib19 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/26/6/005 – volume: 31 start-page: 062507 year: 2024 ident: pst_27_2_024001_bib28 publication-title: Phys. Plasmas doi: 10.1063/5.0199112 – volume: 35 start-page: 538 year: 2016 ident: pst_27_2_024001_bib39 publication-title: J. Fusion Energy doi: 10.1007/s10894-016-0069-y – volume: 80 start-page: 3972 year: 1998 ident: pst_27_2_024001_bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3972 – ident: pst_27_2_024001_bib42 doi: 10.1088/2058-6272/adae72 – ident: pst_27_2_024001_bib46 doi: 10.1088/2058-6272/ada9c3 – volume: 327 start-page: 341 year: 1987 ident: pst_27_2_024001_bib33 publication-title: Z. Phys. A Atomic Nuclei doi: 10.1007/BF01284459 – volume: 55 start-page: 124003 year: 2013 ident: pst_27_2_024001_bib66 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/55/12/124003 – volume: 47 start-page: L21 year: 2007 ident: pst_27_2_024001_bib74 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/9/L02 – volume: 167 start-page: 108224 year: 2020 ident: pst_27_2_024001_bib7 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.03.028 – volume: 57 start-page: 102006 year: 2017 ident: pst_27_2_024001_bib24 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa600a – volume: 59 start-page: 586 year: 2011 ident: pst_27_2_024001_bib60 publication-title: Fusion Sci. Technol. doi: 10.13182/FST11-A11699 – ident: pst_27_2_024001_bib77 doi: 10.1088/2058-6272/adae43 – volume: 26 start-page: 055102 year: 2024 ident: pst_27_2_024001_bib75 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/ad1571 – volume: 696 start-page: 26 year: 2011 ident: pst_27_2_024001_bib12 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.12.015 – volume: 24 start-page: 124021 year: 2022 ident: pst_27_2_024001_bib71 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/acaa8d – volume: 57 start-page: 102009 year: 2017 ident: pst_27_2_024001_bib4 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa686a – volume: 20 start-page: 042503 year: 2013 ident: pst_27_2_024001_bib68 publication-title: Phys. Plasmas doi: 10.1063/1.4799535 – volume: 63 start-page: 054002 year: 2023 ident: pst_27_2_024001_bib26 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/acbec8 – volume: 31 start-page: 012503 year: 2024 ident: pst_27_2_024001_bib10 publication-title: Phys. Plasmas doi: 10.1063/5.0184945 – volume: 37 start-page: A313 year: 1995 ident: pst_27_2_024001_bib73 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/37/11A/022 – volume: 57 start-page: 072008 year: 2017 ident: pst_27_2_024001_bib29 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa5fb7 – volume: 55 start-page: 033001 year: 2015 ident: pst_27_2_024001_bib41 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/3/033001 – volume: 67 start-page: 025018 year: 2025 ident: pst_27_2_024001_bib56 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ada824 – ident: pst_27_2_024001_bib57 doi: 10.1088/2058-6272/adad1a – volume: 66 start-page: 065009 year: 2024 ident: pst_27_2_024001_bib15 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad3f4b – ident: pst_27_2_024001_bib70 doi: 10.1088/2058-6272/ad8dfb – volume: 29 start-page: 023508 year: 2022 ident: pst_27_2_024001_bib38 publication-title: Phys. Plasmas doi: 10.1063/5.0073439 – volume: 7 start-page: 23 year: 2023 ident: pst_27_2_024001_bib51 publication-title: Rev. Mod. Plasma Phys. doi: 10.1007/s41614-023-00126-3 – volume: 12 start-page: 1444 year: 2022 ident: pst_27_2_024001_bib11 publication-title: Appl. Sci. doi: 10.3390/app12031444 – volume: 60 start-page: 126010 year: 2020 ident: pst_27_2_024001_bib52 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abaf31 – volume: 59 start-page: 076018 year: 2019 ident: pst_27_2_024001_bib9 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab1a60 – ident: pst_27_2_024001_bib30 doi: 10.1088/2058-6272/ad9da2 – volume: 15 start-page: 112503 year: 2008 ident: pst_27_2_024001_bib69 publication-title: Phys. Plasmas doi: 10.1063/1.3008045 – volume: 45 start-page: 986 year: 2005 ident: pst_27_2_024001_bib17 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/8/026 – volume: 38 start-page: 055201 year: 2021 ident: pst_27_2_024001_bib31 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/5/055201 – volume: 64 start-page: 112017 year: 2024 ident: pst_27_2_024001_bib22 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad6011 – ident: pst_27_2_024001_bib48 doi: 10.1088/2058-6272/ada421 – ident: pst_27_2_024001_bib45 – volume: 8 start-page: 2101 year: 2001 ident: pst_27_2_024001_bib21 publication-title: Phys. Plasmas doi: 10.1063/1.1352595 – ident: pst_27_2_024001_bib50 doi: 10.1088/2058-6272/ad9e8f – volume: 61 start-page: 096002 year: 2021 ident: pst_27_2_024001_bib61 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac0f97 – volume: 98 start-page: 265004 year: 2007 ident: pst_27_2_024001_bib64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.265004 – volume: 5 start-page: 1577 year: 1998 ident: pst_27_2_024001_bib18 publication-title: Phys. Plasmas doi: 10.1063/1.872825 – volume: 42 start-page: e5 year: 2024 ident: pst_27_2_024001_bib35 publication-title: Laser Particle Beams doi: 10.1017/lpb.2024.2 – volume: 230 start-page: 7053 year: 2011 ident: pst_27_2_024001_bib55 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.05.034 – volume: 86 start-page: 865860502 year: 2020 ident: pst_27_2_024001_bib6 publication-title: J. Plasma Phys. doi: 10.1017/S0022377820001257 – ident: pst_27_2_024001_bib44 doi: 10.1088/2058-6272/adae71 – volume: 59 start-page: 112016 year: 2019 ident: pst_27_2_024001_bib63 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab1a72 – volume: 18 start-page: 350 year: 2022 ident: pst_27_2_024001_bib54 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01460-4 – volume: 49 start-page: 1408 year: 1982 ident: pst_27_2_024001_bib59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1408 – volume: 147 start-page: 111254 year: 2019 ident: pst_27_2_024001_bib43 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.111254 – ident: pst_27_2_024001_bib72 doi: 10.1088/2058-6272/adadb8 – volume: 40 start-page: 2097 year: 1998 ident: pst_27_2_024001_bib36 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/40/12/009 |
SSID | ssj0054983 ssib023363536 |
Score | 2.3649511 |
SecondaryResourceType | review_article |
Snippet | ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p- 11 B fusion, establish spherical... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 24001 |
SubjectTerms | alpha particles proton-boron fusion spherical torus thermal reaction rate |
Title | Overview of the physics design of the EHL-2 spherical torus |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/ad981a |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5xf5KAHD9mapB8JO4lMpqjz4GAHISRpclG2YjsF_3qTthtOZIi3Ul7T8Jr-3nvJ770HwJnCNnVmTyOMpUK-ozHi3IbIcG0DqhMVpj4b-f4h7g_D21E0aoDuPBdmktXQ33aXVaHgSoU1IY65cD1iKCYJ6ciUM-yco1XfuNIv75vB4wyGXdzDKna93_2PaVCfUf42woJNWnHv_WZirjfB82xyFbPkpT0tVFt__qjb-M_Zb4GN2vWEl5XoNmiY8Q5YKymgOt8F3cG7xw3zAScWOrcQVpseOUxLksfsbq9_hwjMfTUC_32hi9mn-R4YXveervqobq2ANMVhgZhMKOWS80gyy30bMhxzFWuSWsuZJAqnNgyV5IporZ0TaBPrINWBkTf4KqL7oDmejM0BgDowsTIJxYbq0CEGjyVjJvIptkFsAt4CnZlyha7rjvv2F6-iPP9mTHiVCK8SUamkBS7mT2RVzY0lsudO06L-8fIlcnBBLssLQRJBhK_xFmCRpfbwj0MdgXXimwCX1O1j0CzepubEeSaFOi1X4BcUD9gT |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCMTCG1GeHmBgcBs7L1tMCFq1UNoOVOpmbMdeQG1FUpD49dhJiihCFRJbFF2c5Jx8d_Z9dwfAucQmsWZPIYyFRK6jMWLMBEgzZTxfxTJIXDbyQzdqDYK7YTgs-5zmuTDjSQn9NXtYFAouVFgS4qhdrocURSQmdZEwikV9kphlsBJaKHacrnavP4Niu_ahBcPeRQAi3yvjlL-NMmeXlu29v5mZ5iZ4mj1gwS55rk0zWVMfP2o3_uMNtsBG6YLC60J8Gyzp0Q5YzamgKt0FV703hx_6HY4NtO4hLDY_UpjkZI_Z2UargwhMXVUCN8_Qrt2n6R4YNBuPNy1UtlhAysdBhqiIfZ8JxkJBDXPtyHDEZKRIYgyjgkicmCCQgkmilLLOoImNhVYLSs7wy9DfB5XReKQPAFSejqSOfax9FVjkYJGgVIcu1daLtMeqoD5TMFdl_XHXBuOF53FwSrlTC3dq4YVaquDy64pJUXtjgeyF1TYvf8B0gRyck5ukGScxJ9zVevMwtzNx-MehzsBa_7bJO-3u_RFYJ64vcM7mPgaV7HWqT6yzksnT_IP8BJiq3Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+the+physics+design+of+the+EHL-2+spherical+torus&rft.jtitle=Plasma+science+%26+technology&rft.au=LIANG+%E6%A2%81%2C+Yunfeng+%E4%BA%91%E5%B3%B0&rft.au=XIE+%E8%B0%A2%2C+Huasheng+%E5%8D%8E%E7%94%9F&rft.au=SHI+%E7%9F%B3%2C+Yuejiang+%E8%B7%83%E6%B1%9F&rft.au=GU+%E9%A1%BE%2C+Xiang+%E7%BF%94&rft.date=2025-02-01&rft.issn=1009-0630&rft.eissn=2058-6272&rft.volume=27&rft.issue=2&rft.spage=24001&rft_id=info:doi/10.1088%2F2058-6272%2Fad981a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2058_6272_ad981a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |