Revealing intrinsic spin coupling in transition metal-doped graphene

Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characte...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 26; pp. 163 - 1639
Main Authors Zhou, Han, Hu, Xiuli, Fang, Wei-Hai, Su, Neil Qiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 06.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices. Diverse spin couplings create attractive possibilities for novel applications of graphene materials.
AbstractList Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices. Diverse spin couplings create attractive possibilities for novel applications of graphene materials.
Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.
Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.
Author Zhou, Han
Fang, Wei-Hai
Su, Neil Qiang
Hu, Xiuli
AuthorAffiliation Department of Chemistry
Ministry of Education
Nankai University
Beijing Normal University
College of Chemistry
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST)
Key Laboratory of Theoretical and Computational Photochemistry
AuthorAffiliation_xml – name: Key Laboratory of Theoretical and Computational Photochemistry
– name: Department of Chemistry
– name: Ministry of Education
– name: Beijing Normal University
– name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST)
– name: College of Chemistry
– name: Nankai University
Author_xml – sequence: 1
  givenname: Han
  surname: Zhou
  fullname: Zhou, Han
– sequence: 2
  givenname: Xiuli
  surname: Hu
  fullname: Hu, Xiuli
– sequence: 3
  givenname: Wei-Hai
  surname: Fang
  fullname: Fang, Wei-Hai
– sequence: 4
  givenname: Neil Qiang
  surname: Su
  fullname: Su, Neil Qiang
BookMark eNptkc1Lw0AQxRepYFu9eBcCXkSIzu5svo7S-gUFRfQcNptN3ZLuxt2k4H9vYkuF4mmGmd97DG8mZGSsUYScU7ihgNltyWQDkEFcHpEx5TGGGaR8tO-T-IRMvF8BAI0ojsn8TW2UqLVZBtq0ThuvZeAbbQJpu2Y3D1on-kWrrQnWqhV1WNpGlcHSieZTGXVKjitRe3W2q1Py8XD_PnsKFy-Pz7O7RSiR8jZM04JhVbISuYS0iCFKkIk0AaQyi2LIKAAvCioQZaIqyLDgFSgQaSQAgeGUXG19G2e_OuXbfK29VHUtjLKdz1mcUs4ZZ3GPXh6gK9s50183UBEkGfKBut5S0lnvnaryxum1cN85hXwINJ-z2etvoPMehgNY6lYMofTx6Pp_ycVW4rzcW__9CH8AUV6CFA
CitedBy_id crossref_primary_10_1007_s11224_024_02318_0
crossref_primary_10_1021_acs_jpclett_3c02412
crossref_primary_10_1007_s10948_024_06707_8
crossref_primary_10_1016_j_mtcomm_2024_108698
crossref_primary_10_3390_molecules28030959
crossref_primary_10_1039_D4CP02749C
crossref_primary_10_3390_nano13030598
crossref_primary_10_1002_qua_27197
crossref_primary_10_1021_acs_jpcc_3c01415
Cites_doi 10.1002/jcc.20495
10.1126/sciadv.aba6586
10.1103/PhysRevLett.77.3865
10.1002/anie.201901575
10.1126/sciadv.aav5577
10.1021/nn901850u
10.1016/j.carbon.2014.10.033
10.1002/adma.201606748
10.1021/acsnano.1c02698
10.1021/jacs.0c08360
10.1021/jacs.9b13872
10.1016/j.carbon.2013.07.055
10.1126/science.aaw7505
10.1021/acs.nanolett.6b04698
10.1126/sciadv.abc6601
10.1002/advs.202001545
10.1038/ncomms10295
10.1039/D0TA11939C
10.1038/nmat4452
10.1007/s10948-017-4532-4
10.1038/s41928-020-0391-2
10.1002/adfm.201909035
10.1002/adma.201902532
10.1126/science.aad8038
10.1039/D0EE03575K
10.1002/adma.202101673
10.1039/D0TA00794C
10.1103/PhysRevApplied.16.024030
10.1103/PhysRevB.54.11169
10.1021/acscatal.0c02499
10.1002/adfm.201504201
10.1039/D0CS01138J
10.1038/ncomms15635
10.1038/s41928-018-0099-8
10.1016/j.nantod.2021.101338
10.1021/acsami.0c01206
10.1016/j.sna.2017.12.028
10.1021/jacs.1c00151
10.1002/anie.202008422
10.1103/PhysRevB.59.1758
10.1016/j.mtphys.2017.07.001
10.1021/jacs.9b07712
10.1038/nature25781
10.1126/sciadv.1700159
10.1002/adma.201904059
10.1021/acsnano.0c07835
10.1021/jacs.1c13344
10.1002/adma.201303265
10.1021/jacs.9b08862
10.1038/s41467-017-01035-z
10.1002/anie.202009191
10.1002/adfm.201901130
10.1002/adfm.202105359
10.1021/ja403583s
10.1002/anie.201902107
10.1021/jacs.9b06808
10.1016/j.cplett.2011.07.013
10.1126/sciadv.aax1085
10.1021/acsnano.0c02718
10.1126/science.1168049
10.1021/ja407135k
10.1021/jacs.8b07816
10.1002/smll.202006834
10.1021/acs.jpclett.0c03026
10.1039/D1TA01120K
10.1021/acsami.7b02864
10.1038/nature08876
10.1039/C6SC05080H
10.1103/PhysRevB.101.081414
10.1021/jacs.1c12705
10.1002/adma.201805355
10.1038/nchem.1095
10.1103/PhysRevB.50.17953
10.1021/acsenergylett.9b01015
10.1002/anie.201911256
10.1021/jp3021563
10.1126/sciadv.1500372
10.1021/acs.accounts.9b00643
10.1039/D0CS01541E
10.1021/jacs.0c07317
10.1126/sciadv.1601574
10.1016/j.carbon.2013.08.009
10.1016/j.pmatsci.2017.07.004
10.1016/j.jechem.2020.07.018
10.1021/jacs.9b05268
10.1021/jacs.9b08259
10.1021/jacs.1c03135
10.1002/aenm.202002893
10.1002/adma.202001629
10.1021/jacs.0c10636
10.1021/jacs.0c11008
10.1103/PhysRevB.57.1505
10.1038/nnano.2016.82
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cp00906d
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1639
ExternalDocumentID 10_1039_D2CP00906D
d2cp00906d
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
53G
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
2WC
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-88b23fd2d34c08b605732a87031c956091004bb1a33c7ef093b4f0e0a85a03023
ISSN 1463-9076
1463-9084
IngestDate Thu Jul 10 22:45:12 EDT 2025
Mon Jun 30 06:42:26 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Jul 01 00:54:14 EDT 2025
Thu Jul 07 05:55:36 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-88b23fd2d34c08b605732a87031c956091004bb1a33c7ef093b4f0e0a85a03023
Notes https://doi.org/10.1039/d2cp00906d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1668-465X
0000-0001-7133-2502
PQID 2685079346
PQPubID 2047499
PageCount 1
ParticipantIDs proquest_journals_2685079346
crossref_citationtrail_10_1039_D2CP00906D
crossref_primary_10_1039_D2CP00906D
rsc_primary_d2cp00906d
proquest_miscellaneous_2681442426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-06
PublicationDateYYYYMMDD 2022-07-06
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-06
  day: 06
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ju (D2CP00906D/cit85/1) 2017; 8
Niu (D2CP00906D/cit11/1) 2013; 135
Shibuta (D2CP00906D/cit70/1) 2011; 512
Dai (D2CP00906D/cit27/1) 2016; 2
Huang (D2CP00906D/cit2/1) 2021; 50
Guo (D2CP00906D/cit9/1) 2019; 31
Geng (D2CP00906D/cit58/1) 2016; 26
Hensleigh (D2CP00906D/cit7/1) 2020; 3
Liu (D2CP00906D/cit77/1) 2022; 144
Qu (D2CP00906D/cit73/1) 2010; 4
Kim (D2CP00906D/cit39/1) 2021; 143
Nguyen (D2CP00906D/cit26/1) 2021; 9
Li (D2CP00906D/cit69/1) 2017; 8
Tang (D2CP00906D/cit23/1) 2021; 143
Chen (D2CP00906D/cit14/1) 2015; 81
Wang (D2CP00906D/cit31/1) 2021; 16
Wang (D2CP00906D/cit60/1) 2020; 101
Liu (D2CP00906D/cit37/1) 2020; 142
Bertrand (D2CP00906D/cit48/1) 2016; 11
Zhang (D2CP00906D/cit83/1) 2019; 141
Wang (D2CP00906D/cit4/1) 2021; 11
Balandin (D2CP00906D/cit20/1) 2020; 14
Friedman (D2CP00906D/cit56/1) 2017; 8
Wang (D2CP00906D/cit79/1) 2020; 11
Lenz (D2CP00906D/cit50/1) 2021; 33
Czap (D2CP00906D/cit53/1) 2019; 364
Wang (D2CP00906D/cit41/1) 2019; 141
Liu (D2CP00906D/cit28/1) 2017; 3
Wang (D2CP00906D/cit19/1) 2017; 2
Sun (D2CP00906D/cit5/1) 2021; 14
Zhang (D2CP00906D/cit25/1) 2019; 5
Zhao (D2CP00906D/cit54/1) 2021; 31
Bao (D2CP00906D/cit71/1) 2017; 17
Houtsma (D2CP00906D/cit18/1) 2021; 50
Wang (D2CP00906D/cit61/1) 2018; 31
Lou (D2CP00906D/cit91/1) 2020; 30
Botas (D2CP00906D/cit15/1) 2013; 65
Huang (D2CP00906D/cit34/1) 2020; 30
Zhao (D2CP00906D/cit40/1) 2020; 142
Hossain (D2CP00906D/cit8/1) 2022; 42
Moorsom (D2CP00906D/cit49/1) 2020; 6
Perdew (D2CP00906D/cit63/1) 1996; 77
Chaikittisilp (D2CP00906D/cit3/1) 2021
Saraswat (D2CP00906D/cit32/1) 2021; 15
Grimme (D2CP00906D/cit66/1) 2006; 27
Li (D2CP00906D/cit75/1) 2020; 7
Rezapour (D2CP00906D/cit30/1) 2017; 9
Han (D2CP00906D/cit44/1) 2020; 12
Zhang (D2CP00906D/cit94/1) 2019; 58
Koplovitz (D2CP00906D/cit51/1) 2017; 29
Xie (D2CP00906D/cit93/1) 2022; 144
Nag (D2CP00906D/cit21/1) 2018; 270
Kresse (D2CP00906D/cit65/1) 1999; 59
Dudarev (D2CP00906D/cit67/1) 1998; 57
Guo (D2CP00906D/cit38/1) 2021; 143
Blöchl (D2CP00906D/cit64/1) 1994; 50
Johannsen (D2CP00906D/cit90/1) 2021; 15
Coronado (D2CP00906D/cit88/1) 2013; 135
Allain (D2CP00906D/cit33/1) 2015; 14
Wang (D2CP00906D/cit1/1) 2020; 32
Kumar (D2CP00906D/cit59/1) 2021; 60
Qiao (D2CP00906D/cit35/1) 2011; 3
Ali (D2CP00906D/cit86/1) 2012; 116
Hu (D2CP00906D/cit24/1) 2020; 142
Wang (D2CP00906D/cit57/1) 2019; 31
Wu (D2CP00906D/cit22/1) 2020; 142
Zhao (D2CP00906D/cit29/1) 2015; 1
Li (D2CP00906D/cit43/1) 2018; 140
Berdiell (D2CP00906D/cit89/1) 2019; 141
Xiong (D2CP00906D/cit45/1) 2021; 17
Lee (D2CP00906D/cit6/1) 2020; 32
Ren (D2CP00906D/cit78/1) 2019; 58
Bai (D2CP00906D/cit76/1) 2019; 141
Yang (D2CP00906D/cit46/1) 2020; 6
Liu (D2CP00906D/cit36/1) 2020; 142
Gong (D2CP00906D/cit72/1) 2009; 323
Jin (D2CP00906D/cit42/1) 2020; 59
Niu (D2CP00906D/cit68/1) 2020; 8
Pan (D2CP00906D/cit80/1) 2020; 10
Maiti (D2CP00906D/cit10/1) 2014; 26
Lin (D2CP00906D/cit82/1) 2020; 59
Wang (D2CP00906D/cit87/1) 2016; 7
Li (D2CP00906D/cit81/1) 2021; 9
Qin (D2CP00906D/cit84/1) 2019; 4
Moon (D2CP00906D/cit13/1) 2020; 6
Huang (D2CP00906D/cit12/1) 2020; 53
Glenn (D2CP00906D/cit52/1) 2018; 555
Gonzalez-Herrero (D2CP00906D/cit92/1) 2016; 352
Papageorgiou (D2CP00906D/cit17/1) 2017; 90
Baek (D2CP00906D/cit55/1) 2018; 1
Kajiwara (D2CP00906D/cit47/1) 2010; 464
Kresse (D2CP00906D/cit62/1) 1996; 54
Chen (D2CP00906D/cit16/1) 2013; 64
Xue (D2CP00906D/cit74/1) 2021; 55
References_xml – volume: 27
  start-page: 1787
  year: 2006
  ident: D2CP00906D/cit66/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 6
  start-page: eaba6586
  year: 2020
  ident: D2CP00906D/cit46/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba6586
– volume: 77
  start-page: 3865
  year: 1996
  ident: D2CP00906D/cit63/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 58
  start-page: 6972
  year: 2019
  ident: D2CP00906D/cit78/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901575
– volume: 5
  start-page: aav5577
  year: 2019
  ident: D2CP00906D/cit25/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5577
– volume: 4
  start-page: 1321
  year: 2010
  ident: D2CP00906D/cit73/1
  publication-title: ACS Nano
  doi: 10.1021/nn901850u
– volume: 81
  start-page: 826
  year: 2015
  ident: D2CP00906D/cit14/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.10.033
– volume: 29
  start-page: 1606748
  year: 2017
  ident: D2CP00906D/cit51/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606748
– volume: 15
  start-page: 11770
  year: 2021
  ident: D2CP00906D/cit90/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02698
– volume: 142
  start-page: 19602
  year: 2020
  ident: D2CP00906D/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08360
– volume: 142
  start-page: 5773
  year: 2020
  ident: D2CP00906D/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13872
– volume: 64
  start-page: 225
  year: 2013
  ident: D2CP00906D/cit16/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.055
– volume: 364
  start-page: 670
  year: 2019
  ident: D2CP00906D/cit53/1
  publication-title: Science
  doi: 10.1126/science.aaw7505
– volume: 17
  start-page: 1564
  year: 2017
  ident: D2CP00906D/cit71/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04698
– volume: 6
  start-page: abc6601
  year: 2020
  ident: D2CP00906D/cit13/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc6601
– volume: 7
  start-page: 2001545
  year: 2020
  ident: D2CP00906D/cit75/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001545
– volume: 7
  start-page: 10295
  year: 2016
  ident: D2CP00906D/cit87/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10295
– volume: 9
  start-page: 7366
  year: 2021
  ident: D2CP00906D/cit26/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11939C
– volume: 14
  start-page: 1195
  year: 2015
  ident: D2CP00906D/cit33/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4452
– volume: 31
  start-page: 2789
  year: 2018
  ident: D2CP00906D/cit61/1
  publication-title: J. Supercond. Novel Magn.
  doi: 10.1007/s10948-017-4532-4
– volume: 3
  start-page: 216
  year: 2020
  ident: D2CP00906D/cit7/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0391-2
– volume: 30
  start-page: 1909035
  year: 2020
  ident: D2CP00906D/cit34/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909035
– volume: 32
  start-page: 1902532
  year: 2020
  ident: D2CP00906D/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902532
– volume: 352
  start-page: 437
  year: 2016
  ident: D2CP00906D/cit92/1
  publication-title: Science
  doi: 10.1126/science.aad8038
– volume: 14
  start-page: 1247
  year: 2021
  ident: D2CP00906D/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03575K
– volume: 33
  start-page: 2101673
  year: 2021
  ident: D2CP00906D/cit50/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101673
– volume: 8
  start-page: 6555
  year: 2020
  ident: D2CP00906D/cit68/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00794C
– volume: 16
  start-page: 024030
  year: 2021
  ident: D2CP00906D/cit31/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.024030
– volume: 54
  start-page: 11169
  year: 1996
  ident: D2CP00906D/cit62/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 10803
  year: 2020
  ident: D2CP00906D/cit80/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02499
– volume: 26
  start-page: 3999
  year: 2016
  ident: D2CP00906D/cit58/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504201
– volume: 50
  start-page: 11381
  year: 2021
  ident: D2CP00906D/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01138J
– volume: 8
  start-page: 15635
  year: 2017
  ident: D2CP00906D/cit56/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15635
– volume: 1
  start-page: 398
  year: 2018
  ident: D2CP00906D/cit55/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0099-8
– volume: 42
  start-page: 101338
  year: 2022
  ident: D2CP00906D/cit8/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101338
– volume: 12
  start-page: 15271
  year: 2020
  ident: D2CP00906D/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01206
– volume: 270
  start-page: 177
  year: 2018
  ident: D2CP00906D/cit21/1
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2017.12.028
– volume: 143
  start-page: 6877
  year: 2021
  ident: D2CP00906D/cit38/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00151
– volume: 59
  start-page: 21885
  year: 2020
  ident: D2CP00906D/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008422
– volume: 59
  start-page: 1758
  year: 1999
  ident: D2CP00906D/cit65/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 2
  start-page: 6
  year: 2017
  ident: D2CP00906D/cit19/1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2017.07.001
– volume: 141
  start-page: 14115
  year: 2019
  ident: D2CP00906D/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07712
– volume: 555
  start-page: 351
  year: 2018
  ident: D2CP00906D/cit52/1
  publication-title: Nature
  doi: 10.1038/nature25781
– volume: 3
  start-page: 1700159
  year: 2017
  ident: D2CP00906D/cit28/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700159
– volume: 31
  start-page: 1904059
  year: 2019
  ident: D2CP00906D/cit57/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904059
– volume: 15
  start-page: 3674
  year: 2021
  ident: D2CP00906D/cit32/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07835
– volume: 144
  start-page: 5023
  year: 2022
  ident: D2CP00906D/cit93/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c13344
– volume: 26
  start-page: 40
  year: 2014
  ident: D2CP00906D/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303265
– volume: 141
  start-page: 18759
  year: 2019
  ident: D2CP00906D/cit89/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08862
– volume: 8
  start-page: 944
  year: 2017
  ident: D2CP00906D/cit85/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01035-z
– volume: 59
  start-page: 22408
  year: 2020
  ident: D2CP00906D/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009191
– volume: 30
  start-page: 1901130
  year: 2020
  ident: D2CP00906D/cit91/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901130
– volume: 31
  start-page: 2105359
  year: 2021
  ident: D2CP00906D/cit54/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105359
– volume: 135
  start-page: 8409
  year: 2013
  ident: D2CP00906D/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403583s
– volume: 58
  start-page: 9404
  year: 2019
  ident: D2CP00906D/cit94/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902107
– volume: 142
  start-page: 3375
  year: 2020
  ident: D2CP00906D/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06808
– volume: 512
  start-page: 146
  year: 2011
  ident: D2CP00906D/cit70/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.07.013
– volume: 6
  start-page: aax1085
  year: 2020
  ident: D2CP00906D/cit49/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax1085
– volume: 14
  start-page: 5170
  year: 2020
  ident: D2CP00906D/cit20/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02718
– volume: 323
  start-page: 760
  year: 2009
  ident: D2CP00906D/cit72/1
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 135
  start-page: 15986
  year: 2013
  ident: D2CP00906D/cit88/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407135k
– volume: 140
  start-page: 15149
  year: 2018
  ident: D2CP00906D/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07816
– volume: 17
  start-page: 2006834
  year: 2021
  ident: D2CP00906D/cit45/1
  publication-title: Small
  doi: 10.1002/smll.202006834
– volume: 11
  start-page: 9819
  issue: 22
  year: 2020
  ident: D2CP00906D/cit79/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03026
– volume: 9
  start-page: 8761
  year: 2021
  ident: D2CP00906D/cit81/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01120K
– volume: 9
  start-page: 24393
  year: 2017
  ident: D2CP00906D/cit30/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02864
– volume: 464
  start-page: 262
  year: 2010
  ident: D2CP00906D/cit47/1
  publication-title: Nature
  doi: 10.1038/nature08876
– volume: 8
  start-page: 2859
  year: 2017
  ident: D2CP00906D/cit69/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05080H
– volume: 101
  start-page: 081414
  year: 2020
  ident: D2CP00906D/cit60/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.101.081414
– volume: 144
  start-page: 4913
  year: 2022
  ident: D2CP00906D/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c12705
– volume: 31
  start-page: 1805355
  year: 2019
  ident: D2CP00906D/cit9/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805355
– volume: 3
  start-page: 634
  year: 2011
  ident: D2CP00906D/cit35/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 50
  start-page: 17953
  year: 1994
  ident: D2CP00906D/cit64/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 4
  start-page: 1778
  year: 2019
  ident: D2CP00906D/cit84/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01015
– volume: 60
  start-page: 7502
  year: 2021
  ident: D2CP00906D/cit59/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911256
– volume: 116
  start-page: 5849
  year: 2012
  ident: D2CP00906D/cit86/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp3021563
– volume: 1
  start-page: 1500372
  year: 2015
  ident: D2CP00906D/cit29/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500372
– volume: 53
  start-page: 800
  year: 2020
  ident: D2CP00906D/cit12/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00643
– volume: 50
  start-page: 6541
  year: 2021
  ident: D2CP00906D/cit18/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01541E
– volume: 142
  start-page: 16776
  year: 2020
  ident: D2CP00906D/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07317
– volume: 2
  start-page: e1601574
  year: 2016
  ident: D2CP00906D/cit27/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601574
– volume: 65
  start-page: 156
  year: 2013
  ident: D2CP00906D/cit15/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.08.009
– volume: 90
  start-page: 75
  year: 2017
  ident: D2CP00906D/cit17/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.07.004
– volume: 55
  start-page: 437
  year: 2021
  ident: D2CP00906D/cit74/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.018
– start-page: 2107212
  year: 2021
  ident: D2CP00906D/cit3/1
  publication-title: Adv. Mater.
– volume: 141
  start-page: 14190
  year: 2019
  ident: D2CP00906D/cit76/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05268
– volume: 141
  start-page: 16569
  year: 2019
  ident: D2CP00906D/cit83/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 143
  start-page: 7819
  year: 2021
  ident: D2CP00906D/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03135
– volume: 11
  start-page: 2002893
  year: 2021
  ident: D2CP00906D/cit4/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002893
– volume: 32
  start-page: 2001629
  year: 2020
  ident: D2CP00906D/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001629
– volume: 142
  start-page: 21861
  year: 2020
  ident: D2CP00906D/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10636
– volume: 143
  start-page: 925
  year: 2021
  ident: D2CP00906D/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11008
– volume: 57
  start-page: 1505
  year: 1998
  ident: D2CP00906D/cit67/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.1505
– volume: 11
  start-page: 672
  year: 2016
  ident: D2CP00906D/cit48/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.82
SSID ssj0001513
Score 2.4466922
Snippet Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Atomic properties
Couplings
Graphene
Logic circuits
Propagation
Signal generation
Spintronics
Transition metals
Title Revealing intrinsic spin coupling in transition metal-doped graphene
URI https://www.proquest.com/docview/2685079346
https://www.proquest.com/docview/2681442426
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF96vQd9Eb8Oq6dE9EWOaLK7ySWPRz-oUs8qLRRfwm6y4QIlDW3iw3F_vLNfSQ6KqC8hmS7bMPPLzszufCD0PkoDeV7luTinBByUzHPZpaBuHgsgB8zPuMxG_nodztf0yybYDAZ3_eySmn9Mb4_mlfyPVIEGcpVZsv8g2XZSIMA9yBeuIGG4_pWMf4hfYOfprJR6X5TA8YtDpSLLm8rQZROIUgdmyXbRbOtmuwqsTFWpWpT3IoGWVmipbQOn7yRJb4Ec1BbCcjxu08J-3uwapb86mM0VYVM026I7-Cncue58PWNGWaqjKIVGUWwvvheWbvYgsI5XDVvU6J0OG2aqwkjMW_ZWVhoSFzxxU_e6T9M94uxyrFOqDexwf3H1ZXmwnqaWz_FRNeARWUU1w2kFJqQXZp2yswf819-S2XqxSFbTzeoEnWJwMvAQnV5NV58XrSYHa4jo7DT96ra8LYk_dXPfN2g6L-Vkb1vIKFNl9Rg9Mj6Gc6UB8wQNRPkUPWi59QxNWuA4LXAcCRzHAgfoTgccpwccxwLnOVrPpqvx3DXtNNyU-LR2o4hjkmc4IzT1Ih7KUpiYRbKBQSq95FgWD-TcZ4SklyL3YsJp7gmPRQHzZG-pMzQsd6V4gRwepZhkAaM5x1T4AY8E2OE5k8UZaRbFI_TB8iRJTa152fJkm6iYBxInEzxeKv5NRuhdO7bSFVaOjjq3rE3MF3hIcBgFssAjDUfobfsz8FIeerFS7Bo1xqdUGqIjdAYiaf-jk-DLP8_9Cj3sMH-OhvW-Ea_BEq35GwOY31OfiSw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+intrinsic+spin+coupling+in+transition+metal-doped+graphene&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Han&rft.au=Hu%2C+Xiuli&rft.au=Wei-Hai%2C+Fang&rft.au=Su%2C+Neil+Qiang&rft.date=2022-07-06&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=26&rft.spage=16300&rft.epage=16309&rft_id=info:doi/10.1039%2Fd2cp00906d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon