Revealing intrinsic spin coupling in transition metal-doped graphene
Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characte...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 26; pp. 163 - 1639 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
06.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.
Diverse spin couplings create attractive possibilities for novel applications of graphene materials. |
---|---|
AbstractList | Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.
Diverse spin couplings create attractive possibilities for novel applications of graphene materials. Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices.Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices. Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited applications in the design of sophisticated spintronic devices. This should be attributed to the lack of knowledge about the intrinsic characteristics of graphene materials, especially the diverse correlations between sites within the materials and their roles in spin-signal generation and propagation. This work comprehensively studies the spin couplings between transition metal atoms doped on graphene and reveals their potential application in spintronic device design through the realization of various logic gates. In addition, the effects of the distance between doped metal atoms and the number of carbon layers on the logic gate implementation further verify that the spin-coupling effect can exhibit a certain distance dependence and space propagation. The achievements in this work uncover the potential value of graphene materials and are expected to open up new avenues for exploring their application in the design of sophisticated spintronic devices. |
Author | Zhou, Han Fang, Wei-Hai Su, Neil Qiang Hu, Xiuli |
AuthorAffiliation | Department of Chemistry Ministry of Education Nankai University Beijing Normal University College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Theoretical and Computational Photochemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Theoretical and Computational Photochemistry – name: Department of Chemistry – name: Ministry of Education – name: Beijing Normal University – name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST) – name: College of Chemistry – name: Nankai University |
Author_xml | – sequence: 1 givenname: Han surname: Zhou fullname: Zhou, Han – sequence: 2 givenname: Xiuli surname: Hu fullname: Hu, Xiuli – sequence: 3 givenname: Wei-Hai surname: Fang fullname: Fang, Wei-Hai – sequence: 4 givenname: Neil Qiang surname: Su fullname: Su, Neil Qiang |
BookMark | eNptkc1Lw0AQxRepYFu9eBcCXkSIzu5svo7S-gUFRfQcNptN3ZLuxt2k4H9vYkuF4mmGmd97DG8mZGSsUYScU7ihgNltyWQDkEFcHpEx5TGGGaR8tO-T-IRMvF8BAI0ojsn8TW2UqLVZBtq0ThuvZeAbbQJpu2Y3D1on-kWrrQnWqhV1WNpGlcHSieZTGXVKjitRe3W2q1Py8XD_PnsKFy-Pz7O7RSiR8jZM04JhVbISuYS0iCFKkIk0AaQyi2LIKAAvCioQZaIqyLDgFSgQaSQAgeGUXG19G2e_OuXbfK29VHUtjLKdz1mcUs4ZZ3GPXh6gK9s50183UBEkGfKBut5S0lnvnaryxum1cN85hXwINJ-z2etvoPMehgNY6lYMofTx6Pp_ycVW4rzcW__9CH8AUV6CFA |
CitedBy_id | crossref_primary_10_1007_s11224_024_02318_0 crossref_primary_10_1021_acs_jpclett_3c02412 crossref_primary_10_1007_s10948_024_06707_8 crossref_primary_10_1016_j_mtcomm_2024_108698 crossref_primary_10_3390_molecules28030959 crossref_primary_10_1039_D4CP02749C crossref_primary_10_3390_nano13030598 crossref_primary_10_1002_qua_27197 crossref_primary_10_1021_acs_jpcc_3c01415 |
Cites_doi | 10.1002/jcc.20495 10.1126/sciadv.aba6586 10.1103/PhysRevLett.77.3865 10.1002/anie.201901575 10.1126/sciadv.aav5577 10.1021/nn901850u 10.1016/j.carbon.2014.10.033 10.1002/adma.201606748 10.1021/acsnano.1c02698 10.1021/jacs.0c08360 10.1021/jacs.9b13872 10.1016/j.carbon.2013.07.055 10.1126/science.aaw7505 10.1021/acs.nanolett.6b04698 10.1126/sciadv.abc6601 10.1002/advs.202001545 10.1038/ncomms10295 10.1039/D0TA11939C 10.1038/nmat4452 10.1007/s10948-017-4532-4 10.1038/s41928-020-0391-2 10.1002/adfm.201909035 10.1002/adma.201902532 10.1126/science.aad8038 10.1039/D0EE03575K 10.1002/adma.202101673 10.1039/D0TA00794C 10.1103/PhysRevApplied.16.024030 10.1103/PhysRevB.54.11169 10.1021/acscatal.0c02499 10.1002/adfm.201504201 10.1039/D0CS01138J 10.1038/ncomms15635 10.1038/s41928-018-0099-8 10.1016/j.nantod.2021.101338 10.1021/acsami.0c01206 10.1016/j.sna.2017.12.028 10.1021/jacs.1c00151 10.1002/anie.202008422 10.1103/PhysRevB.59.1758 10.1016/j.mtphys.2017.07.001 10.1021/jacs.9b07712 10.1038/nature25781 10.1126/sciadv.1700159 10.1002/adma.201904059 10.1021/acsnano.0c07835 10.1021/jacs.1c13344 10.1002/adma.201303265 10.1021/jacs.9b08862 10.1038/s41467-017-01035-z 10.1002/anie.202009191 10.1002/adfm.201901130 10.1002/adfm.202105359 10.1021/ja403583s 10.1002/anie.201902107 10.1021/jacs.9b06808 10.1016/j.cplett.2011.07.013 10.1126/sciadv.aax1085 10.1021/acsnano.0c02718 10.1126/science.1168049 10.1021/ja407135k 10.1021/jacs.8b07816 10.1002/smll.202006834 10.1021/acs.jpclett.0c03026 10.1039/D1TA01120K 10.1021/acsami.7b02864 10.1038/nature08876 10.1039/C6SC05080H 10.1103/PhysRevB.101.081414 10.1021/jacs.1c12705 10.1002/adma.201805355 10.1038/nchem.1095 10.1103/PhysRevB.50.17953 10.1021/acsenergylett.9b01015 10.1002/anie.201911256 10.1021/jp3021563 10.1126/sciadv.1500372 10.1021/acs.accounts.9b00643 10.1039/D0CS01541E 10.1021/jacs.0c07317 10.1126/sciadv.1601574 10.1016/j.carbon.2013.08.009 10.1016/j.pmatsci.2017.07.004 10.1016/j.jechem.2020.07.018 10.1021/jacs.9b05268 10.1021/jacs.9b08259 10.1021/jacs.1c03135 10.1002/aenm.202002893 10.1002/adma.202001629 10.1021/jacs.0c10636 10.1021/jacs.0c11008 10.1103/PhysRevB.57.1505 10.1038/nnano.2016.82 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cp00906d |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 1639 |
ExternalDocumentID | 10_1039_D2CP00906D d2cp00906d |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO H13 HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 53G 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP HZ~ R56 RAOCF 2WC 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-88b23fd2d34c08b605732a87031c956091004bb1a33c7ef093b4f0e0a85a03023 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu Jul 10 22:45:12 EDT 2025 Mon Jun 30 06:42:26 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Jul 01 00:54:14 EDT 2025 Thu Jul 07 05:55:36 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-88b23fd2d34c08b605732a87031c956091004bb1a33c7ef093b4f0e0a85a03023 |
Notes | https://doi.org/10.1039/d2cp00906d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1668-465X 0000-0001-7133-2502 |
PQID | 2685079346 |
PQPubID | 2047499 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2685079346 crossref_citationtrail_10_1039_D2CP00906D crossref_primary_10_1039_D2CP00906D rsc_primary_d2cp00906d proquest_miscellaneous_2681442426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-06 |
PublicationDateYYYYMMDD | 2022-07-06 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ju (D2CP00906D/cit85/1) 2017; 8 Niu (D2CP00906D/cit11/1) 2013; 135 Shibuta (D2CP00906D/cit70/1) 2011; 512 Dai (D2CP00906D/cit27/1) 2016; 2 Huang (D2CP00906D/cit2/1) 2021; 50 Guo (D2CP00906D/cit9/1) 2019; 31 Geng (D2CP00906D/cit58/1) 2016; 26 Hensleigh (D2CP00906D/cit7/1) 2020; 3 Liu (D2CP00906D/cit77/1) 2022; 144 Qu (D2CP00906D/cit73/1) 2010; 4 Kim (D2CP00906D/cit39/1) 2021; 143 Nguyen (D2CP00906D/cit26/1) 2021; 9 Li (D2CP00906D/cit69/1) 2017; 8 Tang (D2CP00906D/cit23/1) 2021; 143 Chen (D2CP00906D/cit14/1) 2015; 81 Wang (D2CP00906D/cit31/1) 2021; 16 Wang (D2CP00906D/cit60/1) 2020; 101 Liu (D2CP00906D/cit37/1) 2020; 142 Bertrand (D2CP00906D/cit48/1) 2016; 11 Zhang (D2CP00906D/cit83/1) 2019; 141 Wang (D2CP00906D/cit4/1) 2021; 11 Balandin (D2CP00906D/cit20/1) 2020; 14 Friedman (D2CP00906D/cit56/1) 2017; 8 Wang (D2CP00906D/cit79/1) 2020; 11 Lenz (D2CP00906D/cit50/1) 2021; 33 Czap (D2CP00906D/cit53/1) 2019; 364 Wang (D2CP00906D/cit41/1) 2019; 141 Liu (D2CP00906D/cit28/1) 2017; 3 Wang (D2CP00906D/cit19/1) 2017; 2 Sun (D2CP00906D/cit5/1) 2021; 14 Zhang (D2CP00906D/cit25/1) 2019; 5 Zhao (D2CP00906D/cit54/1) 2021; 31 Bao (D2CP00906D/cit71/1) 2017; 17 Houtsma (D2CP00906D/cit18/1) 2021; 50 Wang (D2CP00906D/cit61/1) 2018; 31 Lou (D2CP00906D/cit91/1) 2020; 30 Botas (D2CP00906D/cit15/1) 2013; 65 Huang (D2CP00906D/cit34/1) 2020; 30 Zhao (D2CP00906D/cit40/1) 2020; 142 Hossain (D2CP00906D/cit8/1) 2022; 42 Moorsom (D2CP00906D/cit49/1) 2020; 6 Perdew (D2CP00906D/cit63/1) 1996; 77 Chaikittisilp (D2CP00906D/cit3/1) 2021 Saraswat (D2CP00906D/cit32/1) 2021; 15 Grimme (D2CP00906D/cit66/1) 2006; 27 Li (D2CP00906D/cit75/1) 2020; 7 Rezapour (D2CP00906D/cit30/1) 2017; 9 Han (D2CP00906D/cit44/1) 2020; 12 Zhang (D2CP00906D/cit94/1) 2019; 58 Koplovitz (D2CP00906D/cit51/1) 2017; 29 Xie (D2CP00906D/cit93/1) 2022; 144 Nag (D2CP00906D/cit21/1) 2018; 270 Kresse (D2CP00906D/cit65/1) 1999; 59 Dudarev (D2CP00906D/cit67/1) 1998; 57 Guo (D2CP00906D/cit38/1) 2021; 143 Blöchl (D2CP00906D/cit64/1) 1994; 50 Johannsen (D2CP00906D/cit90/1) 2021; 15 Coronado (D2CP00906D/cit88/1) 2013; 135 Allain (D2CP00906D/cit33/1) 2015; 14 Wang (D2CP00906D/cit1/1) 2020; 32 Kumar (D2CP00906D/cit59/1) 2021; 60 Qiao (D2CP00906D/cit35/1) 2011; 3 Ali (D2CP00906D/cit86/1) 2012; 116 Hu (D2CP00906D/cit24/1) 2020; 142 Wang (D2CP00906D/cit57/1) 2019; 31 Wu (D2CP00906D/cit22/1) 2020; 142 Zhao (D2CP00906D/cit29/1) 2015; 1 Li (D2CP00906D/cit43/1) 2018; 140 Berdiell (D2CP00906D/cit89/1) 2019; 141 Xiong (D2CP00906D/cit45/1) 2021; 17 Lee (D2CP00906D/cit6/1) 2020; 32 Ren (D2CP00906D/cit78/1) 2019; 58 Bai (D2CP00906D/cit76/1) 2019; 141 Yang (D2CP00906D/cit46/1) 2020; 6 Liu (D2CP00906D/cit36/1) 2020; 142 Gong (D2CP00906D/cit72/1) 2009; 323 Jin (D2CP00906D/cit42/1) 2020; 59 Niu (D2CP00906D/cit68/1) 2020; 8 Pan (D2CP00906D/cit80/1) 2020; 10 Maiti (D2CP00906D/cit10/1) 2014; 26 Lin (D2CP00906D/cit82/1) 2020; 59 Wang (D2CP00906D/cit87/1) 2016; 7 Li (D2CP00906D/cit81/1) 2021; 9 Qin (D2CP00906D/cit84/1) 2019; 4 Moon (D2CP00906D/cit13/1) 2020; 6 Huang (D2CP00906D/cit12/1) 2020; 53 Glenn (D2CP00906D/cit52/1) 2018; 555 Gonzalez-Herrero (D2CP00906D/cit92/1) 2016; 352 Papageorgiou (D2CP00906D/cit17/1) 2017; 90 Baek (D2CP00906D/cit55/1) 2018; 1 Kajiwara (D2CP00906D/cit47/1) 2010; 464 Kresse (D2CP00906D/cit62/1) 1996; 54 Chen (D2CP00906D/cit16/1) 2013; 64 Xue (D2CP00906D/cit74/1) 2021; 55 |
References_xml | – volume: 27 start-page: 1787 year: 2006 ident: D2CP00906D/cit66/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 6 start-page: eaba6586 year: 2020 ident: D2CP00906D/cit46/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba6586 – volume: 77 start-page: 3865 year: 1996 ident: D2CP00906D/cit63/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 58 start-page: 6972 year: 2019 ident: D2CP00906D/cit78/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901575 – volume: 5 start-page: aav5577 year: 2019 ident: D2CP00906D/cit25/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5577 – volume: 4 start-page: 1321 year: 2010 ident: D2CP00906D/cit73/1 publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 81 start-page: 826 year: 2015 ident: D2CP00906D/cit14/1 publication-title: Carbon doi: 10.1016/j.carbon.2014.10.033 – volume: 29 start-page: 1606748 year: 2017 ident: D2CP00906D/cit51/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606748 – volume: 15 start-page: 11770 year: 2021 ident: D2CP00906D/cit90/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c02698 – volume: 142 start-page: 19602 year: 2020 ident: D2CP00906D/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08360 – volume: 142 start-page: 5773 year: 2020 ident: D2CP00906D/cit40/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13872 – volume: 64 start-page: 225 year: 2013 ident: D2CP00906D/cit16/1 publication-title: Carbon doi: 10.1016/j.carbon.2013.07.055 – volume: 364 start-page: 670 year: 2019 ident: D2CP00906D/cit53/1 publication-title: Science doi: 10.1126/science.aaw7505 – volume: 17 start-page: 1564 year: 2017 ident: D2CP00906D/cit71/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04698 – volume: 6 start-page: abc6601 year: 2020 ident: D2CP00906D/cit13/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc6601 – volume: 7 start-page: 2001545 year: 2020 ident: D2CP00906D/cit75/1 publication-title: Adv. Sci. doi: 10.1002/advs.202001545 – volume: 7 start-page: 10295 year: 2016 ident: D2CP00906D/cit87/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10295 – volume: 9 start-page: 7366 year: 2021 ident: D2CP00906D/cit26/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11939C – volume: 14 start-page: 1195 year: 2015 ident: D2CP00906D/cit33/1 publication-title: Nat. Mater. doi: 10.1038/nmat4452 – volume: 31 start-page: 2789 year: 2018 ident: D2CP00906D/cit61/1 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-017-4532-4 – volume: 3 start-page: 216 year: 2020 ident: D2CP00906D/cit7/1 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0391-2 – volume: 30 start-page: 1909035 year: 2020 ident: D2CP00906D/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909035 – volume: 32 start-page: 1902532 year: 2020 ident: D2CP00906D/cit6/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902532 – volume: 352 start-page: 437 year: 2016 ident: D2CP00906D/cit92/1 publication-title: Science doi: 10.1126/science.aad8038 – volume: 14 start-page: 1247 year: 2021 ident: D2CP00906D/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03575K – volume: 33 start-page: 2101673 year: 2021 ident: D2CP00906D/cit50/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101673 – volume: 8 start-page: 6555 year: 2020 ident: D2CP00906D/cit68/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00794C – volume: 16 start-page: 024030 year: 2021 ident: D2CP00906D/cit31/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.024030 – volume: 54 start-page: 11169 year: 1996 ident: D2CP00906D/cit62/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 10803 year: 2020 ident: D2CP00906D/cit80/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02499 – volume: 26 start-page: 3999 year: 2016 ident: D2CP00906D/cit58/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504201 – volume: 50 start-page: 11381 year: 2021 ident: D2CP00906D/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01138J – volume: 8 start-page: 15635 year: 2017 ident: D2CP00906D/cit56/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15635 – volume: 1 start-page: 398 year: 2018 ident: D2CP00906D/cit55/1 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0099-8 – volume: 42 start-page: 101338 year: 2022 ident: D2CP00906D/cit8/1 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101338 – volume: 12 start-page: 15271 year: 2020 ident: D2CP00906D/cit44/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01206 – volume: 270 start-page: 177 year: 2018 ident: D2CP00906D/cit21/1 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2017.12.028 – volume: 143 start-page: 6877 year: 2021 ident: D2CP00906D/cit38/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00151 – volume: 59 start-page: 21885 year: 2020 ident: D2CP00906D/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008422 – volume: 59 start-page: 1758 year: 1999 ident: D2CP00906D/cit65/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 2 start-page: 6 year: 2017 ident: D2CP00906D/cit19/1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2017.07.001 – volume: 141 start-page: 14115 year: 2019 ident: D2CP00906D/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07712 – volume: 555 start-page: 351 year: 2018 ident: D2CP00906D/cit52/1 publication-title: Nature doi: 10.1038/nature25781 – volume: 3 start-page: 1700159 year: 2017 ident: D2CP00906D/cit28/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700159 – volume: 31 start-page: 1904059 year: 2019 ident: D2CP00906D/cit57/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904059 – volume: 15 start-page: 3674 year: 2021 ident: D2CP00906D/cit32/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c07835 – volume: 144 start-page: 5023 year: 2022 ident: D2CP00906D/cit93/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c13344 – volume: 26 start-page: 40 year: 2014 ident: D2CP00906D/cit10/1 publication-title: Adv. Mater. doi: 10.1002/adma.201303265 – volume: 141 start-page: 18759 year: 2019 ident: D2CP00906D/cit89/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08862 – volume: 8 start-page: 944 year: 2017 ident: D2CP00906D/cit85/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01035-z – volume: 59 start-page: 22408 year: 2020 ident: D2CP00906D/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009191 – volume: 30 start-page: 1901130 year: 2020 ident: D2CP00906D/cit91/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901130 – volume: 31 start-page: 2105359 year: 2021 ident: D2CP00906D/cit54/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105359 – volume: 135 start-page: 8409 year: 2013 ident: D2CP00906D/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403583s – volume: 58 start-page: 9404 year: 2019 ident: D2CP00906D/cit94/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902107 – volume: 142 start-page: 3375 year: 2020 ident: D2CP00906D/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06808 – volume: 512 start-page: 146 year: 2011 ident: D2CP00906D/cit70/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.07.013 – volume: 6 start-page: aax1085 year: 2020 ident: D2CP00906D/cit49/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1085 – volume: 14 start-page: 5170 year: 2020 ident: D2CP00906D/cit20/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c02718 – volume: 323 start-page: 760 year: 2009 ident: D2CP00906D/cit72/1 publication-title: Science doi: 10.1126/science.1168049 – volume: 135 start-page: 15986 year: 2013 ident: D2CP00906D/cit88/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407135k – volume: 140 start-page: 15149 year: 2018 ident: D2CP00906D/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07816 – volume: 17 start-page: 2006834 year: 2021 ident: D2CP00906D/cit45/1 publication-title: Small doi: 10.1002/smll.202006834 – volume: 11 start-page: 9819 issue: 22 year: 2020 ident: D2CP00906D/cit79/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03026 – volume: 9 start-page: 8761 year: 2021 ident: D2CP00906D/cit81/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01120K – volume: 9 start-page: 24393 year: 2017 ident: D2CP00906D/cit30/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02864 – volume: 464 start-page: 262 year: 2010 ident: D2CP00906D/cit47/1 publication-title: Nature doi: 10.1038/nature08876 – volume: 8 start-page: 2859 year: 2017 ident: D2CP00906D/cit69/1 publication-title: Chem. Sci. doi: 10.1039/C6SC05080H – volume: 101 start-page: 081414 year: 2020 ident: D2CP00906D/cit60/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.101.081414 – volume: 144 start-page: 4913 year: 2022 ident: D2CP00906D/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c12705 – volume: 31 start-page: 1805355 year: 2019 ident: D2CP00906D/cit9/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805355 – volume: 3 start-page: 634 year: 2011 ident: D2CP00906D/cit35/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 50 start-page: 17953 year: 1994 ident: D2CP00906D/cit64/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 4 start-page: 1778 year: 2019 ident: D2CP00906D/cit84/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01015 – volume: 60 start-page: 7502 year: 2021 ident: D2CP00906D/cit59/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911256 – volume: 116 start-page: 5849 year: 2012 ident: D2CP00906D/cit86/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp3021563 – volume: 1 start-page: 1500372 year: 2015 ident: D2CP00906D/cit29/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500372 – volume: 53 start-page: 800 year: 2020 ident: D2CP00906D/cit12/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00643 – volume: 50 start-page: 6541 year: 2021 ident: D2CP00906D/cit18/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01541E – volume: 142 start-page: 16776 year: 2020 ident: D2CP00906D/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07317 – volume: 2 start-page: e1601574 year: 2016 ident: D2CP00906D/cit27/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601574 – volume: 65 start-page: 156 year: 2013 ident: D2CP00906D/cit15/1 publication-title: Carbon doi: 10.1016/j.carbon.2013.08.009 – volume: 90 start-page: 75 year: 2017 ident: D2CP00906D/cit17/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.07.004 – volume: 55 start-page: 437 year: 2021 ident: D2CP00906D/cit74/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.018 – start-page: 2107212 year: 2021 ident: D2CP00906D/cit3/1 publication-title: Adv. Mater. – volume: 141 start-page: 14190 year: 2019 ident: D2CP00906D/cit76/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05268 – volume: 141 start-page: 16569 year: 2019 ident: D2CP00906D/cit83/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 143 start-page: 7819 year: 2021 ident: D2CP00906D/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03135 – volume: 11 start-page: 2002893 year: 2021 ident: D2CP00906D/cit4/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002893 – volume: 32 start-page: 2001629 year: 2020 ident: D2CP00906D/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.202001629 – volume: 142 start-page: 21861 year: 2020 ident: D2CP00906D/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10636 – volume: 143 start-page: 925 year: 2021 ident: D2CP00906D/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11008 – volume: 57 start-page: 1505 year: 1998 ident: D2CP00906D/cit67/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.1505 – volume: 11 start-page: 672 year: 2016 ident: D2CP00906D/cit48/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.82 |
SSID | ssj0001513 |
Score | 2.4466922 |
Snippet | Graphene materials offer attractive possibilities in spintronics due to their unique atomic and electronic structures, which is in contrast to their limited... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Atomic properties Couplings Graphene Logic circuits Propagation Signal generation Spintronics Transition metals |
Title | Revealing intrinsic spin coupling in transition metal-doped graphene |
URI | https://www.proquest.com/docview/2685079346 https://www.proquest.com/docview/2681442426 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF96vQd9Eb8Oq6dE9EWOaLK7ySWPRz-oUs8qLRRfwm6y4QIlDW3iw3F_vLNfSQ6KqC8hmS7bMPPLzszufCD0PkoDeV7luTinBByUzHPZpaBuHgsgB8zPuMxG_nodztf0yybYDAZ3_eySmn9Mb4_mlfyPVIEGcpVZsv8g2XZSIMA9yBeuIGG4_pWMf4hfYOfprJR6X5TA8YtDpSLLm8rQZROIUgdmyXbRbOtmuwqsTFWpWpT3IoGWVmipbQOn7yRJb4Ec1BbCcjxu08J-3uwapb86mM0VYVM026I7-Cncue58PWNGWaqjKIVGUWwvvheWbvYgsI5XDVvU6J0OG2aqwkjMW_ZWVhoSFzxxU_e6T9M94uxyrFOqDexwf3H1ZXmwnqaWz_FRNeARWUU1w2kFJqQXZp2yswf819-S2XqxSFbTzeoEnWJwMvAQnV5NV58XrSYHa4jo7DT96ra8LYk_dXPfN2g6L-Vkb1vIKFNl9Rg9Mj6Gc6UB8wQNRPkUPWi59QxNWuA4LXAcCRzHAgfoTgccpwccxwLnOVrPpqvx3DXtNNyU-LR2o4hjkmc4IzT1Ih7KUpiYRbKBQSq95FgWD-TcZ4SklyL3YsJp7gmPRQHzZG-pMzQsd6V4gRwepZhkAaM5x1T4AY8E2OE5k8UZaRbFI_TB8iRJTa152fJkm6iYBxInEzxeKv5NRuhdO7bSFVaOjjq3rE3MF3hIcBgFssAjDUfobfsz8FIeerFS7Bo1xqdUGqIjdAYiaf-jk-DLP8_9Cj3sMH-OhvW-Ea_BEq35GwOY31OfiSw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+intrinsic+spin+coupling+in+transition+metal-doped+graphene&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Han&rft.au=Hu%2C+Xiuli&rft.au=Wei-Hai%2C+Fang&rft.au=Su%2C+Neil+Qiang&rft.date=2022-07-06&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=26&rft.spage=16300&rft.epage=16309&rft_id=info:doi/10.1039%2Fd2cp00906d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |