Automated API Property Inference Techniques

Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on software engineering Vol. 39; no. 5; pp. 613 - 637
Main Authors Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2013
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information.
AbstractList Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information. [PUBLICATION ABSTRACT]
Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information.
Author Mezini, M.
Robillard, M. P.
Ratchford, T.
Kawrykow, D.
Bodden, E.
Author_xml – sequence: 1
  givenname: M. P.
  surname: Robillard
  fullname: Robillard, M. P.
  email: martin@cs.mcgill.ca
  organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada
– sequence: 2
  givenname: E.
  surname: Bodden
  fullname: Bodden, E.
  email: bodden@ec-spride.de
  organization: Secure Software Eng. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 3
  givenname: D.
  surname: Kawrykow
  fullname: Kawrykow, D.
  email: dkawry@cs.mcgill.ca
  organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada
– sequence: 4
  givenname: M.
  surname: Mezini
  fullname: Mezini, M.
  email: mezini@informatik.tu-darmstadt.de
  organization: Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 5
  givenname: T.
  surname: Ratchford
  fullname: Ratchford, T.
  email: tratch@us.ibm.com
  organization: IBM Res., Cambridge, MA, USA
BookMark eNp10M9LwzAUB_AgCm7Tk0cvBS_C6HxJmqQ5jjF1MHBg7yVNX7Cja2baHvbf2zLxMPD04PF5P_hOyXXjGyTkgcKCUtAv2ed6wYCyheRXZEI11zEXDK7JBECnsRCpviXTtt0DgFBKTMh82Xf-YDoso-VuE-2CP2LoTtGmcRiwsRhlaL-a6rvH9o7cOFO3eP9bZyR7XWer93j78bZZLbex5TTp4lQmsuTGGCipkCKx6JgteFGyAlOnUwWlQiMoGBjaNkmccsapQpWgwXE-I8_ntcfgx7Ndfqhai3VtGvR9m1MuBZUghR7o0wXd-z40w3OjkpAwxdig6FnZ4Ns2oMtt1Zmu8k0XTFXnFPIxvXxILx_Ty-X4xPxi5hiqgwmnf_TjWVeI-CclpzQBzX8AqhV5Vg
CODEN IESEDJ
CitedBy_id crossref_primary_10_1016_j_jss_2016_06_101
crossref_primary_10_7717_peerj_cs_12
crossref_primary_10_1145_2744200
crossref_primary_10_1016_j_jss_2016_06_063
crossref_primary_10_1109_TSE_2021_3087087
crossref_primary_10_1016_j_eswa_2022_119477
crossref_primary_10_1109_MS_2019_2919840
crossref_primary_10_1007_s10664_022_10244_0
crossref_primary_10_1007_s10515_021_00294_x
crossref_primary_10_1007_s42514_021_00079_4
crossref_primary_10_1109_TSE_2014_2347969
crossref_primary_10_1109_TSE_2019_2948910
crossref_primary_10_1109_TSE_2021_3069978
crossref_primary_10_1016_j_cosrev_2019_05_001
crossref_primary_10_1109_TSE_2021_3093246
crossref_primary_10_1109_ACCESS_2019_2940290
crossref_primary_10_1145_3470133
crossref_primary_10_1109_TSE_2015_2461542
crossref_primary_10_1016_j_cosrev_2025_100732
crossref_primary_10_4018_IJEIS_2019070105
crossref_primary_10_1109_TSC_2015_2466544
crossref_primary_10_1016_j_infsof_2018_10_010
crossref_primary_10_1109_TSE_2019_2919304
crossref_primary_10_1145_3597206
crossref_primary_10_1145_3444945
crossref_primary_10_1109_TSE_2018_2872971
crossref_primary_10_1145_2652483
crossref_primary_10_1016_j_infsof_2019_106213
crossref_primary_10_1007_s11432_019_2745_5
crossref_primary_10_1145_2693208_2693220
crossref_primary_10_1016_j_jss_2016_12_036
crossref_primary_10_1016_j_jss_2021_111048
crossref_primary_10_1016_j_jss_2018_04_034
crossref_primary_10_1002_smr_1845
crossref_primary_10_1109_TSE_2021_3059907
crossref_primary_10_1109_TETC_2017_2787192
crossref_primary_10_1109_TSE_2023_3301660
crossref_primary_10_1007_s10664_023_10318_7
crossref_primary_10_1016_j_jss_2017_05_039
crossref_primary_10_1016_j_jss_2024_111974
crossref_primary_10_1016_j_cola_2019_100927
crossref_primary_10_1007_s10664_014_9343_7
crossref_primary_10_1145_2990497
crossref_primary_10_1109_TSE_2022_3197063
crossref_primary_10_1007_s10664_023_10392_x
crossref_primary_10_1007_s10664_021_09963_7
crossref_primary_10_1109_TSE_2018_2827384
crossref_primary_10_1109_TSE_2020_2996975
crossref_primary_10_1007_s10270_020_00809_2
crossref_primary_10_1109_TSE_2017_2782280
crossref_primary_10_1145_2629506
crossref_primary_10_1007_s11432_019_2720_1
crossref_primary_10_1016_j_cl_2018_07_006
crossref_primary_10_1145_3643742
Cites_doi 10.1080/08839510701853200
10.1145/1065010.1065018
10.1145/1321631.1321663
10.1007/BF00260922
10.1145/1368088.1368157
10.1007/s10515-007-0007-3
10.1145/940071.940101
10.1109/WCRE.2007.24
10.1145/1806799.1806831
10.1007/11901433_39
10.1109/ASE.2009.94
10.1145/2220365.2220366
10.1109/VLHCC.2009.5295283
10.1145/566172.566212
10.1145/1595696.1595767
10.1145/13487689.13487691
10.1109/ASE.2006.63
10.1109/TSE.2006.117
10.1109/WCRE.2009.42
10.1145/1081706.1081755
10.1007/3-540-45657-0_29
10.1145/1831708.1831723
10.1145/1595696.1595727
10.1145/1831708.1831719
10.1016/S0304-3975(96)00191-0
10.1002/smr.375
10.1145/1134285.1134325
10.1109/TSE.2007.70705
10.1109/ICDE.2004.1319986
10.1145/1081706.1081754
10.1109/ICSE.2007.20
10.1145/503272.503275
10.1109/2.161279
10.1109/APSEC.2008.54
10.1145/1869459.1869486
10.1145/1134285.1134424
10.1145/1449764.1449792
10.1145/360248.360252
10.1145/1181775.1181808
10.1109/ISSRE.2006.29
10.1145/502034.502041
10.1145/1806799.1806848
10.1109/ASE.2009.30
10.1145/1595696.1595728
10.1109/ICSM.2005.78
10.1109/WCRE.2007.45
10.1007/978-3-540-45070-2_19
10.1109/ASE.2009.72
10.1145/1287624.1287632
10.1145/302405.302467
10.1145/1368088.1368096
10.1145/1368088.1368154
10.1145/1595808.1595821
10.1109/MS.2009.161
10.1109/ASE.2008.43
10.1145/1453101.1453150
10.1109/MSR.2007.3
10.1145/1040305.1040314
10.1145/1328279.1328294
10.1109/ICSE.2009.5070548
10.1145/800135.804422
10.1145/1287624.1287629
10.1109/TC.1972.5009015
10.1145/2000799.2000805
10.1145/1639950.1640008
10.1145/1806799.1806806
10.1109/WCRE.2006.47
10.1145/1985793.1985874
10.1109/ISSRE.2004.11
10.1109/ICSM.2010.5609576
10.1145/1368088.1368107
10.1145/1138912.1138918
10.1145/512950.512973
10.1016/0890-5401(87)90052-6
10.1007/s10664-010-9150-8
10.1145/1081706.1081711
10.1007/3-540-44829-2_17
10.1145/337180.337200
10.1109/ASE.2008.35
10.1145/324133.324140
10.1007/3-540-45251-6_29
10.1145/1273463.1273487
10.1007/978-3-540-31980-1_30
10.1016/s0167-739x(97)00019-8
10.1109/TSE.2005.28
10.1145/302405.302672
10.1145/1250734.1250749
10.1007/11785477_24
10.1109/ASE.1999.802089
10.1002/smr.328
10.1145/996821.996832
10.1145/1390630.1390664
10.1109/ICSE.2009.5070542
10.1109/TSE.2007.70747
10.1145/1368088.1368153
10.1007/978-3-642-00593-0_25
10.1007/978-3-642-14107-2_2
10.1007/978-3-642-03013-0_15
10.1145/1287624.1287630
10.1109/ASE.2009.60
10.1145/1188835.1188847
10.1109/ICSE.2007.63
ContentType Journal Article
Copyright Copyright IEEE Computer Society May 2013
Copyright_xml – notice: Copyright IEEE Computer Society May 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
7SC
7SP
8FD
F28
FR3
L7M
L~C
L~D
DOI 10.1109/TSE.2012.63
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 637
ExternalDocumentID 2991900451
10_1109_TSE_2012_63
6311409
Genre orig-research
Feature
GroupedDBID --Z
-DZ
-~X
.4S
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
7WY
7X7
85S
88E
88I
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABJCF
ABPPZ
ABQJQ
ABUWG
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
ADBBV
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ASUFR
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BKOMP
BPEOZ
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
E.L
EBS
EDO
EJD
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HMCUK
HZ~
H~9
I-F
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M1P
M1Q
M2O
M2P
M43
M7S
MS~
O9-
OCL
OHT
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RXW
RZB
S10
TAE
TN5
TWZ
UHB
UKHRP
UPT
UQL
VH1
WH7
XOL
YYP
YZZ
ZCG
AAYOK
AAYXX
ALIPV
CITATION
RIG
JQ2
K9.
7SC
7SP
8FD
F28
FR3
L7M
L~C
L~D
ID FETCH-LOGICAL-c314t-8646d3aaa0d15654cef2cb3bd2be8f9870d7ea510a0cb3c44f7faf7b7d090f33
IEDL.DBID RIE
ISSN 0098-5589
IngestDate Fri Jul 11 11:17:41 EDT 2025
Mon Jun 30 09:06:22 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Tue Jul 01 05:17:24 EDT 2025
Wed Aug 27 02:47:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-8646d3aaa0d15654cef2cb3bd2be8f9870d7ea510a0cb3c44f7faf7b7d090f33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1366042722
PQPubID 21418
PageCount 25
ParticipantIDs proquest_journals_1366042722
proquest_miscellaneous_1365160659
ieee_primary_6311409
crossref_citationtrail_10_1109_TSE_2012_63
crossref_primary_10_1109_TSE_2012_63
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Kagdi (ref37)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Agrawal (ref17)
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Grahne (ref19)
ref100
ref101
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Leino (ref86)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Webb (ref18)
ref28
ref27
ref29
Vallée-Rai (ref71)
ref13
ref12
Raman (ref67)
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref16
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref70
ref73
ref72
ref68
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref73
  doi: 10.1080/08839510701853200
– ident: ref25
  doi: 10.1145/1065010.1065018
– ident: ref42
  doi: 10.1145/1321631.1321663
– ident: ref84
  doi: 10.1007/BF00260922
– ident: ref47
  doi: 10.1145/1368088.1368157
– ident: ref93
  doi: 10.1007/s10515-007-0007-3
– ident: ref107
  doi: 10.1145/940071.940101
– start-page: 487
  volume-title: Proc. 20th Int’l Conf. Very Large Data Bases
  ident: ref17
  article-title: Fast Algorithms for Mining Association Rules in Large Databases
– ident: ref38
  doi: 10.1109/WCRE.2007.24
– ident: ref97
  doi: 10.1145/1806799.1806831
– ident: ref80
  doi: 10.1007/11901433_39
– ident: ref59
  doi: 10.1109/ASE.2009.94
– ident: ref63
  doi: 10.1145/2220365.2220366
– ident: ref101
  doi: 10.1109/VLHCC.2009.5295283
– ident: ref21
  doi: 10.1145/566172.566212
– volume-title: Proc. Conf. Centre for Advanced Studies on Collaborative Research
  ident: ref71
  article-title: Soot—A Java Bytecode Optimization Framework
– volume-title: Proc. Workshop Frequent Item Set Mining Implementations
  ident: ref19
  article-title: Efficiently Using Prefix-Trees in Mining Frequent Item Sets
– ident: ref53
  doi: 10.1145/1595696.1595767
– ident: ref109
  doi: 10.1145/13487689.13487691
– ident: ref32
  doi: 10.1109/ASE.2006.63
– ident: ref4
  doi: 10.1109/TSE.2006.117
– ident: ref52
  doi: 10.1109/WCRE.2009.42
– ident: ref10
  doi: 10.1145/1081706.1081755
– ident: ref72
  doi: 10.1007/3-540-45657-0_29
– ident: ref61
  doi: 10.1145/1831708.1831723
– ident: ref104
  doi: 10.1145/1595696.1595727
– ident: ref74
  doi: 10.1145/1831708.1831719
– ident: ref6
  doi: 10.1016/S0304-3975(96)00191-0
– ident: ref48
  doi: 10.1002/smr.375
– ident: ref35
  doi: 10.1145/1134285.1134325
– ident: ref83
  doi: 10.1109/TSE.2007.70705
– ident: ref66
  doi: 10.1109/ICDE.2004.1319986
– ident: ref11
  doi: 10.1145/1081706.1081754
– ident: ref89
  doi: 10.1109/ICSE.2007.20
– ident: ref20
  doi: 10.1145/503272.503275
– ident: ref78
  doi: 10.1109/2.161279
– ident: ref50
  doi: 10.1109/APSEC.2008.54
– ident: ref98
  doi: 10.1145/1869459.1869486
– ident: ref31
  doi: 10.1145/1134285.1134424
– ident: ref62
  doi: 10.1145/1449764.1449792
– ident: ref87
  doi: 10.1145/360248.360252
– ident: ref34
  doi: 10.1145/1181775.1181808
– ident: ref29
  doi: 10.1109/ISSRE.2006.29
– ident: ref2
  doi: 10.1145/502034.502041
– ident: ref96
  doi: 10.1145/1806799.1806848
– ident: ref58
  doi: 10.1109/ASE.2009.30
– ident: ref13
  doi: 10.1145/1595696.1595728
– ident: ref26
  doi: 10.1109/ICSM.2005.78
– ident: ref44
  doi: 10.1109/WCRE.2007.45
– ident: ref82
  doi: 10.1007/978-3-540-45070-2_19
– ident: ref57
  doi: 10.1109/ASE.2009.72
– volume-title: Proc. 14th Int’l Conf. Machine Learning Workshop Automata Induction, Grammatical Inference and Language Acquisition
  ident: ref67
  article-title: The sk-Strings Method for Inferring PFSA
– volume-title: Knowledge Discovery and Data Mining
  ident: ref18
  article-title: Beyond Association Rules: Generalized Rule Discovery
– ident: ref43
  doi: 10.1145/1287624.1287632
– ident: ref3
  doi: 10.1145/302405.302467
– ident: ref51
  doi: 10.1145/1368088.1368096
– ident: ref95
  doi: 10.1145/1368088.1368154
– ident: ref103
  doi: 10.1145/1595808.1595821
– ident: ref15
  doi: 10.1109/MS.2009.161
– ident: ref100
  doi: 10.1109/ASE.2008.43
– ident: ref46
  doi: 10.1145/1453101.1453150
– ident: ref65
  doi: 10.1109/MSR.2007.3
– ident: ref24
  doi: 10.1145/1040305.1040314
– ident: ref102
  doi: 10.1145/1328279.1328294
– ident: ref56
  doi: 10.1109/ICSE.2009.5070548
– ident: ref69
  doi: 10.1145/800135.804422
– ident: ref105
  doi: 10.1145/1287624.1287629
– ident: ref77
  doi: 10.1109/TC.1972.5009015
– ident: ref90
  doi: 10.1145/2000799.2000805
– ident: ref55
  doi: 10.1145/1639950.1640008
– ident: ref60
  doi: 10.1145/1806799.1806806
– ident: ref75
  doi: 10.1109/WCRE.2006.47
– ident: ref64
  doi: 10.1145/1985793.1985874
– ident: ref22
  doi: 10.1109/ISSRE.2004.11
– ident: ref76
  doi: 10.1109/ICSM.2010.5609576
– ident: ref49
  doi: 10.1145/1368088.1368107
– ident: ref30
  doi: 10.1145/1138912.1138918
– ident: ref68
  doi: 10.1145/512950.512973
– ident: ref70
  doi: 10.1016/0890-5401(87)90052-6
– start-page: 110
  volume-title: Proc. 13th European Conf. Object-Oriented Programming
  ident: ref86
  article-title: Checking Java Programs via Guarded Commands
– ident: ref1
  doi: 10.1007/s10664-010-9150-8
– ident: ref108
  doi: 10.1145/1081706.1081711
– ident: ref33
  doi: 10.1007/3-540-44829-2_17
– ident: ref9
  doi: 10.1145/337180.337200
– ident: ref45
  doi: 10.1109/ASE.2008.35
– ident: ref106
  doi: 10.1145/324133.324140
– start-page: 457
  volume-title: Proc. 22nd IEEE/ACM Int’l Conf. Automated Software Eng.
  ident: ref37
  article-title: An Approach to Mining Call-Usage Patterns with Syntactic Context
– ident: ref79
  doi: 10.1007/3-540-45251-6_29
– ident: ref41
  doi: 10.1145/1273463.1273487
– ident: ref27
  doi: 10.1007/978-3-540-31980-1_30
– ident: ref16
  doi: 10.1016/s0167-739x(97)00019-8
– ident: ref88
  doi: 10.1109/TSE.2005.28
– ident: ref7
  doi: 10.1145/302405.302672
– ident: ref39
  doi: 10.1145/1250734.1250749
– ident: ref91
  doi: 10.1007/11785477_24
– ident: ref8
  doi: 10.1109/ASE.1999.802089
– ident: ref99
  doi: 10.1002/smr.328
– ident: ref23
  doi: 10.1145/996821.996832
– ident: ref81
  doi: 10.1145/1390630.1390664
– ident: ref85
  doi: 10.1109/ICSE.2009.5070542
– ident: ref92
  doi: 10.1109/TSE.2007.70747
– ident: ref94
  doi: 10.1145/1368088.1368153
– ident: ref28
  doi: 10.1007/978-3-642-00593-0_25
– ident: ref14
  doi: 10.1007/978-3-642-14107-2_2
– ident: ref5
  doi: 10.1007/978-3-642-03013-0_15
– ident: ref36
  doi: 10.1145/1287624.1287630
– ident: ref54
  doi: 10.1109/ASE.2009.60
– ident: ref12
  doi: 10.1145/1188835.1188847
– ident: ref40
  doi: 10.1109/ICSE.2007.63
SSID ssj0005775
ssib053395008
Score 2.49612
Snippet Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms API
API evolution
API property
API usage pattern
Application programming interface
Association rules
Automated
Automation
Categories
Context
Data mining
Inference
interface
Itemsets
Organizations
pattern mining
Programming
programming rules
Protocols
Reusable
Software engineering
specifications
Statistical inference
Studies
Use statistics
Title Automated API Property Inference Techniques
URI https://ieeexplore.ieee.org/document/6311409
https://www.proquest.com/docview/1366042722
https://www.proquest.com/docview/1365160659
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJy-iohFFUxNOaku3u91tj8RAwARDIibcmu0-LppioD3or3e3tBiVg7cmnTSbmZ3O-xuAvsaSM8SVi5AkLlGx73JfMJdrYeyl5sZTsqmB2ROdvJDHZbhswP1uFkYpVTafKc8-lrV8uRKFTZUNKEYWn6kJTRO4bWe1vts5GAtrfMwwjOJqFg_58WDxPLI9XIFH8Q_rU65T-fMPLg3LuA2z-kjbfpJXr8hTT3z-Qmv875mP4LDyMJ3h9kocQ0NlJ9Cutzc4lTJ34G5Y5CvjryrpDOdTZ26z8uv8w5nWI4DOosZ33ZzCYjxaPEzcanWCKzAiuRtRQiXmnPvSBGghEUoHIsWpDFIV6dgoqWSKG300gkmxIEQbuWiWMunHvsb4DFrZKlPn4BCCiTZhDRLGEYiY4JE2Lm4qcSgNr33Uhduao4moYMXtdou3pAwv_Dgx7E8s-xOKu9DfEb9v0TT2k3UsI3ckFQ-70KtFlVSatkkQptTuCwmCLtzsXhsdsYUPnqlVUdKEiNoK8sX-L1_CQVCuubCNjD1o5etCXRlnI0-vy1v2Bb5N0Pc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9tAEB5CemgvTds01EnaqpBeWuTsSyvp0IPJA7uxjaEK5Las9nFJsEMsEZK_kr_SH9dZWXJpm2ugN4GGZdlvmP1m5wVw4LnVKdUuptSKWLicxJqYNNbe4H3pNTKl8DQwmcrhufh-kVxswMO6FsY51ySfuX74bGL5dmHq8FR2KDkN_ZnaFMozd3eLDtry2-gY0fzM2OlJcTSM2xkCseFUVHEmhbRca00seiqJMM4zU_LSstJlHh1uYlOnUTFxhyU3QnjcoE_L1JKc-PDaifb9GdKMhK2Kw37nj6Rp0jXkTJIsb4v_KMkPix8nIWmM9SX_47pr5rf8Y_Sbm-x0C352Z7BKYLns11XZN_d_tYf8Tw_pFbxsGXQ0WKn8a9hw8zew1U2niFpjtQ1fB3W1QD7ubDSYjaJZiDrcVHfRqCtxjIquf-3yLRRPseMd2Jwv5u4dREJw4dFtowaJTpYanXmk8KXliUVoCe3Blw5AZdq26WF6x5Vq3CeSK0RbBbSV5D04WAtfr7qFPC62HXBbi7SQ9WC_0wzVWpKlolzKMA-FsR58Wv9GGxACO3ruFnUjk1AZIuS7j6_8EZ4Pi8lYjUfTsz14wZqRHiFpcx82q5vavUdiVZUfGgWPQD2xrvwCb0swLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+API+Property+Inference+Techniques&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Robillard%2C+Martin+P&rft.au=Bodden%2C+Eric&rft.au=Kawrykow%2C+David&rft.au=Mezini%2C+Mira&rft.date=2013-05-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=39&rft.issue=5&rft.spage=613&rft.epage=637&rft_id=info:doi/10.1109%2FTSE.2012.63&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon