Automated API Property Inference Techniques
Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of...
Saved in:
Published in | IEEE transactions on software engineering Vol. 39; no. 5; pp. 613 - 637 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2013
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information. |
---|---|
AbstractList | Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information. [PUBLICATION ABSTRACT] Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and sophisticated APIs can represent a challenge due to hidden assumptions and requirements. Numerous approaches have been developed to infer properties of APIs, intended to guide their use by developers. With each approach come new definitions of API properties, new techniques for inferring these properties, and new ways to assess their correctness and usefulness. This paper provides a comprehensive survey of over a decade of research on automated property inference for APIs. Our survey provides a synthesis of this complex technical field along different dimensions of analysis: properties inferred, mining techniques, and empirical results. In particular, we derive a classification and organization of over 60 techniques into five different categories based on the type of API property inferred: unordered usage patterns, sequential usage patterns, behavioral specifications, migration mappings, and general information. |
Author | Mezini, M. Robillard, M. P. Ratchford, T. Kawrykow, D. Bodden, E. |
Author_xml | – sequence: 1 givenname: M. P. surname: Robillard fullname: Robillard, M. P. email: martin@cs.mcgill.ca organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada – sequence: 2 givenname: E. surname: Bodden fullname: Bodden, E. email: bodden@ec-spride.de organization: Secure Software Eng. Group, Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 3 givenname: D. surname: Kawrykow fullname: Kawrykow, D. email: dkawry@cs.mcgill.ca organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada – sequence: 4 givenname: M. surname: Mezini fullname: Mezini, M. email: mezini@informatik.tu-darmstadt.de organization: Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 5 givenname: T. surname: Ratchford fullname: Ratchford, T. email: tratch@us.ibm.com organization: IBM Res., Cambridge, MA, USA |
BookMark | eNp10M9LwzAUB_AgCm7Tk0cvBS_C6HxJmqQ5jjF1MHBg7yVNX7Cja2baHvbf2zLxMPD04PF5P_hOyXXjGyTkgcKCUtAv2ed6wYCyheRXZEI11zEXDK7JBECnsRCpviXTtt0DgFBKTMh82Xf-YDoso-VuE-2CP2LoTtGmcRiwsRhlaL-a6rvH9o7cOFO3eP9bZyR7XWer93j78bZZLbex5TTp4lQmsuTGGCipkCKx6JgteFGyAlOnUwWlQiMoGBjaNkmccsapQpWgwXE-I8_ntcfgx7Ndfqhai3VtGvR9m1MuBZUghR7o0wXd-z40w3OjkpAwxdig6FnZ4Ns2oMtt1Zmu8k0XTFXnFPIxvXxILx_Ty-X4xPxi5hiqgwmnf_TjWVeI-CclpzQBzX8AqhV5Vg |
CODEN | IESEDJ |
CitedBy_id | crossref_primary_10_1016_j_jss_2016_06_101 crossref_primary_10_7717_peerj_cs_12 crossref_primary_10_1145_2744200 crossref_primary_10_1016_j_jss_2016_06_063 crossref_primary_10_1109_TSE_2021_3087087 crossref_primary_10_1016_j_eswa_2022_119477 crossref_primary_10_1109_MS_2019_2919840 crossref_primary_10_1007_s10664_022_10244_0 crossref_primary_10_1007_s10515_021_00294_x crossref_primary_10_1007_s42514_021_00079_4 crossref_primary_10_1109_TSE_2014_2347969 crossref_primary_10_1109_TSE_2019_2948910 crossref_primary_10_1109_TSE_2021_3069978 crossref_primary_10_1016_j_cosrev_2019_05_001 crossref_primary_10_1109_TSE_2021_3093246 crossref_primary_10_1109_ACCESS_2019_2940290 crossref_primary_10_1145_3470133 crossref_primary_10_1109_TSE_2015_2461542 crossref_primary_10_1016_j_cosrev_2025_100732 crossref_primary_10_4018_IJEIS_2019070105 crossref_primary_10_1109_TSC_2015_2466544 crossref_primary_10_1016_j_infsof_2018_10_010 crossref_primary_10_1109_TSE_2019_2919304 crossref_primary_10_1145_3597206 crossref_primary_10_1145_3444945 crossref_primary_10_1109_TSE_2018_2872971 crossref_primary_10_1145_2652483 crossref_primary_10_1016_j_infsof_2019_106213 crossref_primary_10_1007_s11432_019_2745_5 crossref_primary_10_1145_2693208_2693220 crossref_primary_10_1016_j_jss_2016_12_036 crossref_primary_10_1016_j_jss_2021_111048 crossref_primary_10_1016_j_jss_2018_04_034 crossref_primary_10_1002_smr_1845 crossref_primary_10_1109_TSE_2021_3059907 crossref_primary_10_1109_TETC_2017_2787192 crossref_primary_10_1109_TSE_2023_3301660 crossref_primary_10_1007_s10664_023_10318_7 crossref_primary_10_1016_j_jss_2017_05_039 crossref_primary_10_1016_j_jss_2024_111974 crossref_primary_10_1016_j_cola_2019_100927 crossref_primary_10_1007_s10664_014_9343_7 crossref_primary_10_1145_2990497 crossref_primary_10_1109_TSE_2022_3197063 crossref_primary_10_1007_s10664_023_10392_x crossref_primary_10_1007_s10664_021_09963_7 crossref_primary_10_1109_TSE_2018_2827384 crossref_primary_10_1109_TSE_2020_2996975 crossref_primary_10_1007_s10270_020_00809_2 crossref_primary_10_1109_TSE_2017_2782280 crossref_primary_10_1145_2629506 crossref_primary_10_1007_s11432_019_2720_1 crossref_primary_10_1016_j_cl_2018_07_006 crossref_primary_10_1145_3643742 |
Cites_doi | 10.1080/08839510701853200 10.1145/1065010.1065018 10.1145/1321631.1321663 10.1007/BF00260922 10.1145/1368088.1368157 10.1007/s10515-007-0007-3 10.1145/940071.940101 10.1109/WCRE.2007.24 10.1145/1806799.1806831 10.1007/11901433_39 10.1109/ASE.2009.94 10.1145/2220365.2220366 10.1109/VLHCC.2009.5295283 10.1145/566172.566212 10.1145/1595696.1595767 10.1145/13487689.13487691 10.1109/ASE.2006.63 10.1109/TSE.2006.117 10.1109/WCRE.2009.42 10.1145/1081706.1081755 10.1007/3-540-45657-0_29 10.1145/1831708.1831723 10.1145/1595696.1595727 10.1145/1831708.1831719 10.1016/S0304-3975(96)00191-0 10.1002/smr.375 10.1145/1134285.1134325 10.1109/TSE.2007.70705 10.1109/ICDE.2004.1319986 10.1145/1081706.1081754 10.1109/ICSE.2007.20 10.1145/503272.503275 10.1109/2.161279 10.1109/APSEC.2008.54 10.1145/1869459.1869486 10.1145/1134285.1134424 10.1145/1449764.1449792 10.1145/360248.360252 10.1145/1181775.1181808 10.1109/ISSRE.2006.29 10.1145/502034.502041 10.1145/1806799.1806848 10.1109/ASE.2009.30 10.1145/1595696.1595728 10.1109/ICSM.2005.78 10.1109/WCRE.2007.45 10.1007/978-3-540-45070-2_19 10.1109/ASE.2009.72 10.1145/1287624.1287632 10.1145/302405.302467 10.1145/1368088.1368096 10.1145/1368088.1368154 10.1145/1595808.1595821 10.1109/MS.2009.161 10.1109/ASE.2008.43 10.1145/1453101.1453150 10.1109/MSR.2007.3 10.1145/1040305.1040314 10.1145/1328279.1328294 10.1109/ICSE.2009.5070548 10.1145/800135.804422 10.1145/1287624.1287629 10.1109/TC.1972.5009015 10.1145/2000799.2000805 10.1145/1639950.1640008 10.1145/1806799.1806806 10.1109/WCRE.2006.47 10.1145/1985793.1985874 10.1109/ISSRE.2004.11 10.1109/ICSM.2010.5609576 10.1145/1368088.1368107 10.1145/1138912.1138918 10.1145/512950.512973 10.1016/0890-5401(87)90052-6 10.1007/s10664-010-9150-8 10.1145/1081706.1081711 10.1007/3-540-44829-2_17 10.1145/337180.337200 10.1109/ASE.2008.35 10.1145/324133.324140 10.1007/3-540-45251-6_29 10.1145/1273463.1273487 10.1007/978-3-540-31980-1_30 10.1016/s0167-739x(97)00019-8 10.1109/TSE.2005.28 10.1145/302405.302672 10.1145/1250734.1250749 10.1007/11785477_24 10.1109/ASE.1999.802089 10.1002/smr.328 10.1145/996821.996832 10.1145/1390630.1390664 10.1109/ICSE.2009.5070542 10.1109/TSE.2007.70747 10.1145/1368088.1368153 10.1007/978-3-642-00593-0_25 10.1007/978-3-642-14107-2_2 10.1007/978-3-642-03013-0_15 10.1145/1287624.1287630 10.1109/ASE.2009.60 10.1145/1188835.1188847 10.1109/ICSE.2007.63 |
ContentType | Journal Article |
Copyright | Copyright IEEE Computer Society May 2013 |
Copyright_xml | – notice: Copyright IEEE Computer Society May 2013 |
DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. 7SC 7SP 8FD F28 FR3 L7M L~C L~D |
DOI | 10.1109/TSE.2012.63 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1939-3520 |
EndPage | 637 |
ExternalDocumentID | 2991900451 10_1109_TSE_2012_63 6311409 |
Genre | orig-research Feature |
GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYOK AAYXX ALIPV CITATION RIG JQ2 K9. 7SC 7SP 8FD F28 FR3 L7M L~C L~D |
ID | FETCH-LOGICAL-c314t-8646d3aaa0d15654cef2cb3bd2be8f9870d7ea510a0cb3c44f7faf7b7d090f33 |
IEDL.DBID | RIE |
ISSN | 0098-5589 |
IngestDate | Fri Jul 11 11:17:41 EDT 2025 Mon Jun 30 09:06:22 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Tue Jul 01 05:17:24 EDT 2025 Wed Aug 27 02:47:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-8646d3aaa0d15654cef2cb3bd2be8f9870d7ea510a0cb3c44f7faf7b7d090f33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1366042722 |
PQPubID | 21418 |
PageCount | 25 |
ParticipantIDs | proquest_journals_1366042722 proquest_miscellaneous_1365160659 ieee_primary_6311409 crossref_citationtrail_10_1109_TSE_2012_63 crossref_primary_10_1109_TSE_2012_63 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on software engineering |
PublicationTitleAbbrev | TSE |
PublicationYear | 2013 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Kagdi (ref37) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Agrawal (ref17) ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Grahne (ref19) ref100 ref101 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Leino (ref86) ref24 ref23 ref26 ref25 ref20 ref22 ref21 Webb (ref18) ref28 ref27 ref29 Vallée-Rai (ref71) ref13 ref12 Raman (ref67) ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref16 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref70 ref73 ref72 ref68 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref73 doi: 10.1080/08839510701853200 – ident: ref25 doi: 10.1145/1065010.1065018 – ident: ref42 doi: 10.1145/1321631.1321663 – ident: ref84 doi: 10.1007/BF00260922 – ident: ref47 doi: 10.1145/1368088.1368157 – ident: ref93 doi: 10.1007/s10515-007-0007-3 – ident: ref107 doi: 10.1145/940071.940101 – start-page: 487 volume-title: Proc. 20th Int’l Conf. Very Large Data Bases ident: ref17 article-title: Fast Algorithms for Mining Association Rules in Large Databases – ident: ref38 doi: 10.1109/WCRE.2007.24 – ident: ref97 doi: 10.1145/1806799.1806831 – ident: ref80 doi: 10.1007/11901433_39 – ident: ref59 doi: 10.1109/ASE.2009.94 – ident: ref63 doi: 10.1145/2220365.2220366 – ident: ref101 doi: 10.1109/VLHCC.2009.5295283 – ident: ref21 doi: 10.1145/566172.566212 – volume-title: Proc. Conf. Centre for Advanced Studies on Collaborative Research ident: ref71 article-title: Soot—A Java Bytecode Optimization Framework – volume-title: Proc. Workshop Frequent Item Set Mining Implementations ident: ref19 article-title: Efficiently Using Prefix-Trees in Mining Frequent Item Sets – ident: ref53 doi: 10.1145/1595696.1595767 – ident: ref109 doi: 10.1145/13487689.13487691 – ident: ref32 doi: 10.1109/ASE.2006.63 – ident: ref4 doi: 10.1109/TSE.2006.117 – ident: ref52 doi: 10.1109/WCRE.2009.42 – ident: ref10 doi: 10.1145/1081706.1081755 – ident: ref72 doi: 10.1007/3-540-45657-0_29 – ident: ref61 doi: 10.1145/1831708.1831723 – ident: ref104 doi: 10.1145/1595696.1595727 – ident: ref74 doi: 10.1145/1831708.1831719 – ident: ref6 doi: 10.1016/S0304-3975(96)00191-0 – ident: ref48 doi: 10.1002/smr.375 – ident: ref35 doi: 10.1145/1134285.1134325 – ident: ref83 doi: 10.1109/TSE.2007.70705 – ident: ref66 doi: 10.1109/ICDE.2004.1319986 – ident: ref11 doi: 10.1145/1081706.1081754 – ident: ref89 doi: 10.1109/ICSE.2007.20 – ident: ref20 doi: 10.1145/503272.503275 – ident: ref78 doi: 10.1109/2.161279 – ident: ref50 doi: 10.1109/APSEC.2008.54 – ident: ref98 doi: 10.1145/1869459.1869486 – ident: ref31 doi: 10.1145/1134285.1134424 – ident: ref62 doi: 10.1145/1449764.1449792 – ident: ref87 doi: 10.1145/360248.360252 – ident: ref34 doi: 10.1145/1181775.1181808 – ident: ref29 doi: 10.1109/ISSRE.2006.29 – ident: ref2 doi: 10.1145/502034.502041 – ident: ref96 doi: 10.1145/1806799.1806848 – ident: ref58 doi: 10.1109/ASE.2009.30 – ident: ref13 doi: 10.1145/1595696.1595728 – ident: ref26 doi: 10.1109/ICSM.2005.78 – ident: ref44 doi: 10.1109/WCRE.2007.45 – ident: ref82 doi: 10.1007/978-3-540-45070-2_19 – ident: ref57 doi: 10.1109/ASE.2009.72 – volume-title: Proc. 14th Int’l Conf. Machine Learning Workshop Automata Induction, Grammatical Inference and Language Acquisition ident: ref67 article-title: The sk-Strings Method for Inferring PFSA – volume-title: Knowledge Discovery and Data Mining ident: ref18 article-title: Beyond Association Rules: Generalized Rule Discovery – ident: ref43 doi: 10.1145/1287624.1287632 – ident: ref3 doi: 10.1145/302405.302467 – ident: ref51 doi: 10.1145/1368088.1368096 – ident: ref95 doi: 10.1145/1368088.1368154 – ident: ref103 doi: 10.1145/1595808.1595821 – ident: ref15 doi: 10.1109/MS.2009.161 – ident: ref100 doi: 10.1109/ASE.2008.43 – ident: ref46 doi: 10.1145/1453101.1453150 – ident: ref65 doi: 10.1109/MSR.2007.3 – ident: ref24 doi: 10.1145/1040305.1040314 – ident: ref102 doi: 10.1145/1328279.1328294 – ident: ref56 doi: 10.1109/ICSE.2009.5070548 – ident: ref69 doi: 10.1145/800135.804422 – ident: ref105 doi: 10.1145/1287624.1287629 – ident: ref77 doi: 10.1109/TC.1972.5009015 – ident: ref90 doi: 10.1145/2000799.2000805 – ident: ref55 doi: 10.1145/1639950.1640008 – ident: ref60 doi: 10.1145/1806799.1806806 – ident: ref75 doi: 10.1109/WCRE.2006.47 – ident: ref64 doi: 10.1145/1985793.1985874 – ident: ref22 doi: 10.1109/ISSRE.2004.11 – ident: ref76 doi: 10.1109/ICSM.2010.5609576 – ident: ref49 doi: 10.1145/1368088.1368107 – ident: ref30 doi: 10.1145/1138912.1138918 – ident: ref68 doi: 10.1145/512950.512973 – ident: ref70 doi: 10.1016/0890-5401(87)90052-6 – start-page: 110 volume-title: Proc. 13th European Conf. Object-Oriented Programming ident: ref86 article-title: Checking Java Programs via Guarded Commands – ident: ref1 doi: 10.1007/s10664-010-9150-8 – ident: ref108 doi: 10.1145/1081706.1081711 – ident: ref33 doi: 10.1007/3-540-44829-2_17 – ident: ref9 doi: 10.1145/337180.337200 – ident: ref45 doi: 10.1109/ASE.2008.35 – ident: ref106 doi: 10.1145/324133.324140 – start-page: 457 volume-title: Proc. 22nd IEEE/ACM Int’l Conf. Automated Software Eng. ident: ref37 article-title: An Approach to Mining Call-Usage Patterns with Syntactic Context – ident: ref79 doi: 10.1007/3-540-45251-6_29 – ident: ref41 doi: 10.1145/1273463.1273487 – ident: ref27 doi: 10.1007/978-3-540-31980-1_30 – ident: ref16 doi: 10.1016/s0167-739x(97)00019-8 – ident: ref88 doi: 10.1109/TSE.2005.28 – ident: ref7 doi: 10.1145/302405.302672 – ident: ref39 doi: 10.1145/1250734.1250749 – ident: ref91 doi: 10.1007/11785477_24 – ident: ref8 doi: 10.1109/ASE.1999.802089 – ident: ref99 doi: 10.1002/smr.328 – ident: ref23 doi: 10.1145/996821.996832 – ident: ref81 doi: 10.1145/1390630.1390664 – ident: ref85 doi: 10.1109/ICSE.2009.5070542 – ident: ref92 doi: 10.1109/TSE.2007.70747 – ident: ref94 doi: 10.1145/1368088.1368153 – ident: ref28 doi: 10.1007/978-3-642-00593-0_25 – ident: ref14 doi: 10.1007/978-3-642-14107-2_2 – ident: ref5 doi: 10.1007/978-3-642-03013-0_15 – ident: ref36 doi: 10.1145/1287624.1287630 – ident: ref54 doi: 10.1109/ASE.2009.60 – ident: ref12 doi: 10.1145/1188835.1188847 – ident: ref40 doi: 10.1109/ICSE.2007.63 |
SSID | ssj0005775 ssib053395008 |
Score | 2.49612 |
Snippet | Frameworks and libraries offer reusable and customizable functionality through Application Programming Interfaces (APIs). Correctly using large and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 613 |
SubjectTerms | API API evolution API property API usage pattern Application programming interface Association rules Automated Automation Categories Context Data mining Inference interface Itemsets Organizations pattern mining Programming programming rules Protocols Reusable Software engineering specifications Statistical inference Studies Use statistics |
Title | Automated API Property Inference Techniques |
URI | https://ieeexplore.ieee.org/document/6311409 https://www.proquest.com/docview/1366042722 https://www.proquest.com/docview/1365160659 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJy-iohFFUxNOaku3u91tj8RAwARDIibcmu0-LppioD3or3e3tBiVg7cmnTSbmZ3O-xuAvsaSM8SVi5AkLlGx73JfMJdrYeyl5sZTsqmB2ROdvJDHZbhswP1uFkYpVTafKc8-lrV8uRKFTZUNKEYWn6kJTRO4bWe1vts5GAtrfMwwjOJqFg_58WDxPLI9XIFH8Q_rU65T-fMPLg3LuA2z-kjbfpJXr8hTT3z-Qmv875mP4LDyMJ3h9kocQ0NlJ9Cutzc4lTJ34G5Y5CvjryrpDOdTZ26z8uv8w5nWI4DOosZ33ZzCYjxaPEzcanWCKzAiuRtRQiXmnPvSBGghEUoHIsWpDFIV6dgoqWSKG300gkmxIEQbuWiWMunHvsb4DFrZKlPn4BCCiTZhDRLGEYiY4JE2Lm4qcSgNr33Uhduao4moYMXtdou3pAwv_Dgx7E8s-xOKu9DfEb9v0TT2k3UsI3ckFQ-70KtFlVSatkkQptTuCwmCLtzsXhsdsYUPnqlVUdKEiNoK8sX-L1_CQVCuubCNjD1o5etCXRlnI0-vy1v2Bb5N0Pc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9tAEB5CemgvTds01EnaqpBeWuTsSyvp0IPJA7uxjaEK5Las9nFJsEMsEZK_kr_SH9dZWXJpm2ugN4GGZdlvmP1m5wVw4LnVKdUuptSKWLicxJqYNNbe4H3pNTKl8DQwmcrhufh-kVxswMO6FsY51ySfuX74bGL5dmHq8FR2KDkN_ZnaFMozd3eLDtry2-gY0fzM2OlJcTSM2xkCseFUVHEmhbRca00seiqJMM4zU_LSstJlHh1uYlOnUTFxhyU3QnjcoE_L1JKc-PDaifb9GdKMhK2Kw37nj6Rp0jXkTJIsb4v_KMkPix8nIWmM9SX_47pr5rf8Y_Sbm-x0C352Z7BKYLns11XZN_d_tYf8Tw_pFbxsGXQ0WKn8a9hw8zew1U2niFpjtQ1fB3W1QD7ubDSYjaJZiDrcVHfRqCtxjIquf-3yLRRPseMd2Jwv5u4dREJw4dFtowaJTpYanXmk8KXliUVoCe3Blw5AZdq26WF6x5Vq3CeSK0RbBbSV5D04WAtfr7qFPC62HXBbi7SQ9WC_0wzVWpKlolzKMA-FsR58Wv9GGxACO3ruFnUjk1AZIuS7j6_8EZ4Pi8lYjUfTsz14wZqRHiFpcx82q5vavUdiVZUfGgWPQD2xrvwCb0swLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+API+Property+Inference+Techniques&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Robillard%2C+Martin+P&rft.au=Bodden%2C+Eric&rft.au=Kawrykow%2C+David&rft.au=Mezini%2C+Mira&rft.date=2013-05-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=39&rft.issue=5&rft.spage=613&rft.epage=637&rft_id=info:doi/10.1109%2FTSE.2012.63&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |