Use of transcutaneous spinal cord stimulation to explore inhibitory and facilitatory circuits in muscles of the human lower limb

The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1–L2 level, is modulated by presynaptic inhibition and heteronymous facilitation,...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology
Main Authors Sordet, Julia, Papaiordanidou, Maria, Amiez, Nicolas, Amiridis, Ioannis, Quenot, Jean‐Pierre, Martin, Alain
Format Journal Article
LanguageEnglish
Published England Wiley-Blackwell 21.07.2025
Subjects
Online AccessGet full text
ISSN0958-0670
1469-445X
1469-445X
DOI10.1113/EP093023

Cover

Abstract The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1–L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D 1 and D 2 inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from −1 to −10 ms). Conditioned responses (H PSI or TEP PSI and H FAC or TEP FAC ) were compared with unconditioned ones (H TEST or TEP TEST ). Concerning D 1 and D 2 inhibition, results did not reveal any significant difference between the two responses ( p  = 0.89 and p  = 0.51 for D 1 and D 2 , respectively). Inhibition was observed at all ISIs for D 1 and at the 100 and 200 ms ISIs for D 2 . Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower‐limb muscles. What is the central question of this study? Is the transspinal evoked potential, elicited by transcutaneous spinal cord stimulation, sensitive to inhibitory and facilitatory circuits, similar to the H reflex evoked by peripheral nerve stimulation? What is the main finding and its importance? Both soleus H reflex and transspinal evoked potential are sensitive to D 1 and D 2 inhibition, mediated by activation of the antagonist tibialis anterior afferents, and to heteronymous facilitation, induced by projections of vastus lateralis afferents. These findings suggest that transcutaneous spinal cord stimulation is a valuable tool for investigating spinal circuits, offering the advantage of assessing multiple lower‐limb muscles simultaneously.
AbstractList The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1–L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D1 and D2 inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from −1 to −10 ms). Conditioned responses (HPSI or TEPPSI and HFAC or TEPFAC) were compared with unconditioned ones (HTEST or TEPTEST). Concerning D1 and D2 inhibition, results did not reveal any significant difference between the two responses (p = 0.89 and p = 0.51 for D1 and D2, respectively). Inhibition was observed at all ISIs for D1 and at the 100 and 200 ms ISIs for D2. Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower-limb muscles.
The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1-L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D and D inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from -1 to -10 ms). Conditioned responses (H or TEP and H or TEP ) were compared with unconditioned ones (H or TEP ). Concerning D and D inhibition, results did not reveal any significant difference between the two responses (p = 0.89 and p = 0.51 for D and D , respectively). Inhibition was observed at all ISIs for D and at the 100 and 200 ms ISIs for D . Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower-limb muscles.
The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1-L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D1 and D2 inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from -1 to -10 ms). Conditioned responses (HPSI or TEPPSI and HFAC or TEPFAC) were compared with unconditioned ones (HTEST or TEPTEST). Concerning D1 and D2 inhibition, results did not reveal any significant difference between the two responses (p = 0.89 and p = 0.51 for D1 and D2, respectively). Inhibition was observed at all ISIs for D1 and at the 100 and 200 ms ISIs for D2. Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower-limb muscles.The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1-L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D1 and D2 inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from -1 to -10 ms). Conditioned responses (HPSI or TEPPSI and HFAC or TEPFAC) were compared with unconditioned ones (HTEST or TEPTEST). Concerning D1 and D2 inhibition, results did not reveal any significant difference between the two responses (p = 0.89 and p = 0.51 for D1 and D2, respectively). Inhibition was observed at all ISIs for D1 and at the 100 and 200 ms ISIs for D2. Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower-limb muscles.
The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP), elicited through transcutaneous spinal cord stimulation over the L1–L2 level, is modulated by presynaptic inhibition and heteronymous facilitation, similar to the Hoffmann (H) reflex, elicited by posterior tibial nerve stimulation. Twenty subjects participated in two experiments. Experiment 1 assessed D 1 and D 2 inhibition by conditioning the H reflex and TEP with peroneal nerve stimulation at different interstimulus intervals (ISIs; ranging from 1 to 200 ms). Experiment 2 examined heteronymous facilitation of responses using femoral nerve conditioning stimulation (ISIs ranging from −1 to −10 ms). Conditioned responses (H PSI or TEP PSI and H FAC or TEP FAC ) were compared with unconditioned ones (H TEST or TEP TEST ). Concerning D 1 and D 2 inhibition, results did not reveal any significant difference between the two responses ( p  = 0.89 and p  = 0.51 for D 1 and D 2 , respectively). Inhibition was observed at all ISIs for D 1 and at the 100 and 200 ms ISIs for D 2 . Facilitation patterns were also comparable between the two responses. Moreover, a negative correlation was observed between the modulation of soleus TEP and tibialis anterior TEP (conditioning muscle during inhibition), whereas a positive correlation was obtained between soleus TEP and quadriceps TEP (conditioning muscle during facilitation). The similar modulations between the two responses suggest that TEP can be an alternative to the H reflex for studying spinal circuits, with the advantage of offering insight into the activity of multiple lower‐limb muscles. What is the central question of this study? Is the transspinal evoked potential, elicited by transcutaneous spinal cord stimulation, sensitive to inhibitory and facilitatory circuits, similar to the H reflex evoked by peripheral nerve stimulation? What is the main finding and its importance? Both soleus H reflex and transspinal evoked potential are sensitive to D 1 and D 2 inhibition, mediated by activation of the antagonist tibialis anterior afferents, and to heteronymous facilitation, induced by projections of vastus lateralis afferents. These findings suggest that transcutaneous spinal cord stimulation is a valuable tool for investigating spinal circuits, offering the advantage of assessing multiple lower‐limb muscles simultaneously.
Author Sordet, Julia
Amiez, Nicolas
Martin, Alain
Papaiordanidou, Maria
Quenot, Jean‐Pierre
Amiridis, Ioannis
Author_xml – sequence: 1
  givenname: Julia
  orcidid: 0009-0008-2866-4091
  surname: Sordet
  fullname: Sordet, Julia
  organization: Université Bourgogne Europe, Inserm CAPS UMR 1093 Dijon France
– sequence: 2
  givenname: Maria
  orcidid: 0000-0002-4879-2065
  surname: Papaiordanidou
  fullname: Papaiordanidou, Maria
  organization: Université Bourgogne Europe, Inserm CAPS UMR 1093 Dijon France
– sequence: 3
  givenname: Nicolas
  orcidid: 0000-0001-5175-5591
  surname: Amiez
  fullname: Amiez, Nicolas
  organization: Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Univ Lyon Université Claude Bernard Lyon 1 Villeurbanne France
– sequence: 4
  givenname: Ioannis
  orcidid: 0000-0003-3731-8998
  surname: Amiridis
  fullname: Amiridis, Ioannis
  organization: Department of Physical Education and Sport Sciences at Serres Aristotle University of Thessaloniki Thessaloniki Greece
– sequence: 5
  givenname: Jean‐Pierre
  orcidid: 0000-0003-2351-682X
  surname: Quenot
  fullname: Quenot, Jean‐Pierre
  organization: Service de Médecine Intensive‐Réanimation CHU Dijon‐Bourgogne Dijon France
– sequence: 6
  givenname: Alain
  orcidid: 0000-0003-1335-912X
  surname: Martin
  fullname: Martin, Alain
  organization: Université Bourgogne Europe, Inserm CAPS UMR 1093 Dijon France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40689875$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05193630$$DView record in HAL
BookMark eNpFkU1rGzEQhkVwiZ0PyC8oOjaHbUYraXd1DCZfYGgODeS2yPIIq2glV9K2zS0_Pf5I0tMwLw_PwLwnZBJiQEIuGHxnjPGrm0dQHGp-RGZMNKoSQj5PyAyU7CpoWpiSk5x_ATAOnTgmUwFNp7pWzsjrU0YaLS1Jh2zGogPGMdO8cUF7amJa0VzcMHpdXAy0RIr_Nj4mpC6s3dKVmF6oDitqtXHeFb0PjEtmdCVvITqM2XjM-yNrpOtx0IH6-BcT9W5YnpEvVvuM5-_zlDzd3vyc31eLH3cP8-tFZTgTpeqkaACtYTUoAUJaDroVKNpac8VMu5I1Q8Ftg1Z1DLeRZVIjbHezlLzjp-Ty4F1r32-SG3R66aN2_f31ot9lIJniDYc_bMt-O7CbFH-PmEs_uGzQ-8N3el5zpkA2sNN-fUfH5YCrT_PHh_-7TIo5J7SfCIN-V17_UR5_AwDejA4
Cites_doi 10.1016/j.xcrm.2024.101805
10.1113/JP276694
10.1155/2017/6751810
10.3390/jcm11133836
10.1152/japplphysiol.01128.2014
10.1113/jphysiol.1993.sp019652
10.1152/jn.00342.2022
10.1007/s00421-002-0577-5
10.1113/JP283706
10.1016/j.jneumeth.2009.03.006
10.1007/s00421-014-2969-8
10.1371/journal.pone.0102313
10.1515/bmt‐2013‐4010
10.1007/s00421-022-05119-7
10.1002/(SICI)1097-4598(199609)19:9<1110::AID-MUS5>3.0.CO;2-2
10.1002/bem.21808
10.1152/japplphysiol.00065.2022
10.1371/journal.pone.0192013
10.1017/CBO9780511545047
10.1002/mus.20700
10.1007/s00221-012-3258-6
10.3390/jcm10235543
10.1111/aor.12615
10.1177/1545968319893298
10.1136/jnnp.51.2.174
10.14814/phy2.16039
10.1016/j.neulet.2015.01.041
10.1007/s00421-023-05406-x
10.1007/BF00230681
10.1113/jphysiol.1987.sp016680
10.1113/jphysiol.1983.sp014638
10.1523/JNEUROSCI.19-01-00391.1999
10.1111/aor.12616
10.1093/brain/112.2.417
10.1038/s41593-022-01162-x
10.1113/jphysiol.2007.128447
10.1007/s002210050933
10.1371/journal.pone.0147479
10.1152/jn.1971.34.6.1010
10.1016/0301-0082(87)90007-4
10.1152/japplphysiol.00005.2021
10.1111/ejn.14321
10.3389/fpsyg.2017.00456
10.1016/0014-4886(78)90091-2
10.1371/journal.pone.0227057
10.1007/BF00230683
10.1371/journal.pone.0214818
ContentType Journal Article
Copyright 2025 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1113/EP093023
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
ExternalDocumentID oai_HAL_hal_05193630v1
40689875
10_1113_EP093023
Genre Journal Article
GrantInformation_xml – fundername: French Ministry of Higher Education, Research and Innovation.
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
18M
1OC
24P
29G
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABPVW
ABUWG
ABXGK
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFZJQ
AGXDD
AIACR
AIAGR
AIDQK
AIDYY
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BBNVY
BENPR
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C45
CCPQU
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GROUPED_DOAJ
GX1
H.X
HCIFZ
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PGMZT
PHGZM
PHGZT
PQGLB
PQQKQ
Q.N
Q11
QB0
R.K
RCA
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
NPM
7X8
ABVKB
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c314t-85460efc12094045f30a74e472a391c7d521e43f6ef981e91cf15ae06efcb5383
ISSN 0958-0670
1469-445X
IngestDate Wed Aug 13 07:43:58 EDT 2025
Fri Sep 05 15:38:28 EDT 2025
Tue Jul 22 01:42:12 EDT 2025
Thu Jul 24 02:01:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords posterior root muscle reflex
presynaptic inhibition
primary afferent depolarization
heteronymous facilitation
H reflex
Language English
License 2025 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-85460efc12094045f30a74e472a391c7d521e43f6ef981e91cf15ae06efcb5383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1335-912X
0000-0001-5175-5591
0000-0003-3731-8998
0000-0003-2351-682X
0009-0008-2866-4091
0000-0002-4879-2065
OpenAccessLink http://dx.doi.org/10.1113/EP093023
PMID 40689875
PQID 3231905608
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_05193630v1
proquest_miscellaneous_3231905608
pubmed_primary_40689875
crossref_primary_10_1113_EP093023
PublicationCentury 2000
PublicationDate 2025-07-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2025
Publisher Wiley-Blackwell
Publisher_xml – name: Wiley-Blackwell
References Mizuno Y. (e_1_2_10_35_1) 1971; 34
Courtine G. (e_1_2_10_7_1) 2007; 582
Roy F. D. (e_1_2_10_41_1) 2012; 223
e_1_2_10_40_1
Ménard A. (e_1_2_10_30_1) 1999; 19
Zehr E. P. (e_1_2_10_50_1) 2002; 86
Vitry F. (e_1_2_10_49_1) 2021; 131
Maertens de Noordhout A. (e_1_2_10_28_1) 1988; 51
Bergmans J. (e_1_2_10_4_1) 1978; 60
Andrews J. C. (e_1_2_10_2_1) 2015; 589
Bakdash J. Z. (e_1_2_10_3_1) 2017; 8
Knikou M. (e_1_2_10_23_1) 2014; 9
Koceja J. (e_1_2_10_25_1) 2002; 42
Knikou M. (e_1_2_10_22_1) 2013; 34
Gravholt A. (e_1_2_10_13_1) 2024; 124
Papitsa A. (e_1_2_10_38_1) 2022; 133
Hofstoetter U. S. (e_1_2_10_19_1) 2022; 11
Hofstoetter U. S. (e_1_2_10_16_1) 2018; 13
Rudomin P. (e_1_2_10_42_1) 1999; 129
Saito A. (e_1_2_10_43_1) 2019; 14
Burke D. (e_1_2_10_6_1) 1989; 112
e_1_2_10_27_1
Binder V. E. (e_1_2_10_5_1) 2021; 10
Forget R. (e_1_2_10_12_1) 1989; 78
Hultborn H. (e_1_2_10_20_1) 1987; 389
Megía García A. (e_1_2_10_29_1) 2020; 34
Pierrot‐Deseilligny, & Burke (e_1_2_10_39_1) 2005
Metz K. (e_1_2_10_31_1) 2023; 601
Skiadopoulos A. (e_1_2_10_47_1) 2022; 128
Minassian K. (e_1_2_10_34_1) 2007; 35
Meunier S. (e_1_2_10_32_1) 1996; 19
Sayenko D. G. (e_1_2_10_44_1) 2015; 118
Theodosiadou A. (e_1_2_10_48_1) 2023; 123
Hofstoetter U. S. (e_1_2_10_18_1) 2015; 39
Hofstoetter U. S. (e_1_2_10_17_1) 2019; 14
Knikou M. (e_1_2_10_24_1) 2017; 2017
Krenn M. (e_1_2_10_26_1) 2015; 39
Grosprêtre S. (e_1_2_10_14_1) 2019; 597
Minassian K. (e_1_2_10_33_1) 2024; 5
El‐Tohamy A. (e_1_2_10_11_1) 1983; 337
Hari K. (e_1_2_10_15_1) 2022; 25
Doguet V. (e_1_2_10_10_1) 2014; 114
Crone C. (e_1_2_10_8_1) 1989; 78
Kitano K. (e_1_2_10_21_1) 2009; 180
Škarabot J. (e_1_2_10_46_1) 2019; 49
Schieppati M. (e_1_2_10_45_1) 1987; 28
Nakagawa K. (e_1_2_10_36_1) 2024; 12
Danner S. M. (e_1_2_10_9_1) 2016; 11
Nielsen J. (e_1_2_10_37_1) 1993; 464
References_xml – volume: 5
  issue: 11
  year: 2024
  ident: e_1_2_10_33_1
  article-title: Article Transcutaneous spinal cord stimulation neuromodulates pre‐ and postsynaptic inhibition in the control of spinal spasticity Transcutaneous spinal cord stimulation neuromodulates pre‐ and postsynaptic inhibition in the control of spinal spasticity
  publication-title: Cell Reports Medicine
  doi: 10.1016/j.xcrm.2024.101805
– volume: 597
  start-page: 921
  issue: 3
  year: 2019
  ident: e_1_2_10_14_1
  article-title: Spinal plasticity with motor imagery practice
  publication-title: The Journal of Physiology
  doi: 10.1113/JP276694
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_10_24_1
  article-title: Spinal excitability changes after transspinal and transcortical paired associative stimulation in humans
  publication-title: Neural Plasticity
  doi: 10.1155/2017/6751810
– volume: 11
  start-page: 3836
  issue: 13
  year: 2022
  ident: e_1_2_10_19_1
  article-title: Transcutaneous spinal cord stimulation: Advances in an emerging non‐invasive strategy for neuromodulation
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm11133836
– volume: 118
  start-page: 1364
  issue: 11
  year: 2015
  ident: e_1_2_10_44_1
  article-title: Spinal segment‐specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.01128.2014
– volume: 464
  start-page: 575
  issue: 1
  year: 1993
  ident: e_1_2_10_37_1
  article-title: The regulation of presynaptic inhibition during co‐contraction of antagonistic muscles in man
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1993.sp019652
– volume: 128
  start-page: 1641
  issue: 6
  year: 2022
  ident: e_1_2_10_47_1
  article-title: Physiological effects of cathodal electrode configuration for transspinal stimulation in humans
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00342.2022
– volume: 86
  start-page: 455
  issue: 6
  year: 2002
  ident: e_1_2_10_50_1
  article-title: Considerations for use of the Hoffmann reflex in exercise studies
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-002-0577-5
– volume: 601
  start-page: 1925
  issue: 10
  year: 2023
  ident: e_1_2_10_31_1
  article-title: Post‐activation depression from primary afferent depolarization (PAD) produces extensor H‐reflex suppression following flexor afferent conditioning
  publication-title: The Journal of Physiology
  doi: 10.1113/JP283706
– volume: 180
  start-page: 111
  issue: 1
  year: 2009
  ident: e_1_2_10_21_1
  article-title: Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2009.03.006
– volume: 114
  start-page: 2509
  issue: 12
  year: 2014
  ident: e_1_2_10_10_1
  article-title: Reliability of H‐reflex in vastus lateralis and vastus medialis muscles during passive and active isometric conditions
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-014-2969-8
– volume: 9
  issue: 7
  year: 2014
  ident: e_1_2_10_23_1
  article-title: Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0102313
– ident: e_1_2_10_27_1
  doi: 10.1515/bmt‐2013‐4010
– volume: 123
  start-page: 695
  issue: 4
  year: 2023
  ident: e_1_2_10_48_1
  article-title: Revisiting the use of Hoffmann reflex in motor control research on humans
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-022-05119-7
– volume: 19
  start-page: 1110
  issue: 9
  year: 1996
  ident: e_1_2_10_32_1
  article-title: Effects of femoral nerve stimulation on the electromyogram and reflex excitability of tibialis anterior and soleus
  publication-title: Muscle and Nerve
  doi: 10.1002/(SICI)1097-4598(199609)19:9<1110::AID-MUS5>3.0.CO;2-2
– volume: 34
  start-page: 630
  issue: 8
  year: 2013
  ident: e_1_2_10_22_1
  article-title: Neurophysiological characterization of transpinal evoked potentials in human leg muscles
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21808
– volume: 133
  start-page: 1327
  issue: 6
  year: 2022
  ident: e_1_2_10_38_1
  article-title: Specific modulation of presynaptic and recurrent inhibition of the soleus muscle during lengthening and shortening submaximal and maximal contractions
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00065.2022
– volume: 13
  issue: 1
  year: 2018
  ident: e_1_2_10_16_1
  article-title: Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root‐muscle reflexes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192013
– volume-title: The circuitry of the human spinal cord: Its role in motor control and movement disorders
  year: 2005
  ident: e_1_2_10_39_1
  doi: 10.1017/CBO9780511545047
– volume: 35
  start-page: 327
  issue: 3
  year: 2007
  ident: e_1_2_10_34_1
  article-title: Posterior root‐muscle preflexes elicited by transcutaneous stimulation of the human lumbosacral cord
  publication-title: Muscle and Nerve
  doi: 10.1002/mus.20700
– volume: 223
  start-page: 281
  issue: 2
  year: 2012
  ident: e_1_2_10_41_1
  article-title: Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-012-3258-6
– volume: 10
  start-page: 5543
  issue: 23
  year: 2021
  ident: e_1_2_10_5_1
  article-title: Influence of spine curvature on the efficacy of transcutaneous lumbar spinal cord stimulation
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm10235543
– volume: 39
  start-page: E176
  issue: 10
  year: 2015
  ident: e_1_2_10_18_1
  article-title: Augmentation of voluntary locomotor activity by transcutaneous spinal cord stimulation in motor‐incomplete spinal cord‐injured individuals
  publication-title: Artificial Organs
  doi: 10.1111/aor.12615
– volume: 34
  start-page: 3
  issue: 1
  year: 2020
  ident: e_1_2_10_29_1
  article-title: Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: A systematic review
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968319893298
– volume: 51
  start-page: 174
  issue: 2
  year: 1988
  ident: e_1_2_10_28_1
  article-title: Percutaneous electrical stimulation of lumbosacral roots in man
  publication-title: Journal of Neurology Neurosurgery and Psychiatry
  doi: 10.1136/jnnp.51.2.174
– volume: 12
  issue: 9
  year: 2024
  ident: e_1_2_10_36_1
  article-title: Reciprocal inhibition of the thigh muscles in humans: A study using transcutaneous spinal cord stimulation
  publication-title: Physiological Reports
  doi: 10.14814/phy2.16039
– volume: 589
  start-page: 144
  year: 2015
  ident: e_1_2_10_2_1
  article-title: Post‐activation depression in the human soleus muscle using peripheral nerve and transcutaneous spinal stimulation
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2015.01.041
– volume: 124
  start-page: 1821
  issue: 6
  year: 2024
  ident: e_1_2_10_13_1
  article-title: Do soleus responses to transcutaneous spinal cord stimulation show similar changes to H‐reflex in response to Achilles tendon vibration?
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-023-05406-x
– volume: 78
  start-page: 10
  issue: 1
  year: 1989
  ident: e_1_2_10_12_1
  article-title: Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man 1. Possible interneuronal pathway
  publication-title: Experimental Brain Research
  doi: 10.1007/BF00230681
– volume: 389
  start-page: 729
  issue: 1
  year: 1987
  ident: e_1_2_10_20_1
  article-title: Assessing changes in presynaptic inhibition of la fibres: A study in man and the cat
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1987.sp016680
– volume: 337
  start-page: 497
  year: 1983
  ident: e_1_2_10_11_1
  article-title: Spinal inhibition in man: Depression of the soleus H reflex by stimulation of the nerve to the antagonist muscle
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1983.sp014638
– volume: 42
  start-page: 159
  issue: 3
  year: 2002
  ident: e_1_2_10_25_1
  article-title: Assessment of motoneuron excitability using recurrent inhibition and paired reflex depression protocols: A test of reliability
  publication-title: Electromyography and Clinical Neurophysiology
– volume: 19
  start-page: 391
  issue: 1
  year: 1999
  ident: e_1_2_10_30_1
  article-title: The modulation of presynaptic inhibition in single muscle primary afferents during fictive locomotion in the cat
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.19-01-00391.1999
– ident: e_1_2_10_40_1
– volume: 39
  start-page: 834
  issue: 10
  year: 2015
  ident: e_1_2_10_26_1
  article-title: Multi‐electrode array for transcutaneous lumbar posterior root stimulation
  publication-title: Artificial Organs
  doi: 10.1111/aor.12616
– volume: 112
  start-page: 417
  issue: 2
  year: 1989
  ident: e_1_2_10_6_1
  article-title: The effects of voluntary contraction on the H reflex of human limb muscles
  publication-title: Brain
  doi: 10.1093/brain/112.2.417
– volume: 25
  start-page: 1288
  issue: 10
  year: 2022
  ident: e_1_2_10_15_1
  article-title: GABA facilitates spike propagation through branch points of sensory axons in the spinal cord
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-022-01162-x
– volume: 582
  start-page: 1125
  issue: 3
  year: 2007
  ident: e_1_2_10_7_1
  article-title: Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2007.128447
– volume: 129
  start-page: 1
  issue: 1
  year: 1999
  ident: e_1_2_10_42_1
  article-title: Presynaptic inhibition in the vertebrate spinal cord revisited
  publication-title: Experimental Brain Research
  doi: 10.1007/s002210050933
– volume: 11
  issue: 1
  year: 2016
  ident: e_1_2_10_9_1
  article-title: Body position influences which neural structures are recruited by lumbar transcutaneous spinal cord stimulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0147479
– volume: 34
  start-page: 1010
  issue: 6
  year: 1971
  ident: e_1_2_10_35_1
  article-title: Reciprocal Group I Inhibition on Triceps Surae Motoneurons in Man
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1971.34.6.1010
– volume: 28
  start-page: 345
  issue: 4
  year: 1987
  ident: e_1_2_10_45_1
  article-title: The hoffmann reflex: A means of assessing spinal reflex excitability and its descending control in man
  publication-title: Progress in Neurobiology
  doi: 10.1016/0301-0082(87)90007-4
– volume: 131
  start-page: 1162
  issue: 3
  year: 2021
  ident: e_1_2_10_49_1
  article-title: Mechanisms modulating spinal excitability after nerve stimulation inducing extra torque
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00005.2021
– volume: 49
  start-page: 1254
  issue: 10
  year: 2019
  ident: e_1_2_10_46_1
  article-title: Electrical stimulation of human corticospinal axons at the level of the lumbar spinal segments
  publication-title: European Journal of Neuroscience
  doi: 10.1111/ejn.14321
– volume: 8
  start-page: 456
  year: 2017
  ident: e_1_2_10_3_1
  article-title: Repeated measures correlation
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2017.00456
– volume: 60
  start-page: 380
  issue: 2
  year: 1978
  ident: e_1_2_10_4_1
  article-title: Effects of low‐threshold muscular afferent fibers on different motoneuronal pools of the lower limb in man
  publication-title: Experiwental Neurology
  doi: 10.1016/0014-4886(78)90091-2
– volume: 14
  issue: 12
  year: 2019
  ident: e_1_2_10_17_1
  article-title: Recovery cycles of posterior root‐muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227057
– volume: 78
  start-page: 28
  issue: 1
  year: 1989
  ident: e_1_2_10_8_1
  article-title: Experimental Brain Research Methodological implications of the post activation depression of the soleus H‐reflex in man
  publication-title: Experimental Brain Research
  doi: 10.1007/BF00230683
– volume: 14
  issue: 4
  year: 2019
  ident: e_1_2_10_43_1
  article-title: Repeatability of spinal reflexes of lower limb muscles evoked by transcutaneous spinal cord stimulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0214818
SSID ssj0013084
Score 2.4340398
SecondaryResourceType online_first
Snippet The aim of this study was to explore the primary afferent depolarization mechanism, to determine whether the soleus transspinal evoked potential (TEP),...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Human health and pathology
Life Sciences
Tissues and Organs
Title Use of transcutaneous spinal cord stimulation to explore inhibitory and facilitatory circuits in muscles of the human lower limb
URI https://www.ncbi.nlm.nih.gov/pubmed/40689875
https://www.proquest.com/docview/3231905608
https://hal.science/hal-05193630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF-8O5B7EfX8qB9lFfGl5MzHJtk8VqlUkaPoFfoWks2GBi5JaRNBn_zTndnNps1hQX0J6WyyC_v7NTszuzNDyJuQg5KQOb4VpNy3GBeuBVo1t3w7BXVeBglP1WmLq2C-ZJ9X_upWdEmTXoqff4wr-R9UQQa4YpTsPyDbdwoCuAd84QoIw_WvMF5qR3yD641oQc2TeKB1t1GVrtCsnMAfuOwKdKGWKdWJO8wTsi7SQu2vo-M8T4RO1o0CUWxFi9sJRTUp2x2emjMHCXRBvxssrDa5Kcp04NY_LBWg_CUDh_03zPHZmIjsfi1YwFpdQFNSFVnddsFD--ZpWWgPtyJssjuQb4tMp0f4VGPZpYH7wvXRL6pjoi-l_uSCgW4x5q-OfNAxscRsYUdY3ejwEYBiUypgQSfhEdcFWG4lzzZNJ-TMDUO1j6_cOWabyeasy0gMA70zw5yTu-bFgbpyssbDsscsEaWRXN8n9zpTgk41Lx6QO7J6SC6mFcBY_qBv6aIH4YL8AqrQOqdDqlBNFYpUoQdUoU1NO6rQPVUoUIUeUoUaqsBDtKOKGmQtqaIKVVShSJVHZPlxdv1hbnXFNyzhOayxuM8CW-YCY6sZ6P25Zychkyx0Ey9yRJiB3ieZlwcyj7gjQZQ7fiJt-C1SWEW9x-S0qiv5lFCWsBzeSVwMlpNumGZu4rjCzSOR8dwOR-SVmeN4o3OsxNo29WIDyYi8hsnvmzEp-nz6JUaZMkICz_7uQEcGmxi-krj1pacz9sCMiUDXt_mIPNGg9X0ZqJ8dbXlOzvfUfUFOm20rX4Iu2qRjcvZ-drX4Ola-nLFi12-FUpK3
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+transcutaneous+spinal+cord+stimulation+to+explore+inhibitory+and+facilitatory+circuits+in+muscles+of+the+human+lower+limb&rft.jtitle=Experimental+physiology&rft.au=Sordet%2C+Julia&rft.au=Papaiordanidou%2C+Maria&rft.au=Amiez%2C+Nicolas&rft.au=Amiridis%2C+Ioannis&rft.date=2025-07-21&rft.eissn=1469-445X&rft_id=info:doi/10.1113%2FEP093023&rft_id=info%3Apmid%2F40689875&rft.externalDocID=40689875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon