Basic oxygen furnace (BOF) slag as an additive in sodium carbonate-activated slag cements
Basic oxygen furnace slag (BOFS) is a high-volume waste resulting from the production of steel from pig iron. Due to its high free lime content, BOFS is difficult to recycle and/or include into conventional cement systems. Alkali-activation technology offers a pathway to transform industrial wastes...
Saved in:
Published in | Materials and structures Vol. 57; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Basic oxygen furnace slag (BOFS) is a high-volume waste resulting from the production of steel from pig iron. Due to its high free lime content, BOFS is difficult to recycle and/or include into conventional cement systems. Alkali-activation technology offers a pathway to transform industrial wastes such as BOFS into low-carbon cements. Alternative precursors for cement systems are needed as the reliance on commonly used materials like ground granulated blast furnace slag (GGBFS) is becoming unsustainable due to decreasing availability. This study investigates alkali-activated cements incorporating 20 and 30 wt.% of naturally weathered BOFS as a replacement for GGBFS, in both sodium silicate- and sodium carbonate-activated systems. A fraction of BOFS subject to mechanical activation is compared against the untreated BOFS in the 20 wt.% systems. It is observed that in naturally weathered BOFS, a significant portion of the free-lime is found to convert to portlandite, which accelerates alkali-activation kinetics. In sodium silicate-activated systems, the high pH of the activator results in incomplete reaction of the portlandite present in BOFS. The sodium carbonate-activated system shows near complete conversion of portlandite, causing an acceleration in the kinetics of reaction, setting, and hardening. These findings confirm the viability of sodium carbonate activated GGBFS-based systems with only a minor loss in strength properties. BOFS can be utilised as a valuable cement additive for the production of sustainable alkali-activated cements utilising sodium carbonate as a less carbon-intensive activator solution than the more commonly used sodium silicate. Mechanical activation of BOFS offers further optimisation potential for alkali-activation. |
---|---|
AbstractList | Basic oxygen furnace slag (BOFS) is a high-volume waste resulting from the production of steel from pig iron. Due to its high free lime content, BOFS is difficult to recycle and/or include into conventional cement systems. Alkali-activation technology offers a pathway to transform industrial wastes such as BOFS into low-carbon cements. Alternative precursors for cement systems are needed as the reliance on commonly used materials like ground granulated blast furnace slag (GGBFS) is becoming unsustainable due to decreasing availability. This study investigates alkali-activated cements incorporating 20 and 30 wt.% of naturally weathered BOFS as a replacement for GGBFS, in both sodium silicate- and sodium carbonate-activated systems. A fraction of BOFS subject to mechanical activation is compared against the untreated BOFS in the 20 wt.% systems. It is observed that in naturally weathered BOFS, a significant portion of the free-lime is found to convert to portlandite, which accelerates alkali-activation kinetics. In sodium silicate-activated systems, the high pH of the activator results in incomplete reaction of the portlandite present in BOFS. The sodium carbonate-activated system shows near complete conversion of portlandite, causing an acceleration in the kinetics of reaction, setting, and hardening. These findings confirm the viability of sodium carbonate activated GGBFS-based systems with only a minor loss in strength properties. BOFS can be utilised as a valuable cement additive for the production of sustainable alkali-activated cements utilising sodium carbonate as a less carbon-intensive activator solution than the more commonly used sodium silicate. Mechanical activation of BOFS offers further optimisation potential for alkali-activation. |
ArticleNumber | 153 |
Author | Provis, John L. Walkley, Brant Stefanini, Laura |
Author_xml | – sequence: 1 givenname: Laura surname: Stefanini fullname: Stefanini, Laura organization: Department of Materials Science and Engineering, University of Sheffield, VTT Technical Research Centre of Finland Ltd – sequence: 2 givenname: Brant orcidid: 0000-0003-1069-1362 surname: Walkley fullname: Walkley, Brant email: b.walkley@sheffield.ac.uk organization: Department of Chemical and Biological Engineering, University of Sheffield – sequence: 3 givenname: John L. surname: Provis fullname: Provis, John L. organization: Department of Materials Science and Engineering, University of Sheffield, Laboratory for Waste Management, Paul Scherrer Institute |
BookMark | eNp9kE9LAzEQxYMoWKtfwFPAix6imfzZZI9WrAqFXvTgKaRJtmxpszXZiv32pq7gzcMwD-a9B_M7Q8exiwGhS6C3UIG6ywCSKUKZOAyTRB-hEWgFpNKKHxfNZU1kXatTdJbzilJeA7ARep_Y3Drcfe2XIeJml6J1AV9P5tMbnNd2iW3GNmLrfdu3nwG3EefOt7sNdjYtumj7QKwrpyL8kHBhE2Kfz9FJY9c5XPzuMXqbPr4-PJPZ_Onl4X5GHAfRE81Uo5UXuvKagQRfey25Zr52CqwAFRQVshIL6pWwARYucF3zhlvqKuYFH6OroXebuo9dyL1ZdYc31tlwqlnpF0oWFxtcLnU5p9CYbWo3Nu0NUHNAaAaEpuAzPwiNLiE-hHIxx2VIf9X_pL4B2ul0Vw |
Cites_doi | 10.1016/j.jclepro.2017.06.151 10.1016/j.conbuildmat.2017.05.036 10.1016/j.conbuildmat.2017.04.164 10.1016/j.cemconres.2010.03.017 10.1007/s42947-019-0079-2 10.1680/adcr.13.3.115.39288 10.1007/s10971-007-1643-6 10.1016/j.jhazmat.2006.02.073 10.1016/j.cemconcomp.2018.12.013 10.1016/j.cemconres.2015.11.012 10.1016/j.cemconcomp.2021.104262 10.1007/s10853-005-1821-2 10.1016/j.resconrec.2011.09.003 10.1016/j.conbuildmat.2023.130342 10.1617/s11527-012-9906-2 10.5276/JSWTM/2020.372 10.1016/j.cemconres.2011.05.002 10.1016/j.clay.2013.08.036 10.1016/j.resconrec.2017.10.027 10.1016/j.conbuildmat.2019.05.156 10.3390/ma12203447 10.1016/j.cemconcomp.2013.09.006 10.1111/j.1151-2916.1999.tb01826.x 10.1016/j.matpr.2023.10.093 10.1617/s11527-014-0412-6 10.1016/j.conbuildmat.2009.12.028 10.1016/j.cemconcomp.2023.105038 10.1155/2011/463638 10.1016/j.conbuildmat.2021.124024 10.1016/j.cemconcomp.2017.09.005 10.1016/j.cemconres.2013.06.007 10.1038/s43017-020-0093-3 10.1016/j.jclepro.2021.129483 10.1051/metal/2014022 10.1016/j.jclepro.2017.10.077 10.1016/j.cemconres.2016.08.010 10.1111/j.1551-2916.2008.02787.x 10.1016/j.cemconres.2007.08.018 10.1016/j.conbuildmat.2018.09.088 10.1007/978-94-011-2120-0 10.1016/j.cemconres.2007.03.008 10.1680/jadcr.15.00013 10.1016/j.cemconres.2021.106692 10.21809/rilemtechlett.2016.8 10.1016/0008-8846(95)00030-5 10.1016/j.conbuildmat.2014.04.127 10.1016/j.cemconres.2017.07.008 10.1016/j.jclepro.2020.124972 10.1515/jmbm-2020-0011 10.1016/j.mineng.2020.106234 10.1146/annurev-matsci-070813-113515 10.1016/j.jclepro.2022.132486 10.1617/s11527-017-1103-x 10.1016/j.conbuildmat.2008.02.015 10.1533/9781782422884.5.663 10.1016/j.conbuildmat.2020.121147 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1617/s11527-024-02425-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Engineering Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1871-6873 |
ExternalDocumentID | 10_1617_s11527_024_02425_8 |
GrantInformation_xml | – fundername: Interreg North-West Europe grantid: NWE725 funderid: http://dx.doi.org/10.13039/100020362 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV LLZTM M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PDBOC PF0 PT4 PT5 Q2X QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WIP WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z ZMTXR ZY4 _50 ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c314t-827f87d486d82151d9d85382d9c71a417e704564b0d74ae1bce3893f3a0c62d43 |
IEDL.DBID | C6C |
ISSN | 1359-5997 |
IngestDate | Fri Jul 25 19:01:22 EDT 2025 Tue Jul 01 03:14:33 EDT 2025 Fri Feb 21 02:38:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Sodium carbonate BOF slag GGBFS Alkali-activation Mechanical activation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-827f87d486d82151d9d85382d9c71a417e704564b0d74ae1bce3893f3a0c62d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1069-1362 |
OpenAccessLink | https://doi.org/10.1617/s11527-024-02425-8 |
PQID | 3082827475 |
PQPubID | 326281 |
ParticipantIDs | proquest_journals_3082827475 crossref_primary_10_1617_s11527_024_02425_8 springer_journals_10_1617_s11527_024_02425_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Materials and structures |
PublicationTitleAbbrev | Mater Struct |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Wang, Yan (CR23) 2010; 24 Guo, Yin, Yu, Yang, Huang, Yang, Gao (CR26) 2018; 129 Kaja, Melzer, Brouwers, Yu (CR44) 2021; 124 Sun, Peng, Chu, Wang, Zeng, Ji (CR20) 2021 Duxson, Provis (CR9) 2008; 91 Wang, Lyu, Wang, Cao, Liu, Zang (CR41) 2018; 171 Tan, Bernal, Provis (CR46) 2017; 50 CR36 Georget, Lothenbach, Wilson, Zunino, Scrivener (CR53) 2022; 153 San Nicolas, Cyr, Escadeillas (CR33) 2013; 83–84 García-Lodeiro, Fernández-Jiménez, Blanco, Palomo (CR58) 2008; 45 Zhang, Wu, Liu, Zhang (CR10) 2019; 219 Ben Haha, Lothenbach, Le Saout, Winnefeld (CR32) 2011; 41 Yildirim, Prezzi (CR13) 2011 Zhang, Yu, Wei, Li, Zhang (CR24) 2011; 56 Bernal, Provis, Walkley, San Nicolas, Gehman, Brice, Kilcullen, Duxson, Van Deventer (CR52) 2013; 53 Kourounis, Tsivilis, Tsakiridis, Papadimitriou, Tsibouki (CR25) 2007; 37 Ismail, Bernal, Provis, Hamdan, van Deventer (CR54) 2013; 46 Yuan, Yu, Brouwers (CR37) 2017; 84 Wadsö (CR45) 2010; 40 CR2 CR3 Deng, Hong, Lan, Tang (CR14) 1995; 25 Ke, Bernal, Provis (CR42) 2016; 81 CR48 CR47 Duxson, Provis, Lukey, van Deventer (CR7) 2007; 37 Jones, Jackson (CR57) 1993 Kong, Wang, Liu (CR11) 2018; 189 Sithole, Okonta, Freeman (CR29) 2020; 46 Kareken, Shon, Tukaziban, Kozhageldi, Mardenov, Zhang, Kim (CR21) 2023 Marsh, Velenturf, Bernal (CR8) 2022 Provis, Bernal (CR5) 2014; 44 Humad, Habermehl-Cwirzen, Cwirzen (CR34) 2019 Ding, Cheng, Liu, Lee (CR19) 2017; 146 Adesina (CR38) 2020; 29 Ismail, Bernal, Provis, San Nicolas, Hamdan, van Deventer (CR61) 2014; 45 Pathak, Choudhary, Kumar, Damena (CR16) 2019; 12 Lopez Gonzalez, Novais, Labrincha, Blanpain, Pontikes (CR30) 2023; 140 Fernandez-Jimenez, Puertas (CR51) 2001; 13 Fernández-Jiménez, Puertas (CR49) 2003; 15 Kambole, Paige-Green, Kupolati, Ndambuki, Adeboje (CR17) 2017; 148 Lopez Gonzalez, Novais, Labrincha, Blanpain, Pontikes (CR31) 2019; 97 Jawad Ahmed, Franco Santos, Brouwers (CR28) 2023; 367 Puertas, Palacios, Vázquez (CR55) 2006; 41 Kashani, Provis, Qiao, van Deventer (CR50) 2014; 65 Xue, Wu, Hou, Zha (CR15) 2006; 138 CR27 Li, Farzadnia, Shi (CR56) 2017; 100 Yu, Kirkpatrick, Poe, McMillan, Cong (CR59) 1999; 82 Bernal (CR40) 2016; 1 Fernández-Jiménez, Cristelo, Miranda, Palomo (CR6) 2017; 162 Ibrahim, Maslehuddin (CR35) 2021 Naidu, Sheridan, van Dyk (CR1) 2020 Mahieux, Aubert, Escadeillas (CR18) 2009; 23 Kabay, Miyan, Özkan (CR12) 2021 Walkley, Nicolas, Sani, Rees, Hanna, van Deventer, Provis (CR60) 2016; 89 Branca, Pistocchi, Colla, Ragaglini, Amato, Tozzini, Mudersbach, Morillon, Rex, Romaniello (CR22) 2014; 111 Bernal, Provis, Myers, San Nicolas, van Deventer (CR39) 2014; 48 Bernal, San Nicolas, van Deventer, Provis (CR43) 2016; 28 Habert, Miller, John, Provis, Favier, Horvath, Scrivener (CR4) 2020; 1 N Li (2425_CR56) 2017; 100 G Habert (2425_CR4) 2020; 1 SA Bernal (2425_CR52) 2013; 53 A Fernández-Jiménez (2425_CR6) 2017; 162 PL Lopez Gonzalez (2425_CR30) 2023; 140 SA Bernal (2425_CR39) 2014; 48 A Fernandez-Jimenez (2425_CR51) 2001; 13 A Adesina (2425_CR38) 2020; 29 TA Branca (2425_CR22) 2014; 111 GC Jones (2425_CR57) 1993 SA Bernal (2425_CR40) 2016; 1 AM Kaja (2425_CR44) 2021; 124 T Zhang (2425_CR24) 2011; 56 K Sun (2425_CR20) 2021 ATM Marsh (2425_CR8) 2022 G Kareken (2425_CR21) 2023 B Yuan (2425_CR37) 2017; 84 P-Y Mahieux (2425_CR18) 2009; 23 2425_CR27 P Duxson (2425_CR9) 2008; 91 B Walkley (2425_CR60) 2016; 89 P Duxson (2425_CR7) 2007; 37 F Georget (2425_CR53) 2022; 153 F Puertas (2425_CR55) 2006; 41 Y Xue (2425_CR15) 2006; 138 2425_CR2 2425_CR3 Z Tan (2425_CR46) 2017; 50 L Wadsö (2425_CR45) 2010; 40 TS Naidu (2425_CR1) 2020 S Pathak (2425_CR16) 2019; 12 M Deng (2425_CR14) 1995; 25 2425_CR36 H Guo (2425_CR26) 2018; 129 SA Bernal (2425_CR43) 2016; 28 C Kambole (2425_CR17) 2017; 148 M Ibrahim (2425_CR35) 2021 A Fernández-Jiménez (2425_CR49) 2003; 15 I Ismail (2425_CR61) 2014; 45 Y Kong (2425_CR11) 2018; 189 N Zhang (2425_CR10) 2019; 219 PL Lopez Gonzalez (2425_CR31) 2019; 97 J Wang (2425_CR41) 2018; 171 I García-Lodeiro (2425_CR58) 2008; 45 M Ben Haha (2425_CR32) 2011; 41 S Kourounis (2425_CR25) 2007; 37 I Ismail (2425_CR54) 2013; 46 Q Wang (2425_CR23) 2010; 24 2425_CR48 2425_CR47 N Kabay (2425_CR12) 2021 JL Provis (2425_CR5) 2014; 44 X Ke (2425_CR42) 2016; 81 Y-C Ding (2425_CR19) 2017; 146 IZ Yildirim (2425_CR13) 2011 M Jawad Ahmed (2425_CR28) 2023; 367 AM Humad (2425_CR34) 2019 T Sithole (2425_CR29) 2020; 46 R San Nicolas (2425_CR33) 2013; 83–84 A Kashani (2425_CR50) 2014; 65 P Yu (2425_CR59) 1999; 82 |
References_xml | – volume: 162 start-page: 1200 year: 2017 end-page: 1209 ident: CR6 article-title: Sustainable alkali activated materials: precursor and activator derived from industrial wastes publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.06.151 – volume: 148 start-page: 618 year: 2017 end-page: 631 ident: CR17 article-title: Basic oxygen furnace slag for road pavements: a review of material characteristics and performance for effective utilisation in southern Africa publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.05.036 – volume: 146 start-page: 644 year: 2017 end-page: 651 ident: CR19 article-title: Study on the treatment of BOF slag to replace fine aggregate in concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.04.164 – volume: 40 start-page: 1129 year: 2010 end-page: 1137 ident: CR45 article-title: Operational issues in isothermal calorimetry publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2010.03.017 – volume: 12 start-page: 664 year: 2019 end-page: 673 ident: CR16 article-title: Feasibility assessment of the use of basic oxygen furnace slag in open graded asphalt courses publication-title: Int J Pavement Res Technol doi: 10.1007/s42947-019-0079-2 – volume: 13 start-page: 115 year: 2001 end-page: 121 ident: CR51 article-title: Setting of alkali-activated slag cement. Influence of activator nature publication-title: Adv Cem Res doi: 10.1680/adcr.13.3.115.39288 – volume: 45 start-page: 63 year: 2008 end-page: 72 ident: CR58 article-title: FTIR study of the sol–gel synthesis of cementitious gels: C-S–H and N–A–S–H publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-007-1643-6 – volume: 138 start-page: 261 year: 2006 end-page: 268 ident: CR15 article-title: Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.02.073 – volume: 97 start-page: 143 year: 2019 end-page: 153 ident: CR31 article-title: Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2018.12.013 – volume: 81 start-page: 24 year: 2016 end-page: 37 ident: CR42 article-title: Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2015.11.012 – volume: 124 start-page: 104262 year: 2021 ident: CR44 article-title: On the optimization of BOF slag hydration kinetics publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104262 – volume: 41 start-page: 3071 year: 2006 end-page: 3082 ident: CR55 article-title: Carbonation process of alkali-activated slag mortars publication-title: J Mater Sci doi: 10.1007/s10853-005-1821-2 – volume: 56 start-page: 48 year: 2011 end-page: 55 ident: CR24 article-title: Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2011.09.003 – volume: 367 start-page: 130342 year: 2023 ident: CR28 article-title: Air granulated basic oxygen furnace (BOF) slag application as a binder: effect on strength, volumetric stability, hydration study, and environmental risk publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.130342 – volume: 46 start-page: 361 year: 2013 end-page: 373 ident: CR54 article-title: Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure publication-title: Mater Struct doi: 10.1617/s11527-012-9906-2 – volume: 46 start-page: 372 year: 2020 end-page: 383 ident: CR29 article-title: Mechanical properties and structure of fly ash modified basic oxygen furnace slag based geopolymer masonry blocks publication-title: J Solid Waste Technol Manag doi: 10.5276/JSWTM/2020.372 – volume: 41 start-page: 955 year: 2011 end-page: 963 ident: CR32 article-title: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: effect of MgO publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2011.05.002 – volume: 83–84 start-page: 253 year: 2013 end-page: 262 ident: CR33 article-title: Characteristics and applications of flash metakaolins publication-title: Appl Clay Sci doi: 10.1016/j.clay.2013.08.036 – volume: 129 start-page: 209 year: 2018 end-page: 218 ident: CR26 article-title: Iron recovery and active residue production from basic oxygen furnace (BOF) slag for supplementary cementitious materials publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2017.10.027 – volume: 219 start-page: 11 year: 2019 end-page: 18 ident: CR10 article-title: Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.05.156 – year: 2019 ident: CR34 article-title: Effects of fineness and chemical composition of blast furnace slag on properties of alkali-activated binder publication-title: Materials (Basel) doi: 10.3390/ma12203447 – volume: 45 start-page: 125 year: 2014 end-page: 135 ident: CR61 article-title: Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2013.09.006 – volume: 82 start-page: 742 year: 1999 end-page: 748 ident: CR59 article-title: Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1999.tb01826.x – year: 2023 ident: CR21 article-title: Geopolymer as a key material to utilize basic oxygen furnace slag (BOFS) as an aggregate publication-title: Mater Today Proc doi: 10.1016/j.matpr.2023.10.093 – volume: 15 start-page: 126 year: 2003 end-page: 136 ident: CR49 article-title: Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements publication-title: Adv Cem Res doi: 10.1680/adcr.13.3.115.39288 – volume: 48 start-page: 517 year: 2014 end-page: 529 ident: CR39 article-title: Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders publication-title: Mater Struct doi: 10.1617/s11527-014-0412-6 – volume: 24 start-page: 1134 year: 2010 end-page: 1140 ident: CR23 article-title: Hydration properties of basic oxygen furnace steel slag publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2009.12.028 – volume: 140 start-page: 105038 year: 2023 ident: CR30 article-title: The impact of granulation on the mineralogy of a modified-BOF slag and the effect on kinetics and compressive strength after alkali activation publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2023.105038 – ident: CR36 – year: 2011 ident: CR13 article-title: Chemical, mineralogical, and morphological properties of steel slag publication-title: Adv Civ Eng doi: 10.1155/2011/463638 – year: 2021 ident: CR20 article-title: Utilization of BOF steel slag aggregate in metakaolin-based geopolymer publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124024 – ident: CR47 – volume: 84 start-page: 188 year: 2017 end-page: 197 ident: CR37 article-title: Time-dependent characterization of Na CO activated slag publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2017.09.005 – volume: 53 start-page: 127 year: 2013 end-page: 144 ident: CR52 article-title: Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.06.007 – ident: CR2 – volume: 1 start-page: 559 year: 2020 end-page: 573 ident: CR4 article-title: Environmental impacts and decarbonization strategies in the cement and concrete industries publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-020-0093-3 – year: 2021 ident: CR12 article-title: Basic oxygen furnace and ground granulated blast furnace slag based alkali-activated pastes: characterization and optimization publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.129483 – volume: 111 start-page: 155 year: 2014 end-page: 167 ident: CR22 article-title: Investigation of (BOF) converter slag use for agriculture in europe publication-title: Metall Res Technol doi: 10.1051/metal/2014022 – volume: 171 start-page: 622 year: 2018 end-page: 629 ident: CR41 article-title: Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.10.077 – volume: 89 start-page: 120 year: 2016 end-page: 135 ident: CR60 article-title: Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2016.08.010 – volume: 91 start-page: 3864 year: 2008 end-page: 3869 ident: CR9 article-title: Designing precursors for geopolymer cements publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2008.02787.x – volume: 37 start-page: 1590 year: 2007 end-page: 1597 ident: CR7 article-title: The role of inorganic polymer technology in the development of ‘green concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.08.018 – volume: 189 start-page: 1093 year: 2018 end-page: 1104 ident: CR11 article-title: Microwave pre-curing of Portland cement-steel slag powder composite for its hydration properties publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.09.088 – year: 1993 ident: CR57 publication-title: Infrared transmission spectra of carbonate minerals doi: 10.1007/978-94-011-2120-0 – ident: CR27 – volume: 37 start-page: 815 year: 2007 end-page: 822 ident: CR25 article-title: Properties and hydration of blended cements with steelmaking slag publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.03.008 – ident: CR48 – volume: 28 start-page: 262 year: 2016 end-page: 273 ident: CR43 article-title: Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator publication-title: Adv Cem Res doi: 10.1680/jadcr.15.00013 – volume: 153 start-page: 106692 year: 2022 ident: CR53 article-title: Stability of hemicarbonate under cement paste-like conditions publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106692 – volume: 1 start-page: 39 year: 2016 end-page: 44 ident: CR40 article-title: Advances in near-neutral salts activation of blast furnace slags publication-title: RILEM Tech Lett doi: 10.21809/rilemtechlett.2016.8 – ident: CR3 – volume: 25 start-page: 440 year: 1995 end-page: 448 ident: CR14 article-title: Mechanism of expansion in hardened cement pastes with hard-burnt free lime publication-title: Cem Concr Res doi: 10.1016/0008-8846(95)00030-5 – volume: 65 start-page: 583 year: 2014 end-page: 591 ident: CR50 article-title: The interrelationship between surface chemistry and rheology in alkali activated slag paste publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.04.127 – volume: 100 start-page: 214 year: 2017 end-page: 226 ident: CR56 article-title: Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2017.07.008 – year: 2021 ident: CR35 article-title: An overview of factors influencing the properties of alkali-activated binders publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124972 – volume: 29 start-page: 106 year: 2020 end-page: 113 ident: CR38 article-title: Influence of various additives on the early age compressive strength of sodium carbonate activated slag composites: an overview publication-title: J Mech Behav Mater doi: 10.1515/jmbm-2020-0011 – year: 2020 ident: CR1 article-title: Basic oxygen furnace slag: review of current and potential uses publication-title: Miner Eng doi: 10.1016/j.mineng.2020.106234 – volume: 44 start-page: 299 year: 2014 end-page: 327 ident: CR5 article-title: Geopolymers and related alkali-activated materials publication-title: Annu Rev Mater Res doi: 10.1146/annurev-matsci-070813-113515 – year: 2022 ident: CR8 article-title: Circular economy strategies for concrete: implementation and integration publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.132486 – volume: 50 start-page: 1 year: 2017 end-page: 12 ident: CR46 article-title: Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes publication-title: Mater Struct doi: 10.1617/s11527-017-1103-x – volume: 23 start-page: 742 year: 2009 end-page: 747 ident: CR18 article-title: Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2008.02.015 – volume: 24 start-page: 1134 year: 2010 ident: 2425_CR23 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2009.12.028 – volume: 44 start-page: 299 year: 2014 ident: 2425_CR5 publication-title: Annu Rev Mater Res doi: 10.1146/annurev-matsci-070813-113515 – volume: 23 start-page: 742 year: 2009 ident: 2425_CR18 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2008.02.015 – volume: 171 start-page: 622 year: 2018 ident: 2425_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.10.077 – volume: 81 start-page: 24 year: 2016 ident: 2425_CR42 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2015.11.012 – ident: 2425_CR36 doi: 10.1533/9781782422884.5.663 – volume: 15 start-page: 126 year: 2003 ident: 2425_CR49 publication-title: Adv Cem Res doi: 10.1680/adcr.13.3.115.39288 – volume: 1 start-page: 559 year: 2020 ident: 2425_CR4 publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-020-0093-3 – volume: 53 start-page: 127 year: 2013 ident: 2425_CR52 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.06.007 – volume: 83–84 start-page: 253 year: 2013 ident: 2425_CR33 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2013.08.036 – volume: 140 start-page: 105038 year: 2023 ident: 2425_CR30 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2023.105038 – volume: 100 start-page: 214 year: 2017 ident: 2425_CR56 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2017.07.008 – ident: 2425_CR2 – volume: 45 start-page: 63 year: 2008 ident: 2425_CR58 publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-007-1643-6 – volume: 41 start-page: 3071 year: 2006 ident: 2425_CR55 publication-title: J Mater Sci doi: 10.1007/s10853-005-1821-2 – volume: 13 start-page: 115 year: 2001 ident: 2425_CR51 publication-title: Adv Cem Res doi: 10.1680/adcr.13.3.115.39288 – volume: 46 start-page: 372 year: 2020 ident: 2425_CR29 publication-title: J Solid Waste Technol Manag doi: 10.5276/JSWTM/2020.372 – ident: 2425_CR47 – year: 2011 ident: 2425_CR13 publication-title: Adv Civ Eng doi: 10.1155/2011/463638 – volume: 146 start-page: 644 year: 2017 ident: 2425_CR19 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.04.164 – volume: 367 start-page: 130342 year: 2023 ident: 2425_CR28 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.130342 – volume: 48 start-page: 517 year: 2014 ident: 2425_CR39 publication-title: Mater Struct doi: 10.1617/s11527-014-0412-6 – year: 2023 ident: 2425_CR21 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2023.10.093 – volume: 1 start-page: 39 year: 2016 ident: 2425_CR40 publication-title: RILEM Tech Lett doi: 10.21809/rilemtechlett.2016.8 – year: 2021 ident: 2425_CR12 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.129483 – volume: 45 start-page: 125 year: 2014 ident: 2425_CR61 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2013.09.006 – ident: 2425_CR3 – volume: 28 start-page: 262 year: 2016 ident: 2425_CR43 publication-title: Adv Cem Res doi: 10.1680/jadcr.15.00013 – volume: 189 start-page: 1093 year: 2018 ident: 2425_CR11 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.09.088 – volume: 84 start-page: 188 year: 2017 ident: 2425_CR37 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2017.09.005 – year: 2021 ident: 2425_CR20 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124024 – volume: 153 start-page: 106692 year: 2022 ident: 2425_CR53 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106692 – volume: 162 start-page: 1200 year: 2017 ident: 2425_CR6 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.06.151 – ident: 2425_CR27 doi: 10.1016/j.conbuildmat.2020.121147 – year: 2019 ident: 2425_CR34 publication-title: Materials (Basel) doi: 10.3390/ma12203447 – volume-title: Infrared transmission spectra of carbonate minerals year: 1993 ident: 2425_CR57 doi: 10.1007/978-94-011-2120-0 – volume: 91 start-page: 3864 year: 2008 ident: 2425_CR9 publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2008.02787.x – ident: 2425_CR48 – volume: 41 start-page: 955 year: 2011 ident: 2425_CR32 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2011.05.002 – volume: 37 start-page: 815 year: 2007 ident: 2425_CR25 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.03.008 – volume: 148 start-page: 618 year: 2017 ident: 2425_CR17 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.05.036 – volume: 25 start-page: 440 year: 1995 ident: 2425_CR14 publication-title: Cem Concr Res doi: 10.1016/0008-8846(95)00030-5 – volume: 82 start-page: 742 year: 1999 ident: 2425_CR59 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1999.tb01826.x – volume: 219 start-page: 11 year: 2019 ident: 2425_CR10 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.05.156 – volume: 37 start-page: 1590 year: 2007 ident: 2425_CR7 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.08.018 – volume: 138 start-page: 261 year: 2006 ident: 2425_CR15 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.02.073 – year: 2022 ident: 2425_CR8 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.132486 – volume: 29 start-page: 106 year: 2020 ident: 2425_CR38 publication-title: J Mech Behav Mater doi: 10.1515/jmbm-2020-0011 – volume: 56 start-page: 48 year: 2011 ident: 2425_CR24 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2011.09.003 – volume: 97 start-page: 143 year: 2019 ident: 2425_CR31 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2018.12.013 – year: 2021 ident: 2425_CR35 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.124972 – volume: 129 start-page: 209 year: 2018 ident: 2425_CR26 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2017.10.027 – year: 2020 ident: 2425_CR1 publication-title: Miner Eng doi: 10.1016/j.mineng.2020.106234 – volume: 12 start-page: 664 year: 2019 ident: 2425_CR16 publication-title: Int J Pavement Res Technol doi: 10.1007/s42947-019-0079-2 – volume: 89 start-page: 120 year: 2016 ident: 2425_CR60 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2016.08.010 – volume: 40 start-page: 1129 year: 2010 ident: 2425_CR45 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2010.03.017 – volume: 111 start-page: 155 year: 2014 ident: 2425_CR22 publication-title: Metall Res Technol doi: 10.1051/metal/2014022 – volume: 46 start-page: 361 year: 2013 ident: 2425_CR54 publication-title: Mater Struct doi: 10.1617/s11527-012-9906-2 – volume: 65 start-page: 583 year: 2014 ident: 2425_CR50 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.04.127 – volume: 124 start-page: 104262 year: 2021 ident: 2425_CR44 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104262 – volume: 50 start-page: 1 year: 2017 ident: 2425_CR46 publication-title: Mater Struct doi: 10.1617/s11527-017-1103-x |
SSID | ssj0039112 |
Score | 2.400927 |
Snippet | Basic oxygen furnace slag (BOFS) is a high-volume waste resulting from the production of steel from pig iron. Due to its high free lime content, BOFS is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Acceleration Activated carbon Basic converters Building Materials Cement Civil Engineering Engineering GGBS Industrial wastes Kinetics Lime Machines Manufacturing Materials Science Original Article Oxygen steel making Pig iron Processes Setting (hardening) Slag Slag cements Sodium Sodium carbonate Sodium silicates Solid Mechanics Theoretical and Applied Mechanics |
Title | Basic oxygen furnace (BOF) slag as an additive in sodium carbonate-activated slag cements |
URI | https://link.springer.com/article/10.1617/s11527-024-02425-8 https://www.proquest.com/docview/3082827475 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB4YQGCRhxM7Y1NRKhBloVI7RY7toA6kqGkR_HvOTqIWBANLEsmxh-9sf3c-3x1C5zBrgKeUJMJlKaGKhSTKTDV3zlPQNgIlbM3Ix2E4GNH7cTCu0uSYWJh1_z2Q603hmrqrBJiEWO2Y8E3UDFyfmTINvbBX77o-LFrr2fSDiARRxKoAmd_H-E5CK83yhzPUckx_F-1UyiHultLcQxs630fbaykDD9AkFoArnn18guRxZjpIjS_ip_4lBum-YFFgkWNzTchsZHia42KmpstXLMU8NUflmphYhnf4UGUPaU8Ii0M06t8-9wakKo9ApO_SBeEeyzhTlIeKG-JWkQLu5Z6KJHMFdZlmNllM6ihGhXZTqY12kvnCkaGnqH-EGvks18cIK08CTbNA-dShKcuiCOwmCjA6AVeAWAtd1Xglb2UWjMRYD4BuUqKbALKJRTfhLdSuIU2qFVEkJi0ONyYwDHZdw7xq_nu0k__9foq2PCtpcw2sjRqL-VKfgd6wSDuo2e3H8dC87yYPtx07geA58rpfbg64_w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ8MILDIw6ntsUVUBdqytBJMlmMnqAMpaloE_56zk6iAYGCL5PiGz-f7Pr_uEDoFrwGeMpoon8WEGtYkIrXV3DmPQW1ERrmakf1Bszuid4_RY_koLK9uu1dHki5S22kNNHuV-7YCKwFOIU4nE76MVkAMcOvLo6BVxd8Qpq874wwjQSIhWPlU5ncb3-looTF_HIs6tulsoo1SJuJWMa5baCnJttH6l-SBO-iprQBhPHn_AB_Aqe2gE3zWfuicYxjnZ6xyrDJsLwzZkIbHGc4nZjx_wVpNY7tpnhD7quENPkzRQ7u9wnwXjTo3w-suKQslEB36dEZ4wFLODOVNwy2FG2GAhXlghGa-oj5LmEsbE3uGUZX4sU6sTklD5elmYGi4h2rZJEv2ETaBBsJmkQmpR2OWCgErKAowehE3gFgdXVR4ydciH4a06whAVxboSkBWOnQlr6NGBaks50YubYIcbhfDYOyygnnR_Le1g__9foJWu8N-T_ZuB_eHaC1wo24vhzVQbTadJ0egJmbxsXOeT_tOvB0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgAIFFkzixM9JCVF6FgUplshw7QR1Iq6ZF8O85O4laEAxskRx7-O7s787nu0PoGLQGeEorIh0WE6pZQMLUdHPnPAZrw9fS9ox86AadHr3t-_25LH772r0KSRY5DaZKUza5GOnUbnGg3IvcMd1YCfALsTYz4YtoCTwVx7hf7aBdncUebGUb7_T8kPhhyMq0md_X-E5NM3vzR4jUMk-0jtZKkxFfFjLeQAtJtolW5woJbqGXlgS08fDjE_QBp2aCSvBJ6zE6xSDzVyxzLDNsHg-Z4w0PMpwP9WD6hpUcx-YCPSEmw-EdPnQxQ9l7w3wb9aLr53aHlE0TiPIcOiHcZSlnmvJAc0PnOtTAyNzVoWKOpA5LmC0hEzc1ozJxYpUYmyX1ZFMFrqbeDqplwyzZRVi7Csib-dqjTRqzNAzBm6IAY9PnGhCro7MKLzEqamMI41MAuqJAVwCywqIreB01KkhFuU9yYYrlcOMYw2LnFcyz4b9X2_vf70do-ekqEvc33bt9tOJaoZt3Yg1Um4ynyQEYFpP40OrOF0eRwEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basic+oxygen+furnace+%28BOF%29+slag+as+an+additive+in+sodium+carbonate-activated+slag+cements&rft.jtitle=Materials+and+structures&rft.au=Stefanini%2C+Laura&rft.au=Walkley%2C+Brant&rft.au=Provis%2C+John+L.&rft.date=2024-09-01&rft.pub=Springer+Netherlands&rft.issn=1359-5997&rft.eissn=1871-6873&rft.volume=57&rft.issue=7&rft_id=info:doi/10.1617%2Fs11527-024-02425-8&rft.externalDocID=10_1617_s11527_024_02425_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-5997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-5997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-5997&client=summon |