Combinatorial refinement on circulant graphs

The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the...

Full description

Saved in:
Bibliographic Details
Published inComputational complexity Vol. 33; no. 2
Main Author Kluge, Laurence
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1016-3328
1420-8954
DOI10.1007/s00037-024-00255-2

Cover

Abstract The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group Z n , and prove that the number of rounds until stabilization is bounded by O ( d ( n ) log n ) , where d ( n ) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order p ℓ with p an odd prime, ℓ > 3 and vertex degree Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of O ( Δ n log n ) . Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning.
AbstractList The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group Z n , and prove that the number of rounds until stabilization is bounded by O ( d ( n ) log n ) , where d ( n ) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order p ℓ with p an odd prime, ℓ > 3 and vertex degree Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of O ( Δ n log n ) . Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning.
The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group $$\mathbb{Z}_n$$ Z n , and prove that the number of rounds until stabilization is bounded by $$\mathcal{O}(d(n)\log n)$$ O ( d ( n ) log n ) , where $$d(n)$$ d ( n ) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order $$p^\ell$$ p ℓ with p an odd prime, $$\ell>3$$ ℓ > 3 and vertex degree $$\Delta$$ Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of $$\mathcal{O}(\Delta \, n\log n)$$ O ( Δ n log n ) . Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning.
The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group Zn, and prove that the number of rounds until stabilization is bounded by O(d(n)logn), where d(n) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order pℓ with p an odd prime, ℓ>3 and vertex degree Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of O(Δnlogn). Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning.
ArticleNumber 9
Author Kluge, Laurence
Author_xml – sequence: 1
  givenname: Laurence
  orcidid: 0009-0005-7288-0291
  surname: Kluge
  fullname: Kluge, Laurence
  email: klugelau@hu-berlin.de
  organization: Institut für Informatik, Humboldt-Universität zu Berlin
BookMark eNp9kEtPwzAQhC1UJNrCH-BUiSuGXT8S54gqXlIlLnC2nGRTUrV2sZMD_x5DkLhx2l1pZnb0LdjMB0-MXSLcIEB5mwBAlhyE4gBCay5O2ByVAG4qrWZ5Byy4lMKcsUVKOwDURqo5u16HQ917N4TYu_0qUtd7OpAfVsGvmj42497lYxvd8T2ds9PO7RNd_M4le3u4f10_8c3L4_P6bsMbiWrgBk1NCKqWqAtRVCRFWShSte50ZYwh7MpGGYei1CCoNa2q28ZoItXqWpFcsqsp9xjDx0hpsLswRp9fWgkGsaqk0VklJlUTQ0q5uT3G_uDip0Ww31TsRMVmKvaHihXZJCdTymK_pfgX_Y_rC3PAZSY
Cites_doi 10.1007/s10801-022-01193-4
10.1016/0024-3795(88)90054-7
10.1109/LICS.2019.8785694
10.1016/0304-3975(82)90016-0
10.1007/11786986_2
10.1007/BF03027290
10.1080/0025570X.1966.11975699
10.1112/S0024611503014412
10.1007/BF01305232
10.1016/0166-218X(91)90049-3
10.1007/s00037-016-0147-6
10.1090/S1061-0022-04-00833-7
10.1007/978-3-540-70918-3_58
10.1007/s00013-005-1421-z
10.1090/conm/558/11050
10.1007/3-540-48224-5_27
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. 2024
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00037-024-00255-2
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID 10_1007_s00037_024_00255_2
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c314t-818be104b3156269e32764e4b5f59888e1f7c48a127502ed8d4bdc85ee4d5b4e3
IEDL.DBID AGYKE
ISSN 1016-3328
IngestDate Tue Sep 09 14:51:24 EDT 2025
Tue Jul 01 01:36:15 EDT 2025
Mon Jul 21 06:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Schur modules
Circulant graphs
05C60
05C85
Weisfeiler-Leman algorithm
Cayley graphs
Color refinement
20C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-818be104b3156269e32764e4b5f59888e1f7c48a127502ed8d4bdc85ee4d5b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-7288-0291
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00037-024-00255-2
PQID 3081199385
PQPubID 2044003
ParticipantIDs proquest_journals_3081199385
crossref_primary_10_1007_s00037_024_00255_2
springer_journals_10_1007_s00037_024_00255_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 255_CR9
255_CR8
255_CR7
255_CR6
255_CR5
255_CR4
255_CR3
255_CR2
255_CR1
255_CR20
255_CR10
255_CR21
255_CR11
255_CR22
255_CR12
255_CR23
255_CR13
255_CR14
255_CR15
255_CR16
255_CR17
255_CR18
255_CR19
References_xml – ident: 255_CR16
  doi: 10.1007/s10801-022-01193-4
– ident: 255_CR17
  doi: 10.1016/0024-3795(88)90054-7
– ident: 255_CR12
  doi: 10.1109/LICS.2019.8785694
– ident: 255_CR3
  doi: 10.1016/0304-3975(82)90016-0
– ident: 255_CR10
  doi: 10.1007/11786986_2
– ident: 255_CR18
  doi: 10.1007/BF03027290
– ident: 255_CR23
  doi: 10.1080/0025570X.1966.11975699
– ident: 255_CR11
– ident: 255_CR14
  doi: 10.1112/S0024611503014412
– ident: 255_CR2
  doi: 10.1007/BF01305232
– ident: 255_CR9
– ident: 255_CR19
  doi: 10.1016/0166-218X(91)90049-3
– ident: 255_CR1
  doi: 10.1007/s00037-016-0147-6
– ident: 255_CR7
– ident: 255_CR6
  doi: 10.1090/S1061-0022-04-00833-7
– ident: 255_CR20
  doi: 10.1007/978-3-540-70918-3_58
– ident: 255_CR13
  doi: 10.1007/s00013-005-1421-z
– ident: 255_CR15
  doi: 10.1090/conm/558/11050
– ident: 255_CR21
– ident: 255_CR4
– ident: 255_CR8
  doi: 10.1007/3-540-48224-5_27
– ident: 255_CR22
– ident: 255_CR5
SSID ssj0015834
Score 2.340217
Snippet The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of...
The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Color
Combinatorial analysis
Complexity
Computational Mathematics and Numerical Analysis
Computer Science
Graph theory
Graphs
Isomorphism
Labeling
Prime numbers
Title Combinatorial refinement on circulant graphs
URI https://link.springer.com/article/10.1007/s00037-024-00255-2
https://www.proquest.com/docview/3081199385
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDWiSHbwJiXQH1t3BAISjZxcgqeFrm1iTMCwcfGv961sEIkeuCxp1jTr62vf9_be-wrw4Ce-b0JOCfMDTbjVPaK0ZMQGvMvmTHepddkWU38S8eeZmBVFYWmZ7V6GJN1JvS12c1wpBG0KcUCY4MFbFT0ZygpU-0_vL6Nt9EDITTQZ4QxhjMqiWObvUX4bpB3K3AuMOnszrkFUfukmzeSzs85UJ_neI3E8dCrncFYAUK-_0ZgLODKLOtTKyx28Yq_X4fR1S-iaXkIbO6APnXvoqLAezgLRaf5j0VsuvORjlWezYsPRX6dXEI1Hb8MJKS5aIAnr8Yyg0VYG_TLF0JujfmgYDXxuuBJWhOgim54NEi7njgyeGi01VzqRwhiuheKGXUNlsVyYG_AQUBqZBIEMheXhHN2hsKuttUZhS3RVAx5LacdfGz6NeMuc7MQSo1hiJ5aYNqBZLkhc7K00Zohi8rRDKRrQLuW7e_3_aLeHdb-DE5ovkctdaUIlW63NPSKQTLVQ4caDwbRVKF4Ljof-EJ8R7f8Aao3R0w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADjwKiUCADG7WU-hVnrBBVgbZTK3Wz6tiWWFLUlP_PxU1SgWBgtGLZ0ufHfZc7fwfwIDMpXcopYTKxhHvbJ8YqRnzCY7ZkNqY-ZFtM5WjOXxdiUT0KK-ps9zokGW7q5rFb0EohaFNIIMIEL959JAOqrFswp4MmdiDUNpaMZIYwRlX1VOb3Mb6box3H_BEWDdZmeArHFU2MBtt1PYM9l7fhpC7BEFUnsg1Hk0Z2tTiHHnZAT7f0o3FbRTgbcsjy91-0yqPsfV3mnGIjiFQXFzAfPs-eRqQqh0Ay1ucbgqbVOPSeDEOfi8rUMZpI7rgRXqToyLq-TzKulkGynTqrLDc2U8I5boXhjl1CK1_l7goipH1OZUmiUuF5ukSnJY2t994ZbInYdOCxRkV_bFUvdKNvHDDUiKEOGGragW4NnK5OQKEZco0yOVCJDvRqMHef_x7t-n_d7-FgNJuM9fhl-nYDh7Rc25Bt0oXWZv3pbpEzbMxd2CJfcjm0iA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIHrwURWrVffgzYZu89rsUaqlvooHC72FZpOAl21p1__vJPuoih48hoQsfEl2vsnMfEHoWmRC2JQRTEViMHOmj7WRFLuExXRGTUxcyLYYi9GEPU759EsVf8h2r0OSZU2DV2nKi97CuF5T-BZ0UzDYFxxIMYaf8Bbzps-Ha8WgiSNwWcaVgdhgSomsymZ-n-O7aVrzzR8h0mB5hgdor6KM0W25xodow-YttF8_xxBVp7OFdl8aCdbVEerCAPB6vU8NWyyCrwGf9FeB0TyPsvelzz-FRhCsXh2jyfD-bTDC1dMIOKN9VmAws9qCJ6Up-F9EpJaSRDDLNHc8BafW9l2SMTkL8u3EGmmYNpnk1jLDNbP0BG3m89yeoggooJVZksiUO5bOwIFJY-OcsxpaPNZtdFOjohalAoZqtI4DhgowVAFDRdqoUwOnqtOwUhR4h08UlLyNujWY6-6_Zzv73_ArtP16N1TPD-Onc7RD_NKGxJMO2iyWH_YC6EOhL8MO-QRTOLiu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+refinement+on+circulant+graphs&rft.jtitle=Computational+complexity&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1007%2Fs00037-024-00255-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon