Combinatorial refinement on circulant graphs
The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the...
Saved in:
Published in | Computational complexity Vol. 33; no. 2 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1016-3328 1420-8954 |
DOI | 10.1007/s00037-024-00255-2 |
Cover
Abstract | The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group
Z
n
, and prove that the number of rounds until stabilization is bounded by
O
(
d
(
n
)
log
n
)
, where
d
(
n
)
is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order
p
ℓ
with p an odd prime,
ℓ
>
3
and vertex degree
Δ
smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of
O
(
Δ
n
log
n
)
. Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning. |
---|---|
AbstractList | The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group
Z
n
, and prove that the number of rounds until stabilization is bounded by
O
(
d
(
n
)
log
n
)
, where
d
(
n
)
is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order
p
ℓ
with p an odd prime,
ℓ
>
3
and vertex degree
Δ
smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of
O
(
Δ
n
log
n
)
. Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning. The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group $$\mathbb{Z}_n$$ Z n , and prove that the number of rounds until stabilization is bounded by $$\mathcal{O}(d(n)\log n)$$ O ( d ( n ) log n ) , where $$d(n)$$ d ( n ) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order $$p^\ell$$ p ℓ with p an odd prime, $$\ell>3$$ ℓ > 3 and vertex degree $$\Delta$$ Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of $$\mathcal{O}(\Delta \, n\log n)$$ O ( Δ n log n ) . Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning. The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the two-dimensional Weisfeiler--Leman algorithm on circulant graphs, i.e., on Cayley graphs of the cyclic group Zn, and prove that the number of rounds until stabilization is bounded by O(d(n)logn), where d(n) is the number of divisors of n. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order pℓ with p an odd prime, ℓ>3 and vertex degree Δ smaller than p. We also show that the color refinement method (also known as the one-dimensional Weisfeiler--Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of O(Δnlogn). Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning. |
ArticleNumber | 9 |
Author | Kluge, Laurence |
Author_xml | – sequence: 1 givenname: Laurence orcidid: 0009-0005-7288-0291 surname: Kluge fullname: Kluge, Laurence email: klugelau@hu-berlin.de organization: Institut für Informatik, Humboldt-Universität zu Berlin |
BookMark | eNp9kEtPwzAQhC1UJNrCH-BUiSuGXT8S54gqXlIlLnC2nGRTUrV2sZMD_x5DkLhx2l1pZnb0LdjMB0-MXSLcIEB5mwBAlhyE4gBCay5O2ByVAG4qrWZ5Byy4lMKcsUVKOwDURqo5u16HQ917N4TYu_0qUtd7OpAfVsGvmj42497lYxvd8T2ds9PO7RNd_M4le3u4f10_8c3L4_P6bsMbiWrgBk1NCKqWqAtRVCRFWShSte50ZYwh7MpGGYei1CCoNa2q28ZoItXqWpFcsqsp9xjDx0hpsLswRp9fWgkGsaqk0VklJlUTQ0q5uT3G_uDip0Ww31TsRMVmKvaHihXZJCdTymK_pfgX_Y_rC3PAZSY |
Cites_doi | 10.1007/s10801-022-01193-4 10.1016/0024-3795(88)90054-7 10.1109/LICS.2019.8785694 10.1016/0304-3975(82)90016-0 10.1007/11786986_2 10.1007/BF03027290 10.1080/0025570X.1966.11975699 10.1112/S0024611503014412 10.1007/BF01305232 10.1016/0166-218X(91)90049-3 10.1007/s00037-016-0147-6 10.1090/S1061-0022-04-00833-7 10.1007/978-3-540-70918-3_58 10.1007/s00013-005-1421-z 10.1090/conm/558/11050 10.1007/3-540-48224-5_27 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. 2024 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00037-024-00255-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1420-8954 |
ExternalDocumentID | 10_1007_s00037_024_00255_2 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c314t-818be104b3156269e32764e4b5f59888e1f7c48a127502ed8d4bdc85ee4d5b4e3 |
IEDL.DBID | AGYKE |
ISSN | 1016-3328 |
IngestDate | Tue Sep 09 14:51:24 EDT 2025 Tue Jul 01 01:36:15 EDT 2025 Mon Jul 21 06:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Schur modules Circulant graphs 05C60 05C85 Weisfeiler-Leman algorithm Cayley graphs Color refinement 20C05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-818be104b3156269e32764e4b5f59888e1f7c48a127502ed8d4bdc85ee4d5b4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-7288-0291 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00037-024-00255-2 |
PQID | 3081199385 |
PQPubID | 2044003 |
ParticipantIDs | proquest_journals_3081199385 crossref_primary_10_1007_s00037_024_00255_2 springer_journals_10_1007_s00037_024_00255_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Computational complexity |
PublicationTitleAbbrev | comput. complex |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | 255_CR9 255_CR8 255_CR7 255_CR6 255_CR5 255_CR4 255_CR3 255_CR2 255_CR1 255_CR20 255_CR10 255_CR21 255_CR11 255_CR22 255_CR12 255_CR23 255_CR13 255_CR14 255_CR15 255_CR16 255_CR17 255_CR18 255_CR19 |
References_xml | – ident: 255_CR16 doi: 10.1007/s10801-022-01193-4 – ident: 255_CR17 doi: 10.1016/0024-3795(88)90054-7 – ident: 255_CR12 doi: 10.1109/LICS.2019.8785694 – ident: 255_CR3 doi: 10.1016/0304-3975(82)90016-0 – ident: 255_CR10 doi: 10.1007/11786986_2 – ident: 255_CR18 doi: 10.1007/BF03027290 – ident: 255_CR23 doi: 10.1080/0025570X.1966.11975699 – ident: 255_CR11 – ident: 255_CR14 doi: 10.1112/S0024611503014412 – ident: 255_CR2 doi: 10.1007/BF01305232 – ident: 255_CR9 – ident: 255_CR19 doi: 10.1016/0166-218X(91)90049-3 – ident: 255_CR1 doi: 10.1007/s00037-016-0147-6 – ident: 255_CR7 – ident: 255_CR6 doi: 10.1090/S1061-0022-04-00833-7 – ident: 255_CR20 doi: 10.1007/978-3-540-70918-3_58 – ident: 255_CR13 doi: 10.1007/s00013-005-1421-z – ident: 255_CR15 doi: 10.1090/conm/558/11050 – ident: 255_CR21 – ident: 255_CR4 – ident: 255_CR8 doi: 10.1007/3-540-48224-5_27 – ident: 255_CR22 – ident: 255_CR5 |
SSID | ssj0015834 |
Score | 2.340217 |
Snippet | The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of... The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Apexes Color Combinatorial analysis Complexity Computational Mathematics and Numerical Analysis Computer Science Graph theory Graphs Isomorphism Labeling Prime numbers |
Title | Combinatorial refinement on circulant graphs |
URI | https://link.springer.com/article/10.1007/s00037-024-00255-2 https://www.proquest.com/docview/3081199385 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDWiSHbwJiXQH1t3BAISjZxcgqeFrm1iTMCwcfGv961sEIkeuCxp1jTr62vf9_be-wrw4Ce-b0JOCfMDTbjVPaK0ZMQGvMvmTHepddkWU38S8eeZmBVFYWmZ7V6GJN1JvS12c1wpBG0KcUCY4MFbFT0ZygpU-0_vL6Nt9EDITTQZ4QxhjMqiWObvUX4bpB3K3AuMOnszrkFUfukmzeSzs85UJ_neI3E8dCrncFYAUK-_0ZgLODKLOtTKyx28Yq_X4fR1S-iaXkIbO6APnXvoqLAezgLRaf5j0VsuvORjlWezYsPRX6dXEI1Hb8MJKS5aIAnr8Yyg0VYG_TLF0JujfmgYDXxuuBJWhOgim54NEi7njgyeGi01VzqRwhiuheKGXUNlsVyYG_AQUBqZBIEMheXhHN2hsKuttUZhS3RVAx5LacdfGz6NeMuc7MQSo1hiJ5aYNqBZLkhc7K00Zohi8rRDKRrQLuW7e_3_aLeHdb-DE5ovkctdaUIlW63NPSKQTLVQ4caDwbRVKF4Ljof-EJ8R7f8Aao3R0w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADjwKiUCADG7WU-hVnrBBVgbZTK3Wz6tiWWFLUlP_PxU1SgWBgtGLZ0ufHfZc7fwfwIDMpXcopYTKxhHvbJ8YqRnzCY7ZkNqY-ZFtM5WjOXxdiUT0KK-ps9zokGW7q5rFb0EohaFNIIMIEL959JAOqrFswp4MmdiDUNpaMZIYwRlX1VOb3Mb6box3H_BEWDdZmeArHFU2MBtt1PYM9l7fhpC7BEFUnsg1Hk0Z2tTiHHnZAT7f0o3FbRTgbcsjy91-0yqPsfV3mnGIjiFQXFzAfPs-eRqQqh0Ay1ucbgqbVOPSeDEOfi8rUMZpI7rgRXqToyLq-TzKulkGynTqrLDc2U8I5boXhjl1CK1_l7goipH1OZUmiUuF5ukSnJY2t994ZbInYdOCxRkV_bFUvdKNvHDDUiKEOGGragW4NnK5OQKEZco0yOVCJDvRqMHef_x7t-n_d7-FgNJuM9fhl-nYDh7Rc25Bt0oXWZv3pbpEzbMxd2CJfcjm0iA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iIHrwURWrVffgzYZu89rsUaqlvooHC72FZpOAl21p1__vJPuoih48hoQsfEl2vsnMfEHoWmRC2JQRTEViMHOmj7WRFLuExXRGTUxcyLYYi9GEPU759EsVf8h2r0OSZU2DV2nKi97CuF5T-BZ0UzDYFxxIMYaf8Bbzps-Ha8WgiSNwWcaVgdhgSomsymZ-n-O7aVrzzR8h0mB5hgdor6KM0W25xodow-YttF8_xxBVp7OFdl8aCdbVEerCAPB6vU8NWyyCrwGf9FeB0TyPsvelzz-FRhCsXh2jyfD-bTDC1dMIOKN9VmAws9qCJ6Up-F9EpJaSRDDLNHc8BafW9l2SMTkL8u3EGmmYNpnk1jLDNbP0BG3m89yeoggooJVZksiUO5bOwIFJY-OcsxpaPNZtdFOjohalAoZqtI4DhgowVAFDRdqoUwOnqtOwUhR4h08UlLyNujWY6-6_Zzv73_ArtP16N1TPD-Onc7RD_NKGxJMO2iyWH_YC6EOhL8MO-QRTOLiu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+refinement+on+circulant+graphs&rft.jtitle=Computational+complexity&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1007%2Fs00037-024-00255-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon |