Accurately metal-modulated bimetallic metal-organic frameworks as advanced trifunctional electrocatalysts
To fabricate efficient multifunctional electrocatalysts for energy storage and conversion is still a great challenge, due to the difficulty in precisely identifying and regulating catalytic active sites. Herein, a series of isostructural metal-organic frameworks (MOFs) with V-shaped trinuclear clust...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 26; pp. 14682 - 1469 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
06.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To fabricate efficient multifunctional electrocatalysts for energy storage and conversion is still a great challenge, due to the difficulty in precisely identifying and regulating catalytic active sites. Herein, a series of isostructural metal-organic frameworks (MOFs) with V-shaped trinuclear clusters was used as an ideal model to investigate the activity of trifunctional electrocatalysis for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as these clusters contain both coordination unsaturated metal sites (also known as open metal sites, OMSs) and coordination saturation metal sites (CSMSs), corresponding to both ends and the middle of the V-shaped cluster, respectively. Using a combination of single-crystal X-ray diffractometry, Mössbauer spectroscopy and theoretical calculations, the accurate metal sequence of trinuclear clusters and the regulation effect of the active sites were identified, revealing that the adjacent inactive site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of metal cluster-based electrocatalysts facilitates the investigation on efficient multifunctional electrocatalysts as well as the related catalytic mechanisms.
The atomic-level metal-modulated MOFs as an advanced trifunctional electrocatalyst for oxygen evolution reaction, hydrogen evolution reaction and oxygen reduction reaction. |
---|---|
AbstractList | To fabricate efficient multifunctional electrocatalysts for energy storage and conversion is still a great challenge, due to the difficulty in precisely identifying and regulating catalytic active sites. Herein, a series of isostructural metal–organic frameworks (MOFs) with V-shaped trinuclear clusters was used as an ideal model to investigate the activity of trifunctional electrocatalysis for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as these clusters contain both coordination unsaturated metal sites (also known as open metal sites, OMSs) and coordination saturation metal sites (CSMSs), corresponding to both ends and the middle of the V-shaped cluster, respectively. Using a combination of single-crystal X-ray diffractometry, Mössbauer spectroscopy and theoretical calculations, the accurate metal sequence of trinuclear clusters and the regulation effect of the active sites were identified, revealing that the adjacent inactive site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of metal cluster-based electrocatalysts facilitates the investigation on efficient multifunctional electrocatalysts as well as the related catalytic mechanisms. To fabricate efficient multifunctional electrocatalysts for energy storage and conversion is still a great challenge, due to the difficulty in precisely identifying and regulating catalytic active sites. Herein, a series of isostructural metal-organic frameworks (MOFs) with V-shaped trinuclear clusters was used as an ideal model to investigate the activity of trifunctional electrocatalysis for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as these clusters contain both coordination unsaturated metal sites (also known as open metal sites, OMSs) and coordination saturation metal sites (CSMSs), corresponding to both ends and the middle of the V-shaped cluster, respectively. Using a combination of single-crystal X-ray diffractometry, Mössbauer spectroscopy and theoretical calculations, the accurate metal sequence of trinuclear clusters and the regulation effect of the active sites were identified, revealing that the adjacent inactive site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of metal cluster-based electrocatalysts facilitates the investigation on efficient multifunctional electrocatalysts as well as the related catalytic mechanisms. The atomic-level metal-modulated MOFs as an advanced trifunctional electrocatalyst for oxygen evolution reaction, hydrogen evolution reaction and oxygen reduction reaction. |
Author | Chen, Xin Huang, Jin He, Xing-Lu Huang, Fu-Ping Zhang, Zhong Guo, Ze-Ping Yang, Fu-Jie He, Chun-Ting Shao, Bing Tang, Meng-Juan |
AuthorAffiliation | Ministry of Education Zhongkai University of Agriculture and Engineering School of Physical Science and Technology Guangxi Normal University Key Laboratory of Functional Small Organic Molecule College of Chemistry and Chemical Engineering School of Chemistry and Pharmaceutical Sciences Jiangxi Normal University |
AuthorAffiliation_xml | – name: School of Physical Science and Technology – name: Guangxi Normal University – name: Ministry of Education – name: College of Chemistry and Chemical Engineering – name: Key Laboratory of Functional Small Organic Molecule – name: Zhongkai University of Agriculture and Engineering – name: School of Chemistry and Pharmaceutical Sciences – name: Jiangxi Normal University |
Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 2 givenname: Bing surname: Shao fullname: Shao, Bing – sequence: 3 givenname: Meng-Juan surname: Tang fullname: Tang, Meng-Juan – sequence: 4 givenname: Xing-Lu surname: He fullname: He, Xing-Lu – sequence: 5 givenname: Fu-Jie surname: Yang fullname: Yang, Fu-Jie – sequence: 6 givenname: Ze-Ping surname: Guo fullname: Guo, Ze-Ping – sequence: 7 givenname: Zhong surname: Zhang fullname: Zhang, Zhong – sequence: 8 givenname: Chun-Ting surname: He fullname: He, Chun-Ting – sequence: 9 givenname: Fu-Ping surname: Huang fullname: Huang, Fu-Ping – sequence: 10 givenname: Jin surname: Huang fullname: Huang, Jin |
BookMark | eNptkUtLBDEMx4so-NqLd2HBiwijfU2dOS6-RfCi5yGTaaVrZ6ptR9lvb9ddFMQQaJr-_qFJdsnm4AdNyAGjp4yK-qxjCSjjXM43yA6nJS3OZa02f-Kq2iaTGOc0W0WpqusdYmeIY4Ck3WLa6wSu6H03upzopq39zjiL6ycfXmDINxOg158-vMYpZO8-YMDMp2DNOGCyfgA31U5jCh4hKxcxxX2yZcBFPVmfe-T5-urp4rZ4eLy5u5g9FCiYTMU5SqwQO95qKgTKSrRgOmaUKA22yohaMKO5AF0DRwUceNlCVdaGKdZBKfbI8aruW_Dvo46p6W1E7RwM2o-x4UoxKoWsZEaP_qBzP4b8-UyVslKyrNmyIF1RGHyMQZsGbYJllymAdQ2jzXL8zSV7mn2P_z5LTv5I3oLtISz-hw9XcIj4w_3uUnwBpR2TvA |
CitedBy_id | crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1016_j_ccr_2023_215208 crossref_primary_10_1016_j_jcis_2021_11_150 crossref_primary_10_1016_j_nexus_2025_100387 crossref_primary_10_1002_aenm_202400871 crossref_primary_10_1021_acs_inorgchem_4c01254 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1039_D4QI01533A crossref_primary_10_1016_j_jece_2025_116076 crossref_primary_10_1016_j_jelechem_2022_116720 crossref_primary_10_1016_j_jpowsour_2021_230812 crossref_primary_10_1021_acs_inorgchem_4c03208 crossref_primary_10_1021_acsami_3c18654 crossref_primary_10_1002_advs_202205031 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1039_D2DT01981G crossref_primary_10_1002_slct_202300985 crossref_primary_10_1016_j_est_2025_115341 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_acs_inorgchem_4c00190 crossref_primary_10_1039_D2IM00063F crossref_primary_10_1016_j_ccr_2024_216061 crossref_primary_10_1016_j_jcat_2022_06_018 crossref_primary_10_1039_D3QM01002C crossref_primary_10_1002_celc_202300234 |
Cites_doi | 10.1021/acs.chemrev.6b00398 10.1038/ncomms14969 10.1021/jacs.6b12353 10.1021/acssuschemeng.0c03376 10.1002/anie.201801029 10.1021/acs.chemrev.6b00346 10.1002/anie.201809144 10.1016/j.nanoen.2017.12.045 10.1021/acsami.6b05375 10.1038/nchem.1956 10.1016/j.ccr.2017.09.001 10.1021/jacs.5b08212 10.1021/ja3097527 10.1039/C8CS00671G 10.1039/C9CS00869A 10.1002/anie.201509382 10.1021/jacs.6b03125 10.1002/adma.202003313 10.1002/anie.200300610 10.1021/acs.nanolett.7b02518 10.1126/science.aad4998 10.1126/science.1116275 10.1021/jacs.9b08686 10.1126/sciadv.aba4098 10.1038/ncomms8261 10.1021/acsenergylett.8b00368 10.1002/adma.201604942 10.1002/adma.201808043 10.1021/jacs.7b07117 10.1016/j.cattod.2008.08.039 10.1039/C4CS00015C 10.1038/nenergy.2015.6 10.1038/natrevmats.2016.64 10.1039/C7CS00614D 10.1002/adfm.201702300 10.1038/s41560-018-0308-8 10.1002/adma.201905679 10.1038/ncomms15341 10.1021/cr5003563 10.1021/ja511559d 10.1016/0168-583X(91)95681-3 10.1002/adfm.201601315 10.1002/anie.201409524 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta01224j |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1469 |
ExternalDocumentID | 10_1039_D1TA01224J d1ta01224j |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c314t-7c4c8ccd2be033c483bafd1f635fcb6f3931fe23ae9a2c6a2a25ba859f161da53 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 12:23:04 EDT 2025 Mon Jun 30 12:04:40 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Jul 01 01:13:08 EDT 2025 Sat Apr 16 10:02:51 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-7c4c8ccd2be033c483bafd1f635fcb6f3931fe23ae9a2c6a2a25ba859f161da53 |
Notes | 2061108 Electronic supplementary information (ESI) available: The syntheses and characterization of the catalyst, supplementary figures and tables. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 10.1039/d1ta01224j ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8445-0732 0000-0003-4227-9815 0000-0001-7317-5862 0000-0001-5654-2464 |
PQID | 2548645915 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2548645915 proquest_miscellaneous_2661043484 crossref_citationtrail_10_1039_D1TA01224J crossref_primary_10_1039_D1TA01224J rsc_primary_d1ta01224j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210706 |
PublicationDateYYYYMMDD | 2021-07-06 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210706 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Shi (D1TA01224J-(cit11)/*[position()=1]) 2019; 48 Zhao (D1TA01224J-(cit15)/*[position()=1]) 2020; 49 Xu (D1TA01224J-(cit34)/*[position()=1]) 2019; 58 Holladay (D1TA01224J-(cit1)/*[position()=1]) 2009; 139 Huang (D1TA01224J-(cit30)/*[position()=1]) 2018; 57 Simons (D1TA01224J-(cit40)/*[position()=1]) 2019; 141 Khalid (D1TA01224J-(cit18)/*[position()=1]) 2018; 45 Liu (D1TA01224J-(cit20)/*[position()=1]) 2016; 1 Shen (D1TA01224J-(cit29)/*[position()=1]) 2017; 139 Friebel (D1TA01224J-(cit36)/*[position()=1]) 2015; 137 Dai (D1TA01224J-(cit5)/*[position()=1]) 2015; 115 Liao (D1TA01224J-(cit22)/*[position()=1]) 2018; 373 Xia (D1TA01224J-(cit33)/*[position()=1]) 2016; 1 Amiinu (D1TA01224J-(cit17)/*[position()=1]) 2017; 27 Huang (D1TA01224J-(cit35)/*[position()=1]) 2020; 8 Hu (D1TA01224J-(cit6)/*[position()=1]) 2017; 29 Ferey (D1TA01224J-(cit38)/*[position()=1]) 2005; 309 Xiao (D1TA01224J-(cit28)/*[position()=1]) 2020; 49 Wang (D1TA01224J-(cit43)/*[position()=1]) 2016; 8 Cheng (D1TA01224J-(cit32)/*[position()=1]) 2019; 4 Rancourt (D1TA01224J-(cit39)/*[position()=1]) 1991; 58 Kang (D1TA01224J-(cit8)/*[position()=1]) 2013; 135 Kitagawa (D1TA01224J-(cit24)/*[position()=1]) 2004; 43 Park (D1TA01224J-(cit9)/*[position()=1]) 2018; 3 Chao (D1TA01224J-(cit4)/*[position()=1]) 2020; 6 Wang (D1TA01224J-(cit13)/*[position()=1]) 2015; 6 Kornienko (D1TA01224J-(cit27)/*[position()=1]) 2015; 137 Su (D1TA01224J-(cit44)/*[position()=1]) 2017; 8 Xiao (D1TA01224J-(cit26)/*[position()=1]) 2014; 6 Schoedel (D1TA01224J-(cit23)/*[position()=1]) 2016; 116 Deng (D1TA01224J-(cit45)/*[position()=1]) 2015; 54 Hunter (D1TA01224J-(cit2)/*[position()=1]) 2016; 116 Li (D1TA01224J-(cit3)/*[position()=1]) 2014; 43 Ling (D1TA01224J-(cit12)/*[position()=1]) 2017; 17 Duan (D1TA01224J-(cit31)/*[position()=1]) 2017; 8 Wu (D1TA01224J-(cit14)/*[position()=1]) 2016; 26 Lu (D1TA01224J-(cit25)/*[position()=1]) 2016; 138 Hu (D1TA01224J-(cit16)/*[position()=1]) 2017; 29 Stevens (D1TA01224J-(cit37)/*[position()=1]) 2017; 139 Xia (D1TA01224J-(cit41)/*[position()=1]) 2016; 1 Diao (D1TA01224J-(cit10)/*[position()=1]) 2020; 32 Yan (D1TA01224J-(cit19)/*[position()=1]) 2020; 32 Aijaz (D1TA01224J-(cit42)/*[position()=1]) 2016; 55 Yang (D1TA01224J-(cit7)/*[position()=1]) 2019; 31 Seh (D1TA01224J-(cit21)/*[position()=1]) 2017; 355 |
References_xml | – volume: 116 start-page: 14120 year: 2016 ident: D1TA01224J-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 8 start-page: 14969 year: 2017 ident: D1TA01224J-(cit44)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14969 – volume: 139 start-page: 1778 year: 2017 ident: D1TA01224J-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 8 start-page: 10554 year: 2020 ident: D1TA01224J-(cit35)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c03376 – volume: 57 start-page: 4632 year: 2018 ident: D1TA01224J-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801029 – volume: 116 start-page: 12466 year: 2016 ident: D1TA01224J-(cit23)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00346 – volume: 58 start-page: 139 year: 2019 ident: D1TA01224J-(cit34)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809144 – volume: 45 start-page: 127 year: 2018 ident: D1TA01224J-(cit18)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.045 – volume: 8 start-page: 16736 year: 2016 ident: D1TA01224J-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05375 – volume: 6 start-page: 590 year: 2014 ident: D1TA01224J-(cit26)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1956 – volume: 373 start-page: 22 year: 2018 ident: D1TA01224J-(cit22)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.001 – volume: 137 start-page: 14129 year: 2015 ident: D1TA01224J-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 135 start-page: 42 year: 2013 ident: D1TA01224J-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3097527 – volume: 48 start-page: 3181 year: 2019 ident: D1TA01224J-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00671G – volume: 49 start-page: 2215 year: 2020 ident: D1TA01224J-(cit15)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 55 start-page: 4087 year: 2016 ident: D1TA01224J-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509382 – volume: 138 start-page: 8336 year: 2016 ident: D1TA01224J-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03125 – volume: 32 start-page: 2003313 year: 2020 ident: D1TA01224J-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.202003313 – volume: 43 start-page: 2334 year: 2004 ident: D1TA01224J-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300610 – volume: 17 start-page: 5133 year: 2017 ident: D1TA01224J-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02518 – volume: 355 start-page: eaad4998 year: 2017 ident: D1TA01224J-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 – volume: 309 start-page: 2040 year: 2005 ident: D1TA01224J-(cit38)/*[position()=1] publication-title: Science doi: 10.1126/science.1116275 – volume: 141 start-page: 18142 year: 2019 ident: D1TA01224J-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08686 – volume: 6 start-page: eaba4098 year: 2020 ident: D1TA01224J-(cit4)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 6 start-page: 7261 year: 2015 ident: D1TA01224J-(cit13)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8261 – volume: 3 start-page: 1110 year: 2018 ident: D1TA01224J-(cit9)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00368 – volume: 29 start-page: 1604942 year: 2017 ident: D1TA01224J-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604942 – volume: 31 start-page: 1808043 year: 2019 ident: D1TA01224J-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808043 – volume: 139 start-page: 11361 year: 2017 ident: D1TA01224J-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 139 start-page: 244 year: 2009 ident: D1TA01224J-(cit1)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2008.08.039 – volume: 43 start-page: 5257 year: 2014 ident: D1TA01224J-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 29 start-page: 1604942 year: 2017 ident: D1TA01224J-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604942 – volume: 1 start-page: 15006 year: 2016 ident: D1TA01224J-(cit41)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 1 start-page: 16064 year: 2016 ident: D1TA01224J-(cit20)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.64 – volume: 49 start-page: 301 year: 2020 ident: D1TA01224J-(cit28)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00614D – volume: 27 start-page: 1702300 year: 2017 ident: D1TA01224J-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702300 – volume: 4 start-page: 115 year: 2019 ident: D1TA01224J-(cit32)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 32 start-page: 1905679 year: 2020 ident: D1TA01224J-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201905679 – volume: 8 start-page: 15341 year: 2017 ident: D1TA01224J-(cit31)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 115 start-page: 4823 year: 2015 ident: D1TA01224J-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 137 start-page: 1305 year: 2015 ident: D1TA01224J-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 1 start-page: 15006 year: 2016 ident: D1TA01224J-(cit33)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 58 start-page: 85 year: 1991 ident: D1TA01224J-(cit39)/*[position()=1] publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/0168-583X(91)95681-3 – volume: 26 start-page: 4839 year: 2016 ident: D1TA01224J-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601315 – volume: 54 start-page: 2100 year: 2015 ident: D1TA01224J-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409524 |
SSID | ssj0000800699 |
Score | 2.4519262 |
Snippet | To fabricate efficient multifunctional electrocatalysts for energy storage and conversion is still a great challenge, due to the difficulty in precisely... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14682 |
SubjectTerms | active sites Bimetals Catalysts catalytic activity Chemical reduction Coordination Crystallography Electrocatalysts electrochemistry energy Energy storage Hydrogen evolution reactions hydrogen production Metal clusters Metal-organic frameworks Metals Mossbauer spectroscopy Oxygen Oxygen evolution reactions oxygen production Oxygen reduction reactions Single crystals spectroscopy X-ray diffraction |
Title | Accurately metal-modulated bimetallic metal-organic frameworks as advanced trifunctional electrocatalysts |
URI | https://www.proquest.com/docview/2548645915 https://www.proquest.com/docview/2661043484 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOFa-KQEFGcEGRi727duyjKUUhKlxIpdyi9doLgZBUiX0oJ_4DP4l_wi9hZh-2G3IoSJFl7ct25tvZ2dl5EPKCqwJ2sqLw80DFPpdR4udKKB-xwUqFmn70d37_IR5d8PE0mvZ6vzpWS3WVn8jvO_1K_oeqUAZ0RS_Zf6BsMygUwD3QF65AYbjeiMaZlDWGelhcYSZosfC_rQpMx4VS5VyXYAhrfeOMGphJ4yQHylllbTDVTGMKUK3nuNRZDaFNkqN1PFcbE_RphygLUq_53IF0-eNOBplxBXI1OrS4cTTUunrnuIW2uY1a_9T6ikznDWY_fhZam_varbFazWA4FJrk-uO6BfiotL0_-ed1V6FBQ238Grd8jwZRgCFODVsuu2Um-a1j3GkHn7TLhdGdjHaW9BB1ADvXi4BhuNU34STTR4zjdlV0lgBbi2VjwqgP71k6a_vukQMKexVgtgfZ2eTdeaPqQ6E81plMm09zgXJZ-qod4Lpo1O539tYuGY0WeiZ3yKElsZcZ6N0lvXJ5j9zuxLC8T762IPS2QOi1IDRVv3_8tPDzWvh5An4Wft41-Hnb8HtALt6eTU5Hvs3g4UsW8sofSi4TKQualwFjkicsF6oIFUi5SuaxYikLVUmZKFNBZSyooFEukihVsBEpRMSOyP5ytSwfEq-AvQJnohhiTD0QW0WcAovJZQCdg2TI-uSl-_Nm0oa3xywri9nflOqT503bSxPUZWerY0eDmZ30mxk8PcH4S2HUJ8-aaphZeM4mluWqhjYg8wac8YT3yRHQrnlGEVZCj_3l0Y3e4DG51U6QY7JfrevyCcjAVf7UYuwPod62yw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurately+metal-modulated+bimetallic+metal%E2%80%93organic+frameworks+as+advanced+trifunctional+electrocatalysts&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chen%2C+Xin&rft.au=Shao%2C+Bing&rft.au=Tang%2C+Meng-Juan&rft.au=He%2C+Xing-Lu&rft.date=2021-07-06&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=26&rft.spage=14682&rft.epage=14690&rft_id=info:doi/10.1039%2FD1TA01224J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1TA01224J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |