Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer

We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhan...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 43; pp. 22289 - 22297
Main Authors Sun, Song, Wang, Dacheng, Feng, Zheng, Tan, Wei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc . Interparticle resonant interference in the metal-dielectric heterodimer satisfies the first Kerker condition at its resonance peak, yielding highly-efficient unidirectional forward scattering.
AbstractList We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole–dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal–dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10–20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc.
We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc . Interparticle resonant interference in the metal-dielectric heterodimer satisfies the first Kerker condition at its resonance peak, yielding highly-efficient unidirectional forward scattering.
We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole–dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal–dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10–20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc .
We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc.We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc.
Author Feng, Zheng
Sun, Song
Tan, Wei
Wang, Dacheng
AuthorAffiliation Microsystem & Terahertz Research Center
China Academy of Engineering Physics
Insititute of Electronic Engineering
AuthorAffiliation_xml – name: Insititute of Electronic Engineering
– name: Microsystem & Terahertz Research Center
– name: China Academy of Engineering Physics
Author_xml – sequence: 1
  givenname: Song
  surname: Sun
  fullname: Sun, Song
– sequence: 2
  givenname: Dacheng
  surname: Wang
  fullname: Wang, Dacheng
– sequence: 3
  givenname: Zheng
  surname: Feng
  fullname: Feng, Zheng
– sequence: 4
  givenname: Wei
  surname: Tan
  fullname: Tan, Wei
BookMark eNptkUFLAzEQhYMoqNWLdyHgRYTV2STddI-i1gqiIHpe0uxEI9usTrJI_73RSgXxNBnyvQfz3i7bDH1Axg5KOC1B1mctBAINJbgNtiNAQSGlFpvrd6W22W6MrwBVLSu5w4aZf37plhyd89ZjSHwIvvWENvk-mI67nj4MtTxakxKSD8_ch3aw2PL5khPGTGWVD_nTIWGwmBdu-AKT6YrWY5e9yFv-ghnpW79A2mNbznQR93_miD1Nrx4vZsXt_fXNxfltYWWpUqFrW1shTFkaacf5KiHtpNIwAXBVPgbFXNUo1XiuUFROYa1qLdAYPVe6dWM5Yscr3zfq3weMqVn4aLHrTMB-iI1QY11Ncioqo0d_0Nd-oJzAN1VXoHROeMROVpSlPkZC17yRXxhaNiU0Xw00l3D38N3ANMPwB7Y-ma9cExnf_S85XEko2rX1b6nyEwn_lVo
CitedBy_id crossref_primary_10_1007_s11051_023_05696_4
crossref_primary_10_3390_nano12234259
crossref_primary_10_3390_nano12122084
crossref_primary_10_1063_5_0115964
crossref_primary_10_1021_acssuschemeng_2c04064
crossref_primary_10_1002_adpr_202100286
crossref_primary_10_1364_OE_485916
crossref_primary_10_1186_s11671_021_03614_y
crossref_primary_10_1364_OE_427911
crossref_primary_10_1088_1361_6463_ad529a
crossref_primary_10_1103_PhysRevB_106_205413
crossref_primary_10_1002_lpor_202000367
crossref_primary_10_1088_1361_6463_ad59af
crossref_primary_10_1142_S021798492450043X
crossref_primary_10_1002_adom_202100112
crossref_primary_10_3390_molecules28073175
crossref_primary_10_1016_j_optcom_2023_129302
Cites_doi 10.1021/nn202086u
10.1002/adma.201505346
10.1021/nl049681c
10.1021/acsphotonics.7b00423
10.1038/nmat2629
10.1038/nphoton.2010.237
10.1126/science.aag2472
10.1364/OL.40.002645
10.1103/PhysRevB.82.045404
10.1364/OE.17.005723
10.1021/acsami.6b05123
10.1021/acsphotonics.9b00780
10.1021/nl2041063
10.1364/OE.21.031138
10.1117/1.3603941
10.1021/acs.nanolett.8b04089
10.1039/C8NR05692G
10.1038/ncomms5354
10.1038/nphoton.2009.282
10.1038/ncomms2538
10.1515/nanoph-2017-0117
10.1016/j.optcom.2018.11.055
10.1002/adom.201801070
10.1364/OL.38.002621
10.1364/OE.26.013085
10.1039/C5NR06964E
10.1364/OE.22.016178
10.1021/acsphotonics.9b00674
10.1364/OME.2.001407
10.1021/acsphotonics.5b00261
10.1021/acs.jpcc.8b01978
10.1021/nn301398a
10.1021/nn507148z
10.1021/acs.nanolett.6b05026
10.29026/oea.2019.190019
10.1021/acs.jpcc.9b06280
10.1021/nn204348j
10.1021/acs.jpcc.7b02593
10.1038/ncomms1490
10.1364/OL.38.001857
10.1021/nl900208z
10.1364/JOSA.73.000765
10.1103/PhysRevLett.102.133901
10.1039/D0NH00189A
10.1039/C6CP03303B
10.1021/acs.nanolett.7b00462
10.1002/adom.201900591
10.29026/oea.2018.180009
10.1038/nphoton.2010.34
10.1038/ncomms2167
10.1364/OE.18.011428
10.1021/nl4005018
10.1007/s00340-011-4727-5
10.1364/JOSAA.28.000054
10.1103/PhysRevB.78.085112
10.1021/nn505606x
10.1021/acs.nanolett.9b02540
10.1103/PhysRevLett.122.193905
10.1039/C6NR04335F
10.1021/acsphotonics.5b00732
10.1021/jp4027018
10.1038/ncomms4402
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr07010f
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 22297
ExternalDocumentID 10_1039_D0NR07010F
d0nr07010f
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-79c9c22a11a3c501023c8670800f6336e2b49e345b4e26f4e94972eaa7b47df53
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 10:03:53 EDT 2025
Mon Jun 30 04:53:39 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Tue Jul 01 01:14:02 EDT 2025
Sat Jan 08 03:48:20 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-79c9c22a11a3c501023c8670800f6336e2b49e345b4e26f4e94972eaa7b47df53
Notes dimer, additional data for Au-GaP dimer and additional data for absorption, scattering and extinction cross-sections. See DOI
10.1039/d0nr07010f
2
Electronic supplementary information (ESI) available: Additional formulation for
E
with 20 nm gap distance, coupling of pure dielectric TiO
TiO
dimer polarization, unidirectional forward scattering of Ag-TiO
dimer polarization, benchmark results with full wave simulation, weak coupling for
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2382-6481
PQID 2459604710
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_journals_2459604710
proquest_miscellaneous_2457683644
crossref_primary_10_1039_D0NR07010F
rsc_primary_d0nr07010f
crossref_citationtrail_10_1039_D0NR07010F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201112
PublicationDateYYYYMMDD 2020-11-12
PublicationDate_xml – month: 11
  year: 2020
  text: 20201112
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Evlyukhin (D0NR07010F-(cit23)/*[position()=1]) 2010; 82
Luk'yanchuk (D0NR07010F-(cit35)/*[position()=1]) 2015; 2
Geffrin (D0NR07010F-(cit28)/*[position()=1]) 2012; 3
Liu (D0NR07010F-(cit56)/*[position()=1]) 2012; 6
Yang (D0NR07010F-(cit65)/*[position()=1]) 2012; 2
Cambiasso (D0NR07010F-(cit68)/*[position()=1]) 2017; 17
Liu (D0NR07010F-(cit58)/*[position()=1]) 2014; 22
Palik (D0NR07010F-(cit64)/*[position()=1]) 1997
Poshakinskiy (D0NR07010F-(cit14)/*[position()=1]) 2019; 9
Evlyukhin (D0NR07010F-(cit41)/*[position()=1]) 2012; 106
Novotny (D0NR07010F-(cit3)/*[position()=1]) 2011; 5
Lei (D0NR07010F-(cit66)/*[position()=1]) 2019; 435
Jackson (D0NR07010F-(cit63)/*[position()=1]) 1962
Atwater (D0NR07010F-(cit9)/*[position()=1]) 2010; 9
Sun (D0NR07010F-(cit42)/*[position()=1]) 2016; 18
Gramotnev (D0NR07010F-(cit40)/*[position()=1]) 2010; 4
Mirin (D0NR07010F-(cit43)/*[position()=1]) 2009; 9
Sun (D0NR07010F-(cit54)/*[position()=1]) 2017; 121
Kosako (D0NR07010F-(cit20)/*[position()=1]) 2010; 4
Chen (D0NR07010F-(cit16)/*[position()=1]) 2019; 2
Alu (D0NR07010F-(cit47)/*[position()=1]) 2009; 17
Wang (D0NR07010F-(cit55)/*[position()=1]) 2015; 9
Fu (D0NR07010F-(cit30)/*[position()=1]) 2013; 4
Tian (D0NR07010F-(cit38)/*[position()=1]) 2016; 8
Person (D0NR07010F-(cit29)/*[position()=1]) 2013; 13
Liu (D0NR07010F-(cit51)/*[position()=1]) 2018; 10
Chen (D0NR07010F-(cit1)/*[position()=1]) 2012; 24
Dubois (D0NR07010F-(cit17)/*[position()=1]) 2018; 8
Vynck (D0NR07010F-(cit22)/*[position()=1]) 2009; 102
Nieto-Vesperinas (D0NR07010F-(cit13)/*[position()=1]) 2011; 28
Nordlander (D0NR07010F-(cit61)/*[position()=1]) 2004; 4
Sun (D0NR07010F-(cit53)/*[position()=1]) 2019; 123
Kuznetsov (D0NR07010F-(cit5)/*[position()=1]) 2016; 354
Chen (D0NR07010F-(cit6)/*[position()=1]) 2018; 7
Renaut (D0NR07010F-(cit8)/*[position()=1]) 2019; 19
Shegai (D0NR07010F-(cit21)/*[position()=1]) 2011; 2
Shibanuma (D0NR07010F-(cit50)/*[position()=1]) 2017; 17
King (D0NR07010F-(cit44)/*[position()=1]) 2011; 5
Liu (D0NR07010F-(cit27)/*[position()=1]) 2016; 8
Alaee (D0NR07010F-(cit32)/*[position()=1]) 2015; 40
Kerker (D0NR07010F-(cit19)/*[position()=1]) 1983; 73
Wiecha (D0NR07010F-(cit2)/*[position()=1]) 2017; 8
Lepeshov (D0NR07010F-(cit39)/*[position()=1]) 2019; 6
Yan (D0NR07010F-(cit37)/*[position()=1]) 2015; 9
Barhom (D0NR07010F-(cit11)/*[position()=1]) 2019; 19
Nieto-Vesperinas (D0NR07010F-(cit12)/*[position()=1]) 2010; 18
Liu (D0NR07010F-(cit57)/*[position()=1]) 2013; 38
Guo (D0NR07010F-(cit49)/*[position()=1]) 2016; 3
Alu (D0NR07010F-(cit45)/*[position()=1]) 2008; 78
Remesh (D0NR07010F-(cit67)/*[position()=1]) 2019; 6
Chen (D0NR07010F-(cit15)/*[position()=1]) 2018; 1
Shibanuma (D0NR07010F-(cit36)/*[position()=1]) 2016; 8
Dregely (D0NR07010F-(cit10)/*[position()=1]) 2014; 5
Albella (D0NR07010F-(cit62)/*[position()=1]) 2013; 117
Gomez-Medina (D0NR07010F-(cit26)/*[position()=1]) 2011; 5
Shamkhi (D0NR07010F-(cit34)/*[position()=1]) 2019; 122
Zuev (D0NR07010F-(cit48)/*[position()=1]) 2016; 28
Yan (D0NR07010F-(cit24)/*[position()=1]) 2020; 5
Sun (D0NR07010F-(cit52)/*[position()=1]) 2018; 122
Shao (D0NR07010F-(cit60)/*[position()=1]) 2012; 12
Sugimoto (D0NR07010F-(cit59)/*[position()=1]) 2019; 7
Zambrana-Puyalto (D0NR07010F-(cit31)/*[position()=1]) 2011; 38
Poutrina (D0NR07010F-(cit46)/*[position()=1]) 2013; 21
Jiang (D0NR07010F-(cit18)/*[position()=1]) 2018; 7
Liu (D0NR07010F-(cit33)/*[position()=1]) 2016; 26
Zywietz (D0NR07010F-(cit25)/*[position()=1]) 2014; 5
Nemati (D0NR07010F-(cit7)/*[position()=1]) 2018; 1
Miroshnichenko (D0NR07010F-(cit4)/*[position()=1]) 2012; 6
References_xml – issn: 1997
  publication-title: Handbook of optical constants of solids
  doi: Palik
– issn: 1962
  publication-title: Classic electrodynamics
  doi: Jackson
– volume: 5
  start-page: 7254
  year: 2011
  ident: D0NR07010F-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202086u
– volume: 28
  start-page: 3087
  year: 2016
  ident: D0NR07010F-(cit48)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505346
– volume: 4
  start-page: 899
  year: 2004
  ident: D0NR07010F-(cit61)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl049681c
– volume: 8
  start-page: 2036
  year: 2017
  ident: D0NR07010F-(cit2)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00423
– volume: 9
  start-page: 205
  year: 2010
  ident: D0NR07010F-(cit9)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2629
– volume: 5
  start-page: 83
  year: 2011
  ident: D0NR07010F-(cit3)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.237
– volume: 354
  start-page: 2472
  year: 2016
  ident: D0NR07010F-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aag2472
– volume: 40
  start-page: 2645
  year: 2015
  ident: D0NR07010F-(cit32)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002645
– volume: 82
  start-page: 045404
  year: 2010
  ident: D0NR07010F-(cit23)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.045404
– volume-title: Classic electrodynamics
  year: 1962
  ident: D0NR07010F-(cit63)/*[position()=1]
– volume: 17
  start-page: 5723
  year: 2009
  ident: D0NR07010F-(cit47)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.17.005723
– volume: 8
  start-page: 22468
  year: 2016
  ident: D0NR07010F-(cit27)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05123
– volume: 6
  start-page: 2487
  year: 2019
  ident: D0NR07010F-(cit67)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00780
– volume: 12
  start-page: 1424
  year: 2012
  ident: D0NR07010F-(cit60)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2041063
– volume: 21
  start-page: 31138
  year: 2013
  ident: D0NR07010F-(cit46)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.21.031138
– volume: 5
  start-page: 053512
  year: 2011
  ident: D0NR07010F-(cit26)/*[position()=1]
  publication-title: J. Nanophotonics
  doi: 10.1117/1.3603941
– volume: 19
  start-page: 877
  year: 2019
  ident: D0NR07010F-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04089
– volume: 10
  start-page: 18282
  year: 2018
  ident: D0NR07010F-(cit51)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR05692G
– volume: 5
  start-page: 4354
  year: 2014
  ident: D0NR07010F-(cit10)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5354
– volume: 4
  start-page: 83
  year: 2010
  ident: D0NR07010F-(cit40)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.282
– volume: 4
  start-page: 1527
  year: 2013
  ident: D0NR07010F-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2538
– volume: 9
  start-page: 011008
  year: 2019
  ident: D0NR07010F-(cit14)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 1
  start-page: 170001
  year: 2018
  ident: D0NR07010F-(cit15)/*[position()=1]
  publication-title: Opto-Electron. Adv.
– volume: 7
  start-page: 1207
  year: 2018
  ident: D0NR07010F-(cit6)/*[position()=1]
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2017-0117
– volume: 435
  start-page: 362
  year: 2019
  ident: D0NR07010F-(cit66)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2018.11.055
– volume: 7
  start-page: 1801070
  year: 2018
  ident: D0NR07010F-(cit18)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801070
– volume: 38
  start-page: 2621
  year: 2013
  ident: D0NR07010F-(cit57)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.002621
– volume: 26
  start-page: 13085
  year: 2016
  ident: D0NR07010F-(cit33)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.26.013085
– volume: 8
  start-page: 4047
  year: 2016
  ident: D0NR07010F-(cit38)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06964E
– volume: 22
  start-page: 16178
  year: 2014
  ident: D0NR07010F-(cit58)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.22.016178
– volume: 6
  start-page: 2126
  year: 2019
  ident: D0NR07010F-(cit39)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00674
– volume: 2
  start-page: 1407
  year: 2012
  ident: D0NR07010F-(cit65)/*[position()=1]
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.001407
– volume: 2
  start-page: 993
  year: 2015
  ident: D0NR07010F-(cit35)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00261
– volume: 122
  start-page: 14771
  year: 2018
  ident: D0NR07010F-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01978
– volume: 6
  start-page: 5489
  year: 2012
  ident: D0NR07010F-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn301398a
– volume: 9
  start-page: 2968
  year: 2015
  ident: D0NR07010F-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn507148z
– volume: 17
  start-page: 1219
  year: 2017
  ident: D0NR07010F-(cit68)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05026
– volume: 2
  start-page: 190019
  year: 2019
  ident: D0NR07010F-(cit16)/*[position()=1]
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2019.190019
– volume: 123
  start-page: 21150
  year: 2019
  ident: D0NR07010F-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06280
– volume: 6
  start-page: 837
  year: 2012
  ident: D0NR07010F-(cit4)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn204348j
– volume: 121
  start-page: 12871
  year: 2017
  ident: D0NR07010F-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02593
– volume: 2
  start-page: 481
  year: 2011
  ident: D0NR07010F-(cit21)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1490
– volume: 38
  start-page: 1857
  year: 2011
  ident: D0NR07010F-(cit31)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.001857
– volume: 9
  start-page: 1255
  year: 2009
  ident: D0NR07010F-(cit43)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900208z
– volume: 73
  start-page: 765
  year: 1983
  ident: D0NR07010F-(cit19)/*[position()=1]
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.73.000765
– volume: 24
  start-page: 281
  year: 2012
  ident: D0NR07010F-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 102
  start-page: 133901
  year: 2009
  ident: D0NR07010F-(cit22)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.133901
– volume: 5
  start-page: 1368
  year: 2020
  ident: D0NR07010F-(cit24)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00189A
– volume: 18
  start-page: 19324
  year: 2016
  ident: D0NR07010F-(cit42)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03303B
– volume: 17
  start-page: 2647
  year: 2017
  ident: D0NR07010F-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00462
– volume: 7
  start-page: 1900591
  year: 2019
  ident: D0NR07010F-(cit59)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900591
– volume: 1
  start-page: 180009
  year: 2018
  ident: D0NR07010F-(cit7)/*[position()=1]
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2018.180009
– volume: 8
  start-page: 031083
  year: 2018
  ident: D0NR07010F-(cit17)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 4
  start-page: 312
  year: 2010
  ident: D0NR07010F-(cit20)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.34
– volume: 3
  start-page: 1171
  year: 2012
  ident: D0NR07010F-(cit28)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2167
– volume-title: Handbook of optical constants of solids
  year: 1997
  ident: D0NR07010F-(cit64)/*[position()=1]
– volume: 18
  start-page: 11428
  year: 2010
  ident: D0NR07010F-(cit12)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.18.011428
– volume: 13
  start-page: 1806
  year: 2013
  ident: D0NR07010F-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl4005018
– volume: 106
  start-page: 841
  year: 2012
  ident: D0NR07010F-(cit41)/*[position()=1]
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-011-4727-5
– volume: 28
  start-page: 54
  year: 2011
  ident: D0NR07010F-(cit13)/*[position()=1]
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.28.000054
– volume: 78
  start-page: 085112
  year: 2008
  ident: D0NR07010F-(cit45)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.085112
– volume: 9
  start-page: 436
  year: 2015
  ident: D0NR07010F-(cit55)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn505606x
– volume: 19
  start-page: 7062
  year: 2019
  ident: D0NR07010F-(cit11)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02540
– volume: 122
  start-page: 193905
  year: 2019
  ident: D0NR07010F-(cit34)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.193905
– volume: 8
  start-page: 14184
  year: 2016
  ident: D0NR07010F-(cit36)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR04335F
– volume: 3
  start-page: 343
  year: 2016
  ident: D0NR07010F-(cit49)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00732
– volume: 117
  start-page: 13573
  year: 2013
  ident: D0NR07010F-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4027018
– volume: 5
  start-page: 3402
  year: 2014
  ident: D0NR07010F-(cit25)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4402
SSID ssj0069363
Score 2.437302
Snippet We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of...
We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22289
SubjectTerms Broadband
Dielectrics
Dimers
Dipole interactions
Dipole moments
Electric dipoles
Forward scattering
Interaction models
Interference
Magnetic dipoles
Metallurgical constituents
Nanoparticles
Polarization
Resonance scattering
Titanium dioxide
Title Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer
URI https://www.proquest.com/docview/2459604710
https://www.proquest.com/docview/2457683644
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa63QscEH8rCgsygguqsjS24yTHhd2ygqVI0GorLlHiOFKkboK6jdBy4gm48IY8CeOfxKlUIeASNa6VRJ7P45nx-BuEnsuI86zg0guzgHiM5DCl0lx6DAy5IJKpjHSViPczfrZgb5fBcjD40ctaajbZkfi281zJ_0gV2kCu6pTsP0i2eyg0wG-QL1xBwnD9KxmrJI3VtcrJKPW5xnFTlWaNMgE-MEhVUuz4SmgWTXN8JW-EsTrB0a5VGoymjFi3fLNlNdZ1pdNVmwdB89IUy9F02NC1zstLm9RrzVrQ0TW8ZNWh5FNj4qq1XRh1yN6olRNFIe2aP6sbbUL3GucmLHshy35UAlxQlRnnfFgT-2gTT3ViiS1f5_QbUcmMlBoS8yPZbwu3FTTpAZHRvrolxBQgsmu3Kk4e7lwYJlTxquaTag06zp8Ubvlrt_xnH5Lp4vw8mZ8u53ton4DbQYZo__jdqzcX7drOY6pr83Wf3hLe0vile_a2ieP8lr11W1RGGy_z2-iW9TrwsYHQHTSQ1V10s8dFeQ99NWDCHZjwNpiwBRN2YMIWTDi7xi2YcB9McINTrMH06_tPByPcg9F9tJiezl-febYqhyeozzZeGItYEJL6fkpFoCgJqYh4qDyPgsOYSJKxWFIWZEwSXjAZszgkMk3DjIV5EdADNKzqSj5AWID1rTZqiYzAK-ciJYL7fhYVVLCC-fkIvWgHMhGWsl5VTlklOnWCxsnJZPZRD_p0hJ51fb8YopadvQ5beSR2Il8lhAWKoghs7RF62v0NcFV7Z2kl60b3AcccJM5G6ADk2L3Dif3hn5_9CN1wE-UQDTfrRj4Gg3aTPbEo-w1-LqX_
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+unidirectional+forward+scattering+induced+by+resonant+interference+in+a+metal%E2%80%93dielectric+heterodimer&rft.jtitle=Nanoscale&rft.au=Sun%2C+Song&rft.au=Wang%2C+Dacheng&rft.au=Zheng%2C+Feng&rft.au=Tan%2C+Wei&rft.date=2020-11-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=43&rft.spage=22289&rft.epage=22297&rft_id=info:doi/10.1039%2Fd0nr07010f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon