Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer
We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhan...
Saved in:
Published in | Nanoscale Vol. 12; no. 43; pp. 22289 - 22297 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
12.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae,
etc
.
Interparticle resonant interference in the metal-dielectric heterodimer satisfies the first Kerker condition at its resonance peak, yielding highly-efficient unidirectional forward scattering. |
---|---|
AbstractList | We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole–dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal–dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10–20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc. We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio ( 48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc . Interparticle resonant interference in the metal-dielectric heterodimer satisfies the first Kerker condition at its resonance peak, yielding highly-efficient unidirectional forward scattering. We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole–dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal–dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10–20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc . We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc.We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc. |
Author | Feng, Zheng Sun, Song Tan, Wei Wang, Dacheng |
AuthorAffiliation | Microsystem & Terahertz Research Center China Academy of Engineering Physics Insititute of Electronic Engineering |
AuthorAffiliation_xml | – name: Insititute of Electronic Engineering – name: Microsystem & Terahertz Research Center – name: China Academy of Engineering Physics |
Author_xml | – sequence: 1 givenname: Song surname: Sun fullname: Sun, Song – sequence: 2 givenname: Dacheng surname: Wang fullname: Wang, Dacheng – sequence: 3 givenname: Zheng surname: Feng fullname: Feng, Zheng – sequence: 4 givenname: Wei surname: Tan fullname: Tan, Wei |
BookMark | eNptkUFLAzEQhYMoqNWLdyHgRYTV2STddI-i1gqiIHpe0uxEI9usTrJI_73RSgXxNBnyvQfz3i7bDH1Axg5KOC1B1mctBAINJbgNtiNAQSGlFpvrd6W22W6MrwBVLSu5w4aZf37plhyd89ZjSHwIvvWENvk-mI67nj4MtTxakxKSD8_ch3aw2PL5khPGTGWVD_nTIWGwmBdu-AKT6YrWY5e9yFv-ghnpW79A2mNbznQR93_miD1Nrx4vZsXt_fXNxfltYWWpUqFrW1shTFkaacf5KiHtpNIwAXBVPgbFXNUo1XiuUFROYa1qLdAYPVe6dWM5Yscr3zfq3weMqVn4aLHrTMB-iI1QY11Ncioqo0d_0Nd-oJzAN1VXoHROeMROVpSlPkZC17yRXxhaNiU0Xw00l3D38N3ANMPwB7Y-ma9cExnf_S85XEko2rX1b6nyEwn_lVo |
CitedBy_id | crossref_primary_10_1007_s11051_023_05696_4 crossref_primary_10_3390_nano12234259 crossref_primary_10_3390_nano12122084 crossref_primary_10_1063_5_0115964 crossref_primary_10_1021_acssuschemeng_2c04064 crossref_primary_10_1002_adpr_202100286 crossref_primary_10_1364_OE_485916 crossref_primary_10_1186_s11671_021_03614_y crossref_primary_10_1364_OE_427911 crossref_primary_10_1088_1361_6463_ad529a crossref_primary_10_1103_PhysRevB_106_205413 crossref_primary_10_1002_lpor_202000367 crossref_primary_10_1088_1361_6463_ad59af crossref_primary_10_1142_S021798492450043X crossref_primary_10_1002_adom_202100112 crossref_primary_10_3390_molecules28073175 crossref_primary_10_1016_j_optcom_2023_129302 |
Cites_doi | 10.1021/nn202086u 10.1002/adma.201505346 10.1021/nl049681c 10.1021/acsphotonics.7b00423 10.1038/nmat2629 10.1038/nphoton.2010.237 10.1126/science.aag2472 10.1364/OL.40.002645 10.1103/PhysRevB.82.045404 10.1364/OE.17.005723 10.1021/acsami.6b05123 10.1021/acsphotonics.9b00780 10.1021/nl2041063 10.1364/OE.21.031138 10.1117/1.3603941 10.1021/acs.nanolett.8b04089 10.1039/C8NR05692G 10.1038/ncomms5354 10.1038/nphoton.2009.282 10.1038/ncomms2538 10.1515/nanoph-2017-0117 10.1016/j.optcom.2018.11.055 10.1002/adom.201801070 10.1364/OL.38.002621 10.1364/OE.26.013085 10.1039/C5NR06964E 10.1364/OE.22.016178 10.1021/acsphotonics.9b00674 10.1364/OME.2.001407 10.1021/acsphotonics.5b00261 10.1021/acs.jpcc.8b01978 10.1021/nn301398a 10.1021/nn507148z 10.1021/acs.nanolett.6b05026 10.29026/oea.2019.190019 10.1021/acs.jpcc.9b06280 10.1021/nn204348j 10.1021/acs.jpcc.7b02593 10.1038/ncomms1490 10.1364/OL.38.001857 10.1021/nl900208z 10.1364/JOSA.73.000765 10.1103/PhysRevLett.102.133901 10.1039/D0NH00189A 10.1039/C6CP03303B 10.1021/acs.nanolett.7b00462 10.1002/adom.201900591 10.29026/oea.2018.180009 10.1038/nphoton.2010.34 10.1038/ncomms2167 10.1364/OE.18.011428 10.1021/nl4005018 10.1007/s00340-011-4727-5 10.1364/JOSAA.28.000054 10.1103/PhysRevB.78.085112 10.1021/nn505606x 10.1021/acs.nanolett.9b02540 10.1103/PhysRevLett.122.193905 10.1039/C6NR04335F 10.1021/acsphotonics.5b00732 10.1021/jp4027018 10.1038/ncomms4402 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr07010f |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 22297 |
ExternalDocumentID | 10_1039_D0NR07010F d0nr07010f |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-79c9c22a11a3c501023c8670800f6336e2b49e345b4e26f4e94972eaa7b47df53 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 10:03:53 EDT 2025 Mon Jun 30 04:53:39 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jul 01 01:14:02 EDT 2025 Sat Jan 08 03:48:20 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-79c9c22a11a3c501023c8670800f6336e2b49e345b4e26f4e94972eaa7b47df53 |
Notes | dimer, additional data for Au-GaP dimer and additional data for absorption, scattering and extinction cross-sections. See DOI 10.1039/d0nr07010f 2 Electronic supplementary information (ESI) available: Additional formulation for E with 20 nm gap distance, coupling of pure dielectric TiO TiO dimer polarization, unidirectional forward scattering of Ag-TiO dimer polarization, benchmark results with full wave simulation, weak coupling for ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2382-6481 |
PQID | 2459604710 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2459604710 proquest_miscellaneous_2457683644 crossref_primary_10_1039_D0NR07010F rsc_primary_d0nr07010f crossref_citationtrail_10_1039_D0NR07010F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201112 |
PublicationDateYYYYMMDD | 2020-11-12 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201112 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Evlyukhin (D0NR07010F-(cit23)/*[position()=1]) 2010; 82 Luk'yanchuk (D0NR07010F-(cit35)/*[position()=1]) 2015; 2 Geffrin (D0NR07010F-(cit28)/*[position()=1]) 2012; 3 Liu (D0NR07010F-(cit56)/*[position()=1]) 2012; 6 Yang (D0NR07010F-(cit65)/*[position()=1]) 2012; 2 Cambiasso (D0NR07010F-(cit68)/*[position()=1]) 2017; 17 Liu (D0NR07010F-(cit58)/*[position()=1]) 2014; 22 Palik (D0NR07010F-(cit64)/*[position()=1]) 1997 Poshakinskiy (D0NR07010F-(cit14)/*[position()=1]) 2019; 9 Evlyukhin (D0NR07010F-(cit41)/*[position()=1]) 2012; 106 Novotny (D0NR07010F-(cit3)/*[position()=1]) 2011; 5 Lei (D0NR07010F-(cit66)/*[position()=1]) 2019; 435 Jackson (D0NR07010F-(cit63)/*[position()=1]) 1962 Atwater (D0NR07010F-(cit9)/*[position()=1]) 2010; 9 Sun (D0NR07010F-(cit42)/*[position()=1]) 2016; 18 Gramotnev (D0NR07010F-(cit40)/*[position()=1]) 2010; 4 Mirin (D0NR07010F-(cit43)/*[position()=1]) 2009; 9 Sun (D0NR07010F-(cit54)/*[position()=1]) 2017; 121 Kosako (D0NR07010F-(cit20)/*[position()=1]) 2010; 4 Chen (D0NR07010F-(cit16)/*[position()=1]) 2019; 2 Alu (D0NR07010F-(cit47)/*[position()=1]) 2009; 17 Wang (D0NR07010F-(cit55)/*[position()=1]) 2015; 9 Fu (D0NR07010F-(cit30)/*[position()=1]) 2013; 4 Tian (D0NR07010F-(cit38)/*[position()=1]) 2016; 8 Person (D0NR07010F-(cit29)/*[position()=1]) 2013; 13 Liu (D0NR07010F-(cit51)/*[position()=1]) 2018; 10 Chen (D0NR07010F-(cit1)/*[position()=1]) 2012; 24 Dubois (D0NR07010F-(cit17)/*[position()=1]) 2018; 8 Vynck (D0NR07010F-(cit22)/*[position()=1]) 2009; 102 Nieto-Vesperinas (D0NR07010F-(cit13)/*[position()=1]) 2011; 28 Nordlander (D0NR07010F-(cit61)/*[position()=1]) 2004; 4 Sun (D0NR07010F-(cit53)/*[position()=1]) 2019; 123 Kuznetsov (D0NR07010F-(cit5)/*[position()=1]) 2016; 354 Chen (D0NR07010F-(cit6)/*[position()=1]) 2018; 7 Renaut (D0NR07010F-(cit8)/*[position()=1]) 2019; 19 Shegai (D0NR07010F-(cit21)/*[position()=1]) 2011; 2 Shibanuma (D0NR07010F-(cit50)/*[position()=1]) 2017; 17 King (D0NR07010F-(cit44)/*[position()=1]) 2011; 5 Liu (D0NR07010F-(cit27)/*[position()=1]) 2016; 8 Alaee (D0NR07010F-(cit32)/*[position()=1]) 2015; 40 Kerker (D0NR07010F-(cit19)/*[position()=1]) 1983; 73 Wiecha (D0NR07010F-(cit2)/*[position()=1]) 2017; 8 Lepeshov (D0NR07010F-(cit39)/*[position()=1]) 2019; 6 Yan (D0NR07010F-(cit37)/*[position()=1]) 2015; 9 Barhom (D0NR07010F-(cit11)/*[position()=1]) 2019; 19 Nieto-Vesperinas (D0NR07010F-(cit12)/*[position()=1]) 2010; 18 Liu (D0NR07010F-(cit57)/*[position()=1]) 2013; 38 Guo (D0NR07010F-(cit49)/*[position()=1]) 2016; 3 Alu (D0NR07010F-(cit45)/*[position()=1]) 2008; 78 Remesh (D0NR07010F-(cit67)/*[position()=1]) 2019; 6 Chen (D0NR07010F-(cit15)/*[position()=1]) 2018; 1 Shibanuma (D0NR07010F-(cit36)/*[position()=1]) 2016; 8 Dregely (D0NR07010F-(cit10)/*[position()=1]) 2014; 5 Albella (D0NR07010F-(cit62)/*[position()=1]) 2013; 117 Gomez-Medina (D0NR07010F-(cit26)/*[position()=1]) 2011; 5 Shamkhi (D0NR07010F-(cit34)/*[position()=1]) 2019; 122 Zuev (D0NR07010F-(cit48)/*[position()=1]) 2016; 28 Yan (D0NR07010F-(cit24)/*[position()=1]) 2020; 5 Sun (D0NR07010F-(cit52)/*[position()=1]) 2018; 122 Shao (D0NR07010F-(cit60)/*[position()=1]) 2012; 12 Sugimoto (D0NR07010F-(cit59)/*[position()=1]) 2019; 7 Zambrana-Puyalto (D0NR07010F-(cit31)/*[position()=1]) 2011; 38 Poutrina (D0NR07010F-(cit46)/*[position()=1]) 2013; 21 Jiang (D0NR07010F-(cit18)/*[position()=1]) 2018; 7 Liu (D0NR07010F-(cit33)/*[position()=1]) 2016; 26 Zywietz (D0NR07010F-(cit25)/*[position()=1]) 2014; 5 Nemati (D0NR07010F-(cit7)/*[position()=1]) 2018; 1 Miroshnichenko (D0NR07010F-(cit4)/*[position()=1]) 2012; 6 |
References_xml | – issn: 1997 publication-title: Handbook of optical constants of solids doi: Palik – issn: 1962 publication-title: Classic electrodynamics doi: Jackson – volume: 5 start-page: 7254 year: 2011 ident: D0NR07010F-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202086u – volume: 28 start-page: 3087 year: 2016 ident: D0NR07010F-(cit48)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505346 – volume: 4 start-page: 899 year: 2004 ident: D0NR07010F-(cit61)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl049681c – volume: 8 start-page: 2036 year: 2017 ident: D0NR07010F-(cit2)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00423 – volume: 9 start-page: 205 year: 2010 ident: D0NR07010F-(cit9)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2629 – volume: 5 start-page: 83 year: 2011 ident: D0NR07010F-(cit3)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.237 – volume: 354 start-page: 2472 year: 2016 ident: D0NR07010F-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.aag2472 – volume: 40 start-page: 2645 year: 2015 ident: D0NR07010F-(cit32)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.40.002645 – volume: 82 start-page: 045404 year: 2010 ident: D0NR07010F-(cit23)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.045404 – volume-title: Classic electrodynamics year: 1962 ident: D0NR07010F-(cit63)/*[position()=1] – volume: 17 start-page: 5723 year: 2009 ident: D0NR07010F-(cit47)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.17.005723 – volume: 8 start-page: 22468 year: 2016 ident: D0NR07010F-(cit27)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05123 – volume: 6 start-page: 2487 year: 2019 ident: D0NR07010F-(cit67)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00780 – volume: 12 start-page: 1424 year: 2012 ident: D0NR07010F-(cit60)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2041063 – volume: 21 start-page: 31138 year: 2013 ident: D0NR07010F-(cit46)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.21.031138 – volume: 5 start-page: 053512 year: 2011 ident: D0NR07010F-(cit26)/*[position()=1] publication-title: J. Nanophotonics doi: 10.1117/1.3603941 – volume: 19 start-page: 877 year: 2019 ident: D0NR07010F-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04089 – volume: 10 start-page: 18282 year: 2018 ident: D0NR07010F-(cit51)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR05692G – volume: 5 start-page: 4354 year: 2014 ident: D0NR07010F-(cit10)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5354 – volume: 4 start-page: 83 year: 2010 ident: D0NR07010F-(cit40)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.282 – volume: 4 start-page: 1527 year: 2013 ident: D0NR07010F-(cit30)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2538 – volume: 9 start-page: 011008 year: 2019 ident: D0NR07010F-(cit14)/*[position()=1] publication-title: Phys. Rev. X – volume: 1 start-page: 170001 year: 2018 ident: D0NR07010F-(cit15)/*[position()=1] publication-title: Opto-Electron. Adv. – volume: 7 start-page: 1207 year: 2018 ident: D0NR07010F-(cit6)/*[position()=1] publication-title: Nanophotonics doi: 10.1515/nanoph-2017-0117 – volume: 435 start-page: 362 year: 2019 ident: D0NR07010F-(cit66)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/j.optcom.2018.11.055 – volume: 7 start-page: 1801070 year: 2018 ident: D0NR07010F-(cit18)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801070 – volume: 38 start-page: 2621 year: 2013 ident: D0NR07010F-(cit57)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.38.002621 – volume: 26 start-page: 13085 year: 2016 ident: D0NR07010F-(cit33)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.26.013085 – volume: 8 start-page: 4047 year: 2016 ident: D0NR07010F-(cit38)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06964E – volume: 22 start-page: 16178 year: 2014 ident: D0NR07010F-(cit58)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.22.016178 – volume: 6 start-page: 2126 year: 2019 ident: D0NR07010F-(cit39)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00674 – volume: 2 start-page: 1407 year: 2012 ident: D0NR07010F-(cit65)/*[position()=1] publication-title: Opt. Mater. Express doi: 10.1364/OME.2.001407 – volume: 2 start-page: 993 year: 2015 ident: D0NR07010F-(cit35)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00261 – volume: 122 start-page: 14771 year: 2018 ident: D0NR07010F-(cit52)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01978 – volume: 6 start-page: 5489 year: 2012 ident: D0NR07010F-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn301398a – volume: 9 start-page: 2968 year: 2015 ident: D0NR07010F-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn507148z – volume: 17 start-page: 1219 year: 2017 ident: D0NR07010F-(cit68)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05026 – volume: 2 start-page: 190019 year: 2019 ident: D0NR07010F-(cit16)/*[position()=1] publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2019.190019 – volume: 123 start-page: 21150 year: 2019 ident: D0NR07010F-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b06280 – volume: 6 start-page: 837 year: 2012 ident: D0NR07010F-(cit4)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn204348j – volume: 121 start-page: 12871 year: 2017 ident: D0NR07010F-(cit54)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b02593 – volume: 2 start-page: 481 year: 2011 ident: D0NR07010F-(cit21)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1490 – volume: 38 start-page: 1857 year: 2011 ident: D0NR07010F-(cit31)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.38.001857 – volume: 9 start-page: 1255 year: 2009 ident: D0NR07010F-(cit43)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl900208z – volume: 73 start-page: 765 year: 1983 ident: D0NR07010F-(cit19)/*[position()=1] publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.73.000765 – volume: 24 start-page: 281 year: 2012 ident: D0NR07010F-(cit1)/*[position()=1] publication-title: Adv. Mater. – volume: 102 start-page: 133901 year: 2009 ident: D0NR07010F-(cit22)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.133901 – volume: 5 start-page: 1368 year: 2020 ident: D0NR07010F-(cit24)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00189A – volume: 18 start-page: 19324 year: 2016 ident: D0NR07010F-(cit42)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03303B – volume: 17 start-page: 2647 year: 2017 ident: D0NR07010F-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00462 – volume: 7 start-page: 1900591 year: 2019 ident: D0NR07010F-(cit59)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900591 – volume: 1 start-page: 180009 year: 2018 ident: D0NR07010F-(cit7)/*[position()=1] publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2018.180009 – volume: 8 start-page: 031083 year: 2018 ident: D0NR07010F-(cit17)/*[position()=1] publication-title: Phys. Rev. X – volume: 4 start-page: 312 year: 2010 ident: D0NR07010F-(cit20)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.34 – volume: 3 start-page: 1171 year: 2012 ident: D0NR07010F-(cit28)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2167 – volume-title: Handbook of optical constants of solids year: 1997 ident: D0NR07010F-(cit64)/*[position()=1] – volume: 18 start-page: 11428 year: 2010 ident: D0NR07010F-(cit12)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.18.011428 – volume: 13 start-page: 1806 year: 2013 ident: D0NR07010F-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl4005018 – volume: 106 start-page: 841 year: 2012 ident: D0NR07010F-(cit41)/*[position()=1] publication-title: Appl. Phys. B doi: 10.1007/s00340-011-4727-5 – volume: 28 start-page: 54 year: 2011 ident: D0NR07010F-(cit13)/*[position()=1] publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.28.000054 – volume: 78 start-page: 085112 year: 2008 ident: D0NR07010F-(cit45)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.085112 – volume: 9 start-page: 436 year: 2015 ident: D0NR07010F-(cit55)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn505606x – volume: 19 start-page: 7062 year: 2019 ident: D0NR07010F-(cit11)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02540 – volume: 122 start-page: 193905 year: 2019 ident: D0NR07010F-(cit34)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.193905 – volume: 8 start-page: 14184 year: 2016 ident: D0NR07010F-(cit36)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR04335F – volume: 3 start-page: 343 year: 2016 ident: D0NR07010F-(cit49)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00732 – volume: 117 start-page: 13573 year: 2013 ident: D0NR07010F-(cit62)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4027018 – volume: 5 start-page: 3402 year: 2014 ident: D0NR07010F-(cit25)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4402 |
SSID | ssj0069363 |
Score | 2.437302 |
Snippet | We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of... We demonstrate that a metal–dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22289 |
SubjectTerms | Broadband Dielectrics Dimers Dipole interactions Dipole moments Electric dipoles Forward scattering Interaction models Interference Magnetic dipoles Metallurgical constituents Nanoparticles Polarization Resonance scattering Titanium dioxide |
Title | Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer |
URI | https://www.proquest.com/docview/2459604710 https://www.proquest.com/docview/2457683644 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa63QscEH8rCgsygguqsjS24yTHhd2ygqVI0GorLlHiOFKkboK6jdBy4gm48IY8CeOfxKlUIeASNa6VRJ7P45nx-BuEnsuI86zg0guzgHiM5DCl0lx6DAy5IJKpjHSViPczfrZgb5fBcjD40ctaajbZkfi281zJ_0gV2kCu6pTsP0i2eyg0wG-QL1xBwnD9KxmrJI3VtcrJKPW5xnFTlWaNMgE-MEhVUuz4SmgWTXN8JW-EsTrB0a5VGoymjFi3fLNlNdZ1pdNVmwdB89IUy9F02NC1zstLm9RrzVrQ0TW8ZNWh5FNj4qq1XRh1yN6olRNFIe2aP6sbbUL3GucmLHshy35UAlxQlRnnfFgT-2gTT3ViiS1f5_QbUcmMlBoS8yPZbwu3FTTpAZHRvrolxBQgsmu3Kk4e7lwYJlTxquaTag06zp8Ubvlrt_xnH5Lp4vw8mZ8u53ton4DbQYZo__jdqzcX7drOY6pr83Wf3hLe0vile_a2ieP8lr11W1RGGy_z2-iW9TrwsYHQHTSQ1V10s8dFeQ99NWDCHZjwNpiwBRN2YMIWTDi7xi2YcB9McINTrMH06_tPByPcg9F9tJiezl-febYqhyeozzZeGItYEJL6fkpFoCgJqYh4qDyPgsOYSJKxWFIWZEwSXjAZszgkMk3DjIV5EdADNKzqSj5AWID1rTZqiYzAK-ciJYL7fhYVVLCC-fkIvWgHMhGWsl5VTlklOnWCxsnJZPZRD_p0hJ51fb8YopadvQ5beSR2Il8lhAWKoghs7RF62v0NcFV7Z2kl60b3AcccJM5G6ADk2L3Dif3hn5_9CN1wE-UQDTfrRj4Gg3aTPbEo-w1-LqX_ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+unidirectional+forward+scattering+induced+by+resonant+interference+in+a+metal%E2%80%93dielectric+heterodimer&rft.jtitle=Nanoscale&rft.au=Sun%2C+Song&rft.au=Wang%2C+Dacheng&rft.au=Zheng%2C+Feng&rft.au=Tan%2C+Wei&rft.date=2020-11-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=43&rft.spage=22289&rft.epage=22297&rft_id=info:doi/10.1039%2Fd0nr07010f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |