Perovskite quantum dots for light-emitting devices
Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning...
Saved in:
Published in | Nanoscale Vol. 11; no. 41; pp. 19119 - 19139 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/c9nr06191f |
Cover
Loading…
Abstract | Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.
Perovskite QDs are promising platforms for light-emitting applications. Advances in perovskite QDs, including optoelectronic properties and device performance are discussed. |
---|---|
AbstractList | Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented. Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented. Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented. Perovskite QDs are promising platforms for light-emitting applications. Advances in perovskite QDs, including optoelectronic properties and device performance are discussed. |
Author | Li, Yun-Fei Feng, Jing Sun, Hong-Bo |
AuthorAffiliation | Jilin University Tsinghua University Tianjin Key Laboratory of Electronic Materials and Devices Hebei University of Technology State Key Lab of Precision Measurement Technology and Instruments State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Department of Precision Instrument School of Electronics and Information Engineering |
AuthorAffiliation_xml | – sequence: 0 name: College of Electronic Science and Engineering – sequence: 0 name: Department of Precision Instrument – sequence: 0 name: School of Electronics and Information Engineering – sequence: 0 name: Jilin University – sequence: 0 name: Tianjin Key Laboratory of Electronic Materials and Devices – sequence: 0 name: Hebei University of Technology – sequence: 0 name: State Key Lab of Precision Measurement Technology and Instruments – sequence: 0 name: Tsinghua University – sequence: 0 name: State Key Laboratory of Integrated Optoelectronics |
Author_xml | – sequence: 1 givenname: Yun-Fei surname: Li fullname: Li, Yun-Fei – sequence: 2 givenname: Jing surname: Feng fullname: Feng, Jing – sequence: 3 givenname: Hong-Bo surname: Sun fullname: Sun, Hong-Bo |
BookMark | eNptkc1LAzEUxIMo2FYv3oUFLyKs5qu7yVGKVaGoiJ6XNHlbU3eTNskW_O9trVQonuYdfjMM8_ro0HkHCJ0RfE0wkzdauoALIkl9gHoUc5wzVtLD3V3wY9SPcY5xIVnBeoi-QPCr-GkTZMtOudS1mfEpZrUPWWNnHymH1qZk3SwzsLIa4gk6qlUT4fRXB-h9fPc2esgnz_ePo9tJrhnhKS-FMhQMyJIOqZhyTRhmRlGsxLAEKbkhDKaCFKwwtcRG1KYsgWkluCASazZAl9vcRfDLDmKqWhs1NI1y4LtYUSoF4YUckjV6sYfOfRfcul1FGRacYUI21NWW0sHHGKCuFsG2KnxVBFeb-aqRfHr9mW-8hvEerG1SyXqXgrLN_5bzrSVEvYv--wj7BnjyfHg |
CitedBy_id | crossref_primary_10_1002_smtd_202300417 crossref_primary_10_1088_1674_4926_24090046 crossref_primary_10_2139_ssrn_4105048 crossref_primary_10_1016_j_jssc_2024_124584 crossref_primary_10_3390_app13179495 crossref_primary_10_1016_j_jechem_2020_05_050 crossref_primary_10_1016_j_optmat_2025_116884 crossref_primary_10_1039_D2TC01832B crossref_primary_10_1002_admt_202200043 crossref_primary_10_1016_j_dyepig_2023_111651 crossref_primary_10_1002_adom_202403039 crossref_primary_10_1021_acs_langmuir_1c01773 crossref_primary_10_3390_nano12040627 crossref_primary_10_1016_j_mencom_2021_07_008 crossref_primary_10_1021_acs_chemrev_2c00688 crossref_primary_10_1016_j_aca_2023_340847 crossref_primary_10_1002_eom2_12142 crossref_primary_10_1515_nanoph_2020_0099 crossref_primary_10_1016_j_jlumin_2021_118413 crossref_primary_10_1002_bio_4706 crossref_primary_10_1039_D3TC00180F crossref_primary_10_1039_D4MH01270D crossref_primary_10_1016_j_jssc_2024_125164 crossref_primary_10_1002_inf2_12187 crossref_primary_10_1021_acs_nanolett_0c03470 crossref_primary_10_1016_j_jallcom_2020_157643 crossref_primary_10_1016_j_mattod_2021_10_023 crossref_primary_10_1016_j_optmat_2022_113308 crossref_primary_10_1039_D2NR06727G crossref_primary_10_1149_2162_8777_ac08d4 crossref_primary_10_26599_TST_2022_9010070 crossref_primary_10_1364_PRJ_505839 crossref_primary_10_1021_acsanm_4c00451 crossref_primary_10_1021_acs_inorgchem_4c00424 crossref_primary_10_1016_j_jallcom_2022_166322 crossref_primary_10_1088_1361_6528_ad86c7 crossref_primary_10_37188_lam_2022_004 crossref_primary_10_1016_j_cej_2024_157596 crossref_primary_10_1016_j_optmat_2024_116462 crossref_primary_10_1016_j_jallcom_2025_178911 crossref_primary_10_1002_adma_202210385 crossref_primary_10_1002_macp_202400249 crossref_primary_10_1016_j_cej_2021_133866 crossref_primary_10_1021_acs_chemmater_3c00934 crossref_primary_10_1016_j_cej_2025_161297 crossref_primary_10_1039_D3TC00929G crossref_primary_10_1039_D1TA05242J crossref_primary_10_1002_adma_202106184 crossref_primary_10_1007_s10853_021_05997_w crossref_primary_10_1016_j_saa_2023_123091 crossref_primary_10_1016_j_ceramint_2020_10_179 crossref_primary_10_1016_j_ceramint_2024_06_334 crossref_primary_10_1039_D2TC01144A crossref_primary_10_1088_1361_6463_abd65a crossref_primary_10_1021_acs_jpcc_1c08102 crossref_primary_10_1039_D0TA02494E crossref_primary_10_1021_acs_jpcc_1c04487 crossref_primary_10_54097_hset_v27i_3775 crossref_primary_10_1039_D4TC02230K crossref_primary_10_1039_D2NJ06191K crossref_primary_10_1021_acs_chemmater_0c00590 crossref_primary_10_1002_admi_202100441 crossref_primary_10_1016_j_mseb_2021_115513 crossref_primary_10_1039_D0TC01360A crossref_primary_10_3390_nano10071375 crossref_primary_10_1016_j_mseb_2024_117835 crossref_primary_10_1021_acs_analchem_1c02425 crossref_primary_10_1016_j_jiec_2020_03_040 crossref_primary_10_1007_s40843_022_2197_4 crossref_primary_10_1515_nanoph_2020_0214 crossref_primary_10_3390_catal11010061 crossref_primary_10_1039_D0TA09096D crossref_primary_10_1016_j_jlumin_2022_119401 crossref_primary_10_1021_acs_jpclett_1c02472 crossref_primary_10_1007_s12274_020_3170_5 crossref_primary_10_1016_j_mssp_2025_109277 crossref_primary_10_1364_OL_484835 crossref_primary_10_1039_D1NJ05832K crossref_primary_10_1039_D2NR05918E crossref_primary_10_1016_j_optmat_2022_113070 crossref_primary_10_1021_acsphotonics_0c01952 crossref_primary_10_1016_j_cej_2024_149792 crossref_primary_10_1039_D0TC04394J crossref_primary_10_1016_j_optmat_2023_114127 crossref_primary_10_1016_j_jallcom_2021_161996 crossref_primary_10_1016_j_saa_2022_122212 crossref_primary_10_1186_s40580_023_00395_1 crossref_primary_10_1002_adma_202314193 crossref_primary_10_1016_j_pmatsci_2024_101243 crossref_primary_10_1016_j_matlet_2021_129398 crossref_primary_10_1002_solr_202200536 crossref_primary_10_1016_j_cej_2021_133701 crossref_primary_10_1016_j_materresbull_2021_111592 crossref_primary_10_1002_advs_202301793 crossref_primary_10_1021_acsaelm_2c01297 crossref_primary_10_3390_applnano1010001 crossref_primary_10_1016_j_jcis_2021_03_128 crossref_primary_10_1039_D3TC02654J crossref_primary_10_1039_D4NR00638K crossref_primary_10_1140_epjb_s10051_022_00409_7 crossref_primary_10_3390_nano13050871 crossref_primary_10_1002_adfm_202010009 crossref_primary_10_1002_adfm_202010768 crossref_primary_10_1007_s00210_024_03309_y crossref_primary_10_2139_ssrn_4098448 |
Cites_doi | 10.1039/C6TC04934F 10.1002/anie.201602236 10.1021/acs.jpclett.6b01406 10.1021/acsnano.7b00116 10.1021/acsami.5b10373 10.1002/adma.201502567 10.1021/acs.nanolett.5b02985 10.1021/acsnano.5b07506 10.1063/1.447218 10.3389/fchem.2018.00444 10.1126/science.aao0865 10.1002/smll.201702433 10.1016/j.jallcom.2019.03.408 10.1002/adma.201801996 10.1016/j.nanoen.2016.10.039 10.1021/acs.jpclett.6b02073 10.1021/acsnano.5b06295 10.1021/jacs.7b04000 10.1021/jacs.6b05608 10.1021/ja017002j 10.1016/j.nanoen.2017.05.002 10.1021/acsnano.6b05913 10.1039/C5NR09127F 10.1126/science.271.5251.933 10.1246/cl.2012.397 10.1002/adma.201607022 10.1038/lsa.2017.170 10.1021/jacs.6b02909 10.1021/acs.nanolett.6b00964 10.1021/jacs.6b09575 10.1002/9780470827857 10.1021/jacs.8b04763 10.1021/acs.chemmater.7b00692 10.1039/C7TC01562C 10.1038/s41566-018-0260-y 10.1007/s100190000062 10.1038/ncomms9238 10.1002/adma.201600784 10.1039/C6MH00519E 10.1021/jacs.7b10647 10.1088/1361-6528/aa7c86 10.1017/CBO9781139051637 10.1021/acsnano.6b01540 10.1021/j100403a003 10.1002/adma.201603885 10.1021/ja01167a001 10.1021/acs.jpclett.9b00277 10.1002/adma.201603826 10.1021/nl5048779 10.1002/adma.201603964 10.1021/acs.chemrev.5b00715 10.1039/C6SC01758D 10.1126/science.aam7093 10.1038/nphoton.2016.185 10.1002/adma.201805409 10.1002/adfm.201601054 10.1039/C6CC08282C 10.1021/acs.chemmater.7b02089 10.1039/C4TA05878J 10.1021/acs.chemmater.7b01100 10.1021/acsnano.6b03863 10.1016/j.matlet.2018.05.082 10.1039/C6TC05329G 10.1038/nnano.2014.149 10.1002/aenm.201301882 10.1002/adom.201800380 10.1146/annurev.matsci.30.1.475 10.1021/acsnano.5b01154 10.1021/acs.jpcc.8b03681 10.1002/adma.201603081 10.1039/C7CC04862A 10.1002/adma.201807516 10.1021/acs.jpcc.5b02959 10.1021/ja4109209 10.1021/acsami.7b03382 10.1021/acs.jpclett.8b01752 10.1002/smll.201900801 10.1021/jacs.5b05602 10.1021/jacs.5b13470 10.1002/adma.201600064 10.1021/jacs.6b08085 10.1016/j.jpcs.2003.08.021 10.1002/cnma.201700034 10.1021/acsenergylett.8b01754 10.1039/C5TA04904K 10.1039/C8TA06376A 10.1038/ncomms15218 10.1103/PhysRevLett.120.185701 10.1002/adfm.201600958 10.1002/advs.201500194 10.1038/s41377-018-0014-0 10.1039/C6TC05578H 10.1021/jacs.6b08900 10.1021/acsenergylett.9b00634 10.1002/smll.201701770 10.1002/anie.201708510 10.1021/acsenergylett.6b00499 10.1002/adma.201502490 10.1002/adma.201606405 10.1021/acsenergylett.7b00191 10.1038/nphoton.2014.134 10.1126/science.aad1818 10.1021/acs.nanolett.6b02688 10.1021/jacs.6b13079 10.1021/nl500390f 10.1021/acsnano.8b05172 10.1021/acsenergylett.6b00595 10.1039/C6CP04083G 10.1002/adma.201602651 10.1021/acs.nanolett.8b00789 10.1021/acs.chemmater.7b00345 10.1038/ncomms6757 10.1021/acs.nanolett.5b00235 10.1021/jacs.7b02817 10.1002/anie.201603698 10.1038/s41377-018-0013-1 10.1007/s40843-016-5123-1 10.1021/acs.chemmater.6b01329 10.1021/acs.nanolett.5b04959 10.1021/acs.nanolett.5b04981 10.1021/acs.jpclett.5b02460 10.1002/adom.201900774 10.1002/adma.201602897 10.1021/acs.nanolett.7b02959 10.1021/acs.chemmater.7b00478 10.1039/C8CS00740C 10.1021/acsami.7b03445 10.1021/acs.nanolett.5b02404 10.1002/adfm.201600109 10.1021/acsnano.7b07856 10.1021/acsnano.7b05442 10.1021/acs.nanolett.6b04781 10.1039/C7TC01300K 10.1016/j.nantod.2017.07.001 10.1002/anie.201608160 10.1103/PhysRevB.92.045414 10.1038/nphoton.2012.328 10.1021/acs.jpclett.6b02800 10.1021/acs.chemmater.5b00660 10.1038/nature13829 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c9nr06191f |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 19139 |
ExternalDocumentID | 10_1039_C9NR06191F c9nr06191f |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-78ad2ede972528b4c1303da20a857e994d13eb81636df90d8fd77e3ca848190c3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 15:57:43 EDT 2025 Mon Jun 30 05:19:33 EDT 2025 Tue Jul 01 01:13:45 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Dec 17 20:59:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-78ad2ede972528b4c1303da20a857e994d13eb81636df90d8fd77e3ca848190c3 |
Notes | Jing Feng received her B.S. and Ph.D. degrees from Jilin University in 1997 and 2003, respectively. She worked as a postdoctoral researcher in RIKEN, Japan, from 2003 to 2006. In 2006, she joined Jilin University, and now she is a professor at the College of Electronic Science and Engineering and State Key Lab of Integrated Optoelectronics. Her research interests have been focused on organic optoelectronic devices. Hong-Bo Sun received his B.S. and Ph.D. degrees from Jilin University in 1992 and 1996, respectively. He worked as a postdoctoral researcher at the University of Tokushima, Japan, from 1996 to 2000, and then as an assistant professor at Osaka University, Japan. In 2005, he was promoted to a full professor (Changjiang Scholar) at Jilin University, China. In 2017, he joined Tsinghua University, and now he is a professor at the State Key Lab of Precision Measurement Technology and Instruments and Department of Precision Instrument, Tsinghua University, China. His research interests have been focused on ultrafast optoelectronics. In 2017, he was selected as an IEEE fellow, OSA fellow, SPIE fellow, and COS fellow. Yun-Fei Li received her B.S. and Ph.D. degrees from Jilin University in 2012 and 2018, respectively. She is a lecturer at the School of Electronics and Information Engineering, Hebei University of Technology. Her current research includes organic light-emitting devices and perovskite light-emitting devices. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2127-8610 |
PQID | 2308430111 |
PQPubID | 2047485 |
PageCount | 21 |
ParticipantIDs | rsc_primary_c9nr06191f proquest_miscellaneous_2298146951 proquest_journals_2308430111 crossref_primary_10_1039_C9NR06191F crossref_citationtrail_10_1039_C9NR06191F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-07 |
PublicationDateYYYYMMDD | 2019-11-07 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hou (C9NR06191F-(cit124)/*[position()=1]) 2018; 7 Wei (C9NR06191F-(cit27)/*[position()=1]) 2019; 10 Li (C9NR06191F-(cit24)/*[position()=1]) 2019; 31 Akkerman (C9NR06191F-(cit73)/*[position()=1]) 2015; 137 Mittal (C9NR06191F-(cit80)/*[position()=1]) 2016; 7 Koolyk (C9NR06191F-(cit105)/*[position()=1]) 2016; 8 Wang (C9NR06191F-(cit21)/*[position()=1]) 2018; 14 Jellicoe (C9NR06191F-(cit81)/*[position()=1]) 2016; 138 Swarnkar (C9NR06191F-(cit20)/*[position()=1]) 2017; 2 Wang (C9NR06191F-(cit121)/*[position()=1]) 2017; 53 Aygüler (C9NR06191F-(cit143)/*[position()=1]) 2015; 119 Quan (C9NR06191F-(cit26)/*[position()=1]) 2018; 30 De Roo (C9NR06191F-(cit116)/*[position()=1]) 2016; 10 Liu (C9NR06191F-(cit109)/*[position()=1]) 2016; 16 Huang (C9NR06191F-(cit57)/*[position()=1]) 2015; 2 Zou (C9NR06191F-(cit141)/*[position()=1]) 2017; 139 LaMer (C9NR06191F-(cit103)/*[position()=1]) 1950; 72 Xing (C9NR06191F-(cit125)/*[position()=1]) 2016; 10 Chiba (C9NR06191F-(cit36)/*[position()=1]) 2018; 12 van der Stam (C9NR06191F-(cit82)/*[position()=1]) 2017; 139 Wang (C9NR06191F-(cit5)/*[position()=1]) 2017; 16 Huang (C9NR06191F-(cit56)/*[position()=1]) 2016; 7 Giustino (C9NR06191F-(cit88)/*[position()=1]) 2016; 1 Wang (C9NR06191F-(cit4)/*[position()=1]) 2014; 4 Dai (C9NR06191F-(cit11)/*[position()=1]) 2014; 515 Dirin (C9NR06191F-(cit19)/*[position()=1]) 2016; 16 Wang (C9NR06191F-(cit92)/*[position()=1]) 2016; 28 Koscher (C9NR06191F-(cit122)/*[position()=1]) 2017; 139 Protesescu (C9NR06191F-(cit54)/*[position()=1]) 2016; 138 Bade (C9NR06191F-(cit137)/*[position()=1]) 2016; 10 Wang (C9NR06191F-(cit53)/*[position()=1]) 2016; 59 Begum (C9NR06191F-(cit96)/*[position()=1]) 2017; 139 Li (C9NR06191F-(cit139)/*[position()=1]) 2015; 15 Song (C9NR06191F-(cit35)/*[position()=1]) 2018; 30 Chen (C9NR06191F-(cit84)/*[position()=1]) 2018; 140 Zhang (C9NR06191F-(cit128)/*[position()=1]) 2016; 16 Sun (C9NR06191F-(cit144)/*[position()=1]) 2016; 28 Gonzalez-Carrero (C9NR06191F-(cit14)/*[position()=1]) 2015; 3 Kim (C9NR06191F-(cit126)/*[position()=1]) 2017; 38 Zhang (C9NR06191F-(cit79)/*[position()=1]) 2017; 29 Li (C9NR06191F-(cit117)/*[position()=1]) 2017; 29 Xu (C9NR06191F-(cit95)/*[position()=1]) 2017; 29 Brus (C9NR06191F-(cit1)/*[position()=1]) 1986; 90 Pan (C9NR06191F-(cit15)/*[position()=1]) 2016; 28 Butkus (C9NR06191F-(cit42)/*[position()=1]) 2017; 29 Brus (C9NR06191F-(cit8)/*[position()=1]) 1984; 80 Zhang (C9NR06191F-(cit104)/*[position()=1]) 2017; 3 Liu (C9NR06191F-(cit140)/*[position()=1]) 2011 Li (C9NR06191F-(cit45)/*[position()=1]) 2015; 6 Cheng (C9NR06191F-(cit78)/*[position()=1]) 2019; 791 Malgras (C9NR06191F-(cit52)/*[position()=1]) 2016; 138 Liu (C9NR06191F-(cit29)/*[position()=1]) 2017; 11 Naghadeh (C9NR06191F-(cit43)/*[position()=1]) 2018; 122 Tan (C9NR06191F-(cit44)/*[position()=1]) 2014; 9 Pan (C9NR06191F-(cit32)/*[position()=1]) 2018; 140 Huang (C9NR06191F-(cit59)/*[position()=1]) 2015; 7 Shirasaki (C9NR06191F-(cit3)/*[position()=1]) 2013; 7 Protesescu (C9NR06191F-(cit10)/*[position()=1]) 2015; 15 Dong (C9NR06191F-(cit46)/*[position()=1]) 2018; 6 Prochowicz (C9NR06191F-(cit65)/*[position()=1]) 2015; 3 Schmidt (C9NR06191F-(cit13)/*[position()=1]) 2014; 136 Chan (C9NR06191F-(cit58)/*[position()=1]) 2017; 5 Zhang (C9NR06191F-(cit62)/*[position()=1]) 2018; 6 Qu (C9NR06191F-(cit106)/*[position()=1]) 2002; 124 Hintermayr (C9NR06191F-(cit67)/*[position()=1]) 2016; 28 Aristidou (C9NR06191F-(cit112)/*[position()=1]) 2017; 8 Vickers (C9NR06191F-(cit123)/*[position()=1]) 2018; 3 Saparov (C9NR06191F-(cit75)/*[position()=1]) 2016; 116 Yan (C9NR06191F-(cit33)/*[position()=1]) 2018; 18 Cha (C9NR06191F-(cit48)/*[position()=1]) 2017; 5 Liang (C9NR06191F-(cit40)/*[position()=1]) 2004; 65 Wei (C9NR06191F-(cit28)/*[position()=1]) 2019; 48 Chen (C9NR06191F-(cit111)/*[position()=1]) 2016; 59 Bhalla (C9NR06191F-(cit18)/*[position()=1]) 2000; 4 Han (C9NR06191F-(cit34)/*[position()=1]) 2018; 12 Luo (C9NR06191F-(cit119)/*[position()=1]) 2016; 55 Efros (C9NR06191F-(cit100)/*[position()=1]) 2000; 30 Cho (C9NR06191F-(cit134)/*[position()=1]) 2015; 350 Levchuk (C9NR06191F-(cit77)/*[position()=1]) 2017; 17 Shi (C9NR06191F-(cit130)/*[position()=1]) 2018; 12 Frost (C9NR06191F-(cit113)/*[position()=1]) 2014; 14 Yu (C9NR06191F-(cit136)/*[position()=1]) 2016; 10 Zhang (C9NR06191F-(cit16)/*[position()=1]) 2015; 9 Deng (C9NR06191F-(cit60)/*[position()=1]) 2016; 26 Leguy (C9NR06191F-(cit114)/*[position()=1]) 2015; 27 Chiba (C9NR06191F-(cit131)/*[position()=1]) 2018; 12 Panfil (C9NR06191F-(cit9)/*[position()=1]) 2018; 57 Mitzi (C9NR06191F-(cit39)/*[position()=1]) 2007; 48 Zhao (C9NR06191F-(cit23)/*[position()=1]) 2017; 5 Zhang (C9NR06191F-(cit93)/*[position()=1]) 2016; 30 Alivisatos (C9NR06191F-(cit2)/*[position()=1]) 1996; 271 Zhang (C9NR06191F-(cit102)/*[position()=1]) 2017; 29 Pan (C9NR06191F-(cit115)/*[position()=1]) 2016; 10 Zhang (C9NR06191F-(cit72)/*[position()=1]) 2016; 7 Sun (C9NR06191F-(cit70)/*[position()=1]) 2017; 28 Zhang (C9NR06191F-(cit38)/*[position()=1]) 2018; 359 Kojima (C9NR06191F-(cit51)/*[position()=1]) 2012; 41 Kang (C9NR06191F-(cit108)/*[position()=1]) 2017; 8 Wang (C9NR06191F-(cit94)/*[position()=1]) 2017; 29 Chen (C9NR06191F-(cit7)/*[position()=1]) 2018; 120 Li (C9NR06191F-(cit61)/*[position()=1]) 2016; 26 Li (C9NR06191F-(cit129)/*[position()=1]) 2017; 29 Pan (C9NR06191F-(cit120)/*[position()=1]) 2015; 6 Xu (C9NR06191F-(cit133)/*[position()=1]) 2017; 5 Dai (C9NR06191F-(cit101)/*[position()=1]) 2017; 29 Li (C9NR06191F-(cit99)/*[position()=1]) 2016; 28 Senden (C9NR06191F-(cit6)/*[position()=1]) 2018; 7 Shan (C9NR06191F-(cit17)/*[position()=1]) 2017; 13 Meng (C9NR06191F-(cit76)/*[position()=1]) 2017; 29 Zhang (C9NR06191F-(cit132)/*[position()=1]) 2016; 26 Li (C9NR06191F-(cit138)/*[position()=1]) 2015; 27 Kovalenko (C9NR06191F-(cit25)/*[position()=1]) 2017; 358 Pu (C9NR06191F-(cit107)/*[position()=1]) 2016; 138 Gan (C9NR06191F-(cit71)/*[position()=1]) 2019; 4 Rajeev Kumar (C9NR06191F-(cit89)/*[position()=1]) 2018; 227 Protesescu (C9NR06191F-(cit55)/*[position()=1]) 2017; 11 Yong (C9NR06191F-(cit30)/*[position()=1]) 2018; 140 Chang (C9NR06191F-(cit50)/*[position()=1]) 2018; 6 Filip (C9NR06191F-(cit86)/*[position()=1]) 2014; 5 Shan (C9NR06191F-(cit142)/*[position()=1]) 2017; 5 Leng (C9NR06191F-(cit85)/*[position()=1]) 2016; 55 Fries (C9NR06191F-(cit12)/*[position()=1]) 2018; 7 Xiao (C9NR06191F-(cit87)/*[position()=1]) 2017; 4 Hou (C9NR06191F-(cit68)/*[position()=1]) 2017; 9 Jain (C9NR06191F-(cit90)/*[position()=1]) 2017; 18 Wang (C9NR06191F-(cit47)/*[position()=1]) 2016; 28 Zhang (C9NR06191F-(cit64)/*[position()=1]) 2019; 7 Green (C9NR06191F-(cit97)/*[position()=1]) 2014; 8 Wang (C9NR06191F-(cit135)/*[position()=1]) 2016; 10 Liu (C9NR06191F-(cit83)/*[position()=1]) 2016; 138 Chiba (C9NR06191F-(cit118)/*[position()=1]) 2017; 9 Wang (C9NR06191F-(cit31)/*[position()=1]) 2018; 9 Zhang (C9NR06191F-(cit22)/*[position()=1]) 2017; 19 De Graef (C9NR06191F-(cit37)/*[position()=1]) 2012 Yaffe (C9NR06191F-(cit66)/*[position()=1]) 2015; 92 ten Brinck (C9NR06191F-(cit110)/*[position()=1]) 2016; 1 Sichert (C9NR06191F-(cit41)/*[position()=1]) 2015; 15 Pan (C9NR06191F-(cit49)/*[position()=1]) 2017; 17 Long (C9NR06191F-(cit69)/*[position()=1]) 2017; 53 Liu (C9NR06191F-(cit91)/*[position()=1]) 2019; 15 Lignos (C9NR06191F-(cit98)/*[position()=1]) 2016; 16 Nedelcu (C9NR06191F-(cit74)/*[position()=1]) 2015; 15 Zhou (C9NR06191F-(cit63)/*[position()=1]) 2016; 28 Song (C9NR06191F-(cit127)/*[position()=1]) 2015; 27 |
References_xml | – issn: 2012 publication-title: Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry doi: De Graef McHenry – issn: 2011 publication-title: LED packaging for lighting applications: design, manufacturing, and testing doi: Liu Luo – volume: 5 start-page: 531 year: 2017 ident: C9NR06191F-(cit23)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04934F – volume: 55 start-page: 8864 year: 2016 ident: C9NR06191F-(cit119)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602236 – volume: 48 start-page: 1 year: 2007 ident: C9NR06191F-(cit39)/*[position()=1] publication-title: Prog. Inorg. Chem. – volume: 7 start-page: 3270 year: 2016 ident: C9NR06191F-(cit80)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01406 – volume: 18 start-page: 28 year: 2017 ident: C9NR06191F-(cit90)/*[position()=1] publication-title: J. Phys. Chem. C – volume: 11 start-page: 3119 year: 2017 ident: C9NR06191F-(cit55)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00116 – volume: 7 start-page: 28128 year: 2015 ident: C9NR06191F-(cit59)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10373 – volume: 27 start-page: 7162 year: 2015 ident: C9NR06191F-(cit127)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502567 – volume: 15 start-page: 6521 year: 2015 ident: C9NR06191F-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02985 – volume: 10 start-page: 1795 year: 2016 ident: C9NR06191F-(cit137)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07506 – volume: 80 start-page: 4403 year: 1984 ident: C9NR06191F-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.447218 – volume: 6 start-page: 444 year: 2018 ident: C9NR06191F-(cit62)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2018.00444 – volume: 359 start-page: 675 year: 2018 ident: C9NR06191F-(cit38)/*[position()=1] publication-title: Science doi: 10.1126/science.aao0865 – volume: 14 start-page: 1702433 year: 2018 ident: C9NR06191F-(cit21)/*[position()=1] publication-title: Small doi: 10.1002/smll.201702433 – volume: 791 start-page: 814 year: 2019 ident: C9NR06191F-(cit78)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.03.408 – volume: 30 start-page: 1801996 year: 2018 ident: C9NR06191F-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801996 – volume: 30 start-page: 511 year: 2016 ident: C9NR06191F-(cit93)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.039 – volume: 7 start-page: 4602 year: 2016 ident: C9NR06191F-(cit72)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02073 – volume: 10 start-page: 2071 year: 2016 ident: C9NR06191F-(cit116)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b06295 – volume: 139 start-page: 11443 year: 2017 ident: C9NR06191F-(cit141)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04000 – volume: 138 start-page: 13874 year: 2016 ident: C9NR06191F-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05608 – volume: 124 start-page: 2049 year: 2002 ident: C9NR06191F-(cit106)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017002j – volume: 38 start-page: 51 year: 2017 ident: C9NR06191F-(cit126)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.002 – volume: 10 start-page: 11044 year: 2016 ident: C9NR06191F-(cit136)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b05913 – volume: 8 start-page: 6403 year: 2016 ident: C9NR06191F-(cit105)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR09127F – volume: 271 start-page: 933 year: 1996 ident: C9NR06191F-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 41 start-page: 397399 year: 2012 ident: C9NR06191F-(cit51)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2012.397 – volume: 29 start-page: 1607022 year: 2017 ident: C9NR06191F-(cit101)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201607022 – volume: 7 start-page: 17170 year: 2018 ident: C9NR06191F-(cit124)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2017.170 – volume: 138 start-page: 8134 year: 2016 ident: C9NR06191F-(cit107)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02909 – volume: 16 start-page: 3335 year: 2016 ident: C9NR06191F-(cit109)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00964 – volume: 139 start-page: 731 year: 2017 ident: C9NR06191F-(cit96)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09575 – volume-title: LED packaging for lighting applications: design, manufacturing, and testing year: 2011 ident: C9NR06191F-(cit140)/*[position()=1] doi: 10.1002/9780470827857 – volume: 140 start-page: 9942 year: 2018 ident: C9NR06191F-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04763 – volume: 29 start-page: 5168 year: 2017 ident: C9NR06191F-(cit129)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00692 – volume: 5 start-page: 6667 year: 2017 ident: C9NR06191F-(cit48)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01562C – volume: 12 start-page: 681 year: 2018 ident: C9NR06191F-(cit131)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-018-0260-y – volume: 4 start-page: 3 year: 2000 ident: C9NR06191F-(cit18)/*[position()=1] publication-title: Mater. Res. Innovations doi: 10.1007/s100190000062 – volume: 6 start-page: 8238 year: 2015 ident: C9NR06191F-(cit45)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9238 – volume: 28 start-page: 8718 year: 2016 ident: C9NR06191F-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600784 – volume: 4 start-page: 206 year: 2017 ident: C9NR06191F-(cit87)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C6MH00519E – volume: 140 start-page: 562 year: 2018 ident: C9NR06191F-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10647 – volume: 28 start-page: 365601 year: 2017 ident: C9NR06191F-(cit70)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa7c86 – volume-title: Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry year: 2012 ident: C9NR06191F-(cit37)/*[position()=1] doi: 10.1017/CBO9781139051637 – volume: 10 start-page: 6623 year: 2016 ident: C9NR06191F-(cit125)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b01540 – volume: 90 start-page: 2555 year: 1986 ident: C9NR06191F-(cit1)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100403a003 – volume: 29 start-page: 1603885 year: 2017 ident: C9NR06191F-(cit117)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603885 – volume: 72 start-page: 4847 year: 1950 ident: C9NR06191F-(cit103)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01167a001 – volume: 10 start-page: 3035 year: 2019 ident: C9NR06191F-(cit27)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00277 – volume: 29 start-page: 1603826 year: 2017 ident: C9NR06191F-(cit76)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603826 – volume: 15 start-page: 3692 year: 2015 ident: C9NR06191F-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5048779 – volume: 28 start-page: 10710 year: 2016 ident: C9NR06191F-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603964 – volume: 116 start-page: 4558 year: 2016 ident: C9NR06191F-(cit75)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 7 start-page: 5699 year: 2016 ident: C9NR06191F-(cit56)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC01758D – volume: 358 start-page: 745 year: 2017 ident: C9NR06191F-(cit25)/*[position()=1] publication-title: Science doi: 10.1126/science.aam7093 – volume: 10 start-page: 699 year: 2016 ident: C9NR06191F-(cit135)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.185 – volume: 30 start-page: 1805409 year: 2018 ident: C9NR06191F-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805409 – volume: 26 start-page: 4797 year: 2016 ident: C9NR06191F-(cit60)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601054 – volume: 53 start-page: 232 year: 2017 ident: C9NR06191F-(cit121)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08282C – volume: 29 start-page: 6493 year: 2017 ident: C9NR06191F-(cit94)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02089 – volume: 3 start-page: 9187 year: 2015 ident: C9NR06191F-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05878J – volume: 29 start-page: 3793 year: 2017 ident: C9NR06191F-(cit102)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01100 – volume: 10 start-page: 7943 year: 2016 ident: C9NR06191F-(cit115)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b03863 – volume: 227 start-page: 289 year: 2018 ident: C9NR06191F-(cit89)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.05.082 – volume: 5 start-page: 2182 year: 2017 ident: C9NR06191F-(cit58)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05329G – volume: 9 start-page: 687 year: 2014 ident: C9NR06191F-(cit44)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 4 start-page: 1301882 year: 2014 ident: C9NR06191F-(cit4)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301882 – volume: 6 start-page: 1800380 year: 2018 ident: C9NR06191F-(cit50)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800380 – volume: 30 start-page: 475 year: 2000 ident: C9NR06191F-(cit100)/*[position()=1] publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.30.1.475 – volume: 9 start-page: 4533 year: 2015 ident: C9NR06191F-(cit16)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01154 – volume: 122 start-page: 15799 year: 2018 ident: C9NR06191F-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03681 – volume: 28 start-page: 10088 year: 2016 ident: C9NR06191F-(cit144)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603081 – volume: 53 start-page: 9914 year: 2017 ident: C9NR06191F-(cit69)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04862A – volume: 31 start-page: 1807516 year: 2019 ident: C9NR06191F-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807516 – volume: 119 start-page: 12047 year: 2015 ident: C9NR06191F-(cit143)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02959 – volume: 136 start-page: 850 year: 2014 ident: C9NR06191F-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4109209 – volume: 9 start-page: 18054 year: 2017 ident: C9NR06191F-(cit118)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03382 – volume: 9 start-page: 4166 year: 2018 ident: C9NR06191F-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01752 – volume: 15 start-page: 1900801 year: 2019 ident: C9NR06191F-(cit91)/*[position()=1] publication-title: Small doi: 10.1002/smll.201900801 – volume: 137 start-page: 10276 year: 2015 ident: C9NR06191F-(cit73)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05602 – volume: 138 start-page: 2941 year: 2016 ident: C9NR06191F-(cit81)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13470 – volume: 28 start-page: 3528 year: 2016 ident: C9NR06191F-(cit99)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600064 – volume: 138 start-page: 14954 year: 2016 ident: C9NR06191F-(cit83)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08085 – volume: 65 start-page: 855 year: 2004 ident: C9NR06191F-(cit40)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2003.08.021 – volume: 3 start-page: 303 year: 2017 ident: C9NR06191F-(cit104)/*[position()=1] publication-title: ChemNanoMat doi: 10.1002/cnma.201700034 – volume: 3 start-page: 2931 year: 2018 ident: C9NR06191F-(cit123)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01754 – volume: 3 start-page: 20772 year: 2015 ident: C9NR06191F-(cit65)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04904K – volume: 6 start-page: 21729 year: 2018 ident: C9NR06191F-(cit46)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06376A – volume: 8 start-page: 15218 year: 2017 ident: C9NR06191F-(cit112)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15218 – volume: 120 start-page: 185701 year: 2018 ident: C9NR06191F-(cit7)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.185701 – volume: 26 start-page: 4595 year: 2016 ident: C9NR06191F-(cit132)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600958 – volume: 2 start-page: 1500194 year: 2015 ident: C9NR06191F-(cit57)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500194 – volume: 140 start-page: 9942 year: 2018 ident: C9NR06191F-(cit84)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04763 – volume: 7 start-page: 18 year: 2018 ident: C9NR06191F-(cit12)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/s41377-018-0014-0 – volume: 5 start-page: 4565 year: 2017 ident: C9NR06191F-(cit142)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05578H – volume: 138 start-page: 142025 year: 2016 ident: C9NR06191F-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08900 – volume: 4 start-page: 1308 year: 2019 ident: C9NR06191F-(cit71)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00634 – volume: 13 start-page: 1701770 year: 2017 ident: C9NR06191F-(cit17)/*[position()=1] publication-title: Small doi: 10.1002/smll.201701770 – volume: 57 start-page: 2 year: 2018 ident: C9NR06191F-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708510 – volume: 12 start-page: 681 year: 2018 ident: C9NR06191F-(cit36)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-018-0260-y – volume: 1 start-page: 1233 year: 2016 ident: C9NR06191F-(cit88)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00499 – volume: 27 start-page: 5196 year: 2015 ident: C9NR06191F-(cit138)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502490 – volume: 29 start-page: 1606405 year: 2017 ident: C9NR06191F-(cit79)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606405 – volume: 2 start-page: 1089 year: 2017 ident: C9NR06191F-(cit20)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00191 – volume: 8 start-page: 506 year: 2014 ident: C9NR06191F-(cit97)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.134 – volume: 350 start-page: 1222 year: 2015 ident: C9NR06191F-(cit134)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1818 – volume: 16 start-page: 5866 year: 2016 ident: C9NR06191F-(cit19)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02688 – volume: 139 start-page: 4087 year: 2017 ident: C9NR06191F-(cit82)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13079 – volume: 14 start-page: 2584 year: 2014 ident: C9NR06191F-(cit113)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl500390f – volume: 12 start-page: 8808 year: 2018 ident: C9NR06191F-(cit34)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b05172 – volume: 1 start-page: 1266 year: 2016 ident: C9NR06191F-(cit110)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00595 – volume: 19 start-page: 1920 year: 2017 ident: C9NR06191F-(cit22)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04083G – volume: 28 start-page: 9163 year: 2016 ident: C9NR06191F-(cit63)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602651 – volume: 18 start-page: 3157 year: 2018 ident: C9NR06191F-(cit33)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00789 – volume: 29 start-page: 4265 year: 2017 ident: C9NR06191F-(cit95)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00345 – volume: 5 start-page: 5757 year: 2014 ident: C9NR06191F-(cit86)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6757 – volume: 15 start-page: 2640 year: 2015 ident: C9NR06191F-(cit139)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00235 – volume: 139 start-page: 6566 year: 2017 ident: C9NR06191F-(cit122)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02817 – volume: 59 start-page: 7924 year: 2016 ident: C9NR06191F-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603698 – volume: 7 start-page: 8 year: 2018 ident: C9NR06191F-(cit6)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/s41377-018-0013-1 – volume: 59 start-page: 719 year: 2016 ident: C9NR06191F-(cit111)/*[position()=1] publication-title: Sci. China Mater. doi: 10.1007/s40843-016-5123-1 – volume: 28 start-page: 8132 year: 2016 ident: C9NR06191F-(cit92)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01329 – volume: 16 start-page: 1415 year: 2016 ident: C9NR06191F-(cit128)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04959 – volume: 16 start-page: 1869 year: 2016 ident: C9NR06191F-(cit98)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04981 – volume: 6 start-page: 5027 year: 2015 ident: C9NR06191F-(cit120)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02460 – volume: 7 start-page: 1900774 year: 2019 ident: C9NR06191F-(cit64)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900774 – volume: 28 start-page: 9478 year: 2016 ident: C9NR06191F-(cit67)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602897 – volume: 17 start-page: 6759 year: 2017 ident: C9NR06191F-(cit49)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02959 – volume: 29 start-page: 3644 year: 2017 ident: C9NR06191F-(cit42)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00478 – volume: 48 start-page: 310 year: 2019 ident: C9NR06191F-(cit28)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00740C – volume: 9 start-page: 18417 year: 2017 ident: C9NR06191F-(cit68)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03445 – volume: 15 start-page: 5635 year: 2015 ident: C9NR06191F-(cit74)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02404 – volume: 26 start-page: 2435 year: 2016 ident: C9NR06191F-(cit61)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600109 – volume: 12 start-page: 1462 year: 2018 ident: C9NR06191F-(cit130)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07856 – volume: 11 start-page: 10373 year: 2017 ident: C9NR06191F-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05442 – volume: 17 start-page: 2765 year: 2017 ident: C9NR06191F-(cit77)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04781 – volume: 5 start-page: 6123 year: 2017 ident: C9NR06191F-(cit133)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01300K – volume: 16 start-page: 30 year: 2017 ident: C9NR06191F-(cit5)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2017.07.001 – volume: 55 start-page: 15012 year: 2016 ident: C9NR06191F-(cit85)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608160 – volume: 92 start-page: 045414 year: 2015 ident: C9NR06191F-(cit66)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.045414 – volume: 7 start-page: 13 year: 2013 ident: C9NR06191F-(cit3)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.328 – volume: 8 start-page: 489 year: 2017 ident: C9NR06191F-(cit108)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02800 – volume: 27 start-page: 3397 year: 2015 ident: C9NR06191F-(cit114)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00660 – volume: 515 start-page: 96 year: 2014 ident: C9NR06191F-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/nature13829 |
SSID | ssj0069363 |
Score | 2.5891666 |
SecondaryResourceType | review_article |
Snippet | Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19119 |
SubjectTerms | Biocompatibility Composition Configuration management Light emitting diodes Optical properties Optimization Perovskites Photoluminescence Quantum confinement Quantum dots Toxicity Visible spectrum |
Title | Perovskite quantum dots for light-emitting devices |
URI | https://www.proquest.com/docview/2308430111 https://www.proquest.com/docview/2298146951 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4FDxatiS0FBcEFVSvzIw8dSdbWgUiG0lcopcuwJqtQmaB8c-PWMHSfOilaiXKKs7c2u_DnffH7MDCHvIJUc8lrETIGMBU7X4oprHtOspopTozLnIfflPJtdiM-X6WXIree8S1bVkf59q1_J_6CKZYir9ZK9B7LDQ7EA7xFfvCLCeP0njL_Cov21tOuv1jkSrcfNIU4yXYSFw2sXIQRurrqDzQYcJYy1KBJru0SIBmjP3M7-93UTT-EqaER_Zre3cW4HyXHVrG1-xB_b8cIBlc6DLg_8wuxhQs67IOJHMC7LNwmSjgZCF6bK0x1O9jzhQf-5C030FzEn3MY11bJZoICQtA7mZzgUGCq3yA5D1Y88u3N8Ov901pvWTHKXGm_45328WS4_hG9vKowwbdha9DldnHaYPya7XvRHxx2CT8gDaJ6SR6NQkM8IC1hGHsvIYhkhltEmlpHH8jm5mJ7OT2axz2cRa07FKs4LZRgYkDlLWVEJbfWDUSxRRZqDlMJQDlWBCjkztUxMUZs8B66VTXkgE833yHbTNvCCRFCLNNUG2ZPWwmRa8SqtssRoZnOuJjAh7_s-KLUP9m5zjlyX7tABl-WJPP_m-ms6IW-Htj-7ECe3tjrou7L0r8CyxPlrIayJoBPyZqhGgrK7TqqBdo1tmLTLzKjkJ2QPIRh-IyC2f1fFS_IwjNwDsr1arOEVisBV9doPjT8mzlql |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+quantum+dots+for+light-emitting+devices&rft.jtitle=Nanoscale&rft.au=Li%2C+Yun-Fei&rft.au=Feng%2C+Jing&rft.au=Sun%2C+Hong-Bo&rft.date=2019-11-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=41&rft.spage=19119&rft.epage=19139&rft_id=info:doi/10.1039%2Fc9nr06191f&rft.externalDocID=c9nr06191f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |