Perovskite quantum dots for light-emitting devices

Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 41; pp. 19119 - 19139
Main Authors Li, Yun-Fei, Feng, Jing, Sun, Hong-Bo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.11.2019
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/c9nr06191f

Cover

Loading…
Abstract Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented. Perovskite QDs are promising platforms for light-emitting applications. Advances in perovskite QDs, including optoelectronic properties and device performance are discussed.
AbstractList Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.
Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented.
Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique optical properties, such as high photoluminescence quantum yield (PLQY) approaching unity, narrow emission bandwidth, tunable wavelength spanning the entire visible spectrum, and compatibility with flexible/stretchable electronics, render perovskite QDs promising for next-generation solid lighting sources and information displays. Herein, the advances in perovskite QDs and their applications in LEDs are reviewed. Strategies to fabricate efficient perovskite QDs and device configuration, including material composition design, synthetic methods, surface engineering, and device optimization, are investigated and highlighted. Moreover, the main challenges in perovskite QDs of instability and toxicity (lead-based) are identified, while the solutions undertaken with respect to composition engineering, device encapsulation, and lead-replacement QDs are demonstrated. Meanwhile, perspectives for the further development of perovskite QDs and corresponding LEDs are presented. Perovskite QDs are promising platforms for light-emitting applications. Advances in perovskite QDs, including optoelectronic properties and device performance are discussed.
Author Li, Yun-Fei
Feng, Jing
Sun, Hong-Bo
AuthorAffiliation Jilin University
Tsinghua University
Tianjin Key Laboratory of Electronic Materials and Devices
Hebei University of Technology
State Key Lab of Precision Measurement Technology and Instruments
State Key Laboratory of Integrated Optoelectronics
College of Electronic Science and Engineering
Department of Precision Instrument
School of Electronics and Information Engineering
AuthorAffiliation_xml – sequence: 0
  name: College of Electronic Science and Engineering
– sequence: 0
  name: Department of Precision Instrument
– sequence: 0
  name: School of Electronics and Information Engineering
– sequence: 0
  name: Jilin University
– sequence: 0
  name: Tianjin Key Laboratory of Electronic Materials and Devices
– sequence: 0
  name: Hebei University of Technology
– sequence: 0
  name: State Key Lab of Precision Measurement Technology and Instruments
– sequence: 0
  name: Tsinghua University
– sequence: 0
  name: State Key Laboratory of Integrated Optoelectronics
Author_xml – sequence: 1
  givenname: Yun-Fei
  surname: Li
  fullname: Li, Yun-Fei
– sequence: 2
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
– sequence: 3
  givenname: Hong-Bo
  surname: Sun
  fullname: Sun, Hong-Bo
BookMark eNptkc1LAzEUxIMo2FYv3oUFLyKs5qu7yVGKVaGoiJ6XNHlbU3eTNskW_O9trVQonuYdfjMM8_ro0HkHCJ0RfE0wkzdauoALIkl9gHoUc5wzVtLD3V3wY9SPcY5xIVnBeoi-QPCr-GkTZMtOudS1mfEpZrUPWWNnHymH1qZk3SwzsLIa4gk6qlUT4fRXB-h9fPc2esgnz_ePo9tJrhnhKS-FMhQMyJIOqZhyTRhmRlGsxLAEKbkhDKaCFKwwtcRG1KYsgWkluCASazZAl9vcRfDLDmKqWhs1NI1y4LtYUSoF4YUckjV6sYfOfRfcul1FGRacYUI21NWW0sHHGKCuFsG2KnxVBFeb-aqRfHr9mW-8hvEerG1SyXqXgrLN_5bzrSVEvYv--wj7BnjyfHg
CitedBy_id crossref_primary_10_1002_smtd_202300417
crossref_primary_10_1088_1674_4926_24090046
crossref_primary_10_2139_ssrn_4105048
crossref_primary_10_1016_j_jssc_2024_124584
crossref_primary_10_3390_app13179495
crossref_primary_10_1016_j_jechem_2020_05_050
crossref_primary_10_1016_j_optmat_2025_116884
crossref_primary_10_1039_D2TC01832B
crossref_primary_10_1002_admt_202200043
crossref_primary_10_1016_j_dyepig_2023_111651
crossref_primary_10_1002_adom_202403039
crossref_primary_10_1021_acs_langmuir_1c01773
crossref_primary_10_3390_nano12040627
crossref_primary_10_1016_j_mencom_2021_07_008
crossref_primary_10_1021_acs_chemrev_2c00688
crossref_primary_10_1016_j_aca_2023_340847
crossref_primary_10_1002_eom2_12142
crossref_primary_10_1515_nanoph_2020_0099
crossref_primary_10_1016_j_jlumin_2021_118413
crossref_primary_10_1002_bio_4706
crossref_primary_10_1039_D3TC00180F
crossref_primary_10_1039_D4MH01270D
crossref_primary_10_1016_j_jssc_2024_125164
crossref_primary_10_1002_inf2_12187
crossref_primary_10_1021_acs_nanolett_0c03470
crossref_primary_10_1016_j_jallcom_2020_157643
crossref_primary_10_1016_j_mattod_2021_10_023
crossref_primary_10_1016_j_optmat_2022_113308
crossref_primary_10_1039_D2NR06727G
crossref_primary_10_1149_2162_8777_ac08d4
crossref_primary_10_26599_TST_2022_9010070
crossref_primary_10_1364_PRJ_505839
crossref_primary_10_1021_acsanm_4c00451
crossref_primary_10_1021_acs_inorgchem_4c00424
crossref_primary_10_1016_j_jallcom_2022_166322
crossref_primary_10_1088_1361_6528_ad86c7
crossref_primary_10_37188_lam_2022_004
crossref_primary_10_1016_j_cej_2024_157596
crossref_primary_10_1016_j_optmat_2024_116462
crossref_primary_10_1016_j_jallcom_2025_178911
crossref_primary_10_1002_adma_202210385
crossref_primary_10_1002_macp_202400249
crossref_primary_10_1016_j_cej_2021_133866
crossref_primary_10_1021_acs_chemmater_3c00934
crossref_primary_10_1016_j_cej_2025_161297
crossref_primary_10_1039_D3TC00929G
crossref_primary_10_1039_D1TA05242J
crossref_primary_10_1002_adma_202106184
crossref_primary_10_1007_s10853_021_05997_w
crossref_primary_10_1016_j_saa_2023_123091
crossref_primary_10_1016_j_ceramint_2020_10_179
crossref_primary_10_1016_j_ceramint_2024_06_334
crossref_primary_10_1039_D2TC01144A
crossref_primary_10_1088_1361_6463_abd65a
crossref_primary_10_1021_acs_jpcc_1c08102
crossref_primary_10_1039_D0TA02494E
crossref_primary_10_1021_acs_jpcc_1c04487
crossref_primary_10_54097_hset_v27i_3775
crossref_primary_10_1039_D4TC02230K
crossref_primary_10_1039_D2NJ06191K
crossref_primary_10_1021_acs_chemmater_0c00590
crossref_primary_10_1002_admi_202100441
crossref_primary_10_1016_j_mseb_2021_115513
crossref_primary_10_1039_D0TC01360A
crossref_primary_10_3390_nano10071375
crossref_primary_10_1016_j_mseb_2024_117835
crossref_primary_10_1021_acs_analchem_1c02425
crossref_primary_10_1016_j_jiec_2020_03_040
crossref_primary_10_1007_s40843_022_2197_4
crossref_primary_10_1515_nanoph_2020_0214
crossref_primary_10_3390_catal11010061
crossref_primary_10_1039_D0TA09096D
crossref_primary_10_1016_j_jlumin_2022_119401
crossref_primary_10_1021_acs_jpclett_1c02472
crossref_primary_10_1007_s12274_020_3170_5
crossref_primary_10_1016_j_mssp_2025_109277
crossref_primary_10_1364_OL_484835
crossref_primary_10_1039_D1NJ05832K
crossref_primary_10_1039_D2NR05918E
crossref_primary_10_1016_j_optmat_2022_113070
crossref_primary_10_1021_acsphotonics_0c01952
crossref_primary_10_1016_j_cej_2024_149792
crossref_primary_10_1039_D0TC04394J
crossref_primary_10_1016_j_optmat_2023_114127
crossref_primary_10_1016_j_jallcom_2021_161996
crossref_primary_10_1016_j_saa_2022_122212
crossref_primary_10_1186_s40580_023_00395_1
crossref_primary_10_1002_adma_202314193
crossref_primary_10_1016_j_pmatsci_2024_101243
crossref_primary_10_1016_j_matlet_2021_129398
crossref_primary_10_1002_solr_202200536
crossref_primary_10_1016_j_cej_2021_133701
crossref_primary_10_1016_j_materresbull_2021_111592
crossref_primary_10_1002_advs_202301793
crossref_primary_10_1021_acsaelm_2c01297
crossref_primary_10_3390_applnano1010001
crossref_primary_10_1016_j_jcis_2021_03_128
crossref_primary_10_1039_D3TC02654J
crossref_primary_10_1039_D4NR00638K
crossref_primary_10_1140_epjb_s10051_022_00409_7
crossref_primary_10_3390_nano13050871
crossref_primary_10_1002_adfm_202010009
crossref_primary_10_1002_adfm_202010768
crossref_primary_10_1007_s00210_024_03309_y
crossref_primary_10_2139_ssrn_4098448
Cites_doi 10.1039/C6TC04934F
10.1002/anie.201602236
10.1021/acs.jpclett.6b01406
10.1021/acsnano.7b00116
10.1021/acsami.5b10373
10.1002/adma.201502567
10.1021/acs.nanolett.5b02985
10.1021/acsnano.5b07506
10.1063/1.447218
10.3389/fchem.2018.00444
10.1126/science.aao0865
10.1002/smll.201702433
10.1016/j.jallcom.2019.03.408
10.1002/adma.201801996
10.1016/j.nanoen.2016.10.039
10.1021/acs.jpclett.6b02073
10.1021/acsnano.5b06295
10.1021/jacs.7b04000
10.1021/jacs.6b05608
10.1021/ja017002j
10.1016/j.nanoen.2017.05.002
10.1021/acsnano.6b05913
10.1039/C5NR09127F
10.1126/science.271.5251.933
10.1246/cl.2012.397
10.1002/adma.201607022
10.1038/lsa.2017.170
10.1021/jacs.6b02909
10.1021/acs.nanolett.6b00964
10.1021/jacs.6b09575
10.1002/9780470827857
10.1021/jacs.8b04763
10.1021/acs.chemmater.7b00692
10.1039/C7TC01562C
10.1038/s41566-018-0260-y
10.1007/s100190000062
10.1038/ncomms9238
10.1002/adma.201600784
10.1039/C6MH00519E
10.1021/jacs.7b10647
10.1088/1361-6528/aa7c86
10.1017/CBO9781139051637
10.1021/acsnano.6b01540
10.1021/j100403a003
10.1002/adma.201603885
10.1021/ja01167a001
10.1021/acs.jpclett.9b00277
10.1002/adma.201603826
10.1021/nl5048779
10.1002/adma.201603964
10.1021/acs.chemrev.5b00715
10.1039/C6SC01758D
10.1126/science.aam7093
10.1038/nphoton.2016.185
10.1002/adma.201805409
10.1002/adfm.201601054
10.1039/C6CC08282C
10.1021/acs.chemmater.7b02089
10.1039/C4TA05878J
10.1021/acs.chemmater.7b01100
10.1021/acsnano.6b03863
10.1016/j.matlet.2018.05.082
10.1039/C6TC05329G
10.1038/nnano.2014.149
10.1002/aenm.201301882
10.1002/adom.201800380
10.1146/annurev.matsci.30.1.475
10.1021/acsnano.5b01154
10.1021/acs.jpcc.8b03681
10.1002/adma.201603081
10.1039/C7CC04862A
10.1002/adma.201807516
10.1021/acs.jpcc.5b02959
10.1021/ja4109209
10.1021/acsami.7b03382
10.1021/acs.jpclett.8b01752
10.1002/smll.201900801
10.1021/jacs.5b05602
10.1021/jacs.5b13470
10.1002/adma.201600064
10.1021/jacs.6b08085
10.1016/j.jpcs.2003.08.021
10.1002/cnma.201700034
10.1021/acsenergylett.8b01754
10.1039/C5TA04904K
10.1039/C8TA06376A
10.1038/ncomms15218
10.1103/PhysRevLett.120.185701
10.1002/adfm.201600958
10.1002/advs.201500194
10.1038/s41377-018-0014-0
10.1039/C6TC05578H
10.1021/jacs.6b08900
10.1021/acsenergylett.9b00634
10.1002/smll.201701770
10.1002/anie.201708510
10.1021/acsenergylett.6b00499
10.1002/adma.201502490
10.1002/adma.201606405
10.1021/acsenergylett.7b00191
10.1038/nphoton.2014.134
10.1126/science.aad1818
10.1021/acs.nanolett.6b02688
10.1021/jacs.6b13079
10.1021/nl500390f
10.1021/acsnano.8b05172
10.1021/acsenergylett.6b00595
10.1039/C6CP04083G
10.1002/adma.201602651
10.1021/acs.nanolett.8b00789
10.1021/acs.chemmater.7b00345
10.1038/ncomms6757
10.1021/acs.nanolett.5b00235
10.1021/jacs.7b02817
10.1002/anie.201603698
10.1038/s41377-018-0013-1
10.1007/s40843-016-5123-1
10.1021/acs.chemmater.6b01329
10.1021/acs.nanolett.5b04959
10.1021/acs.nanolett.5b04981
10.1021/acs.jpclett.5b02460
10.1002/adom.201900774
10.1002/adma.201602897
10.1021/acs.nanolett.7b02959
10.1021/acs.chemmater.7b00478
10.1039/C8CS00740C
10.1021/acsami.7b03445
10.1021/acs.nanolett.5b02404
10.1002/adfm.201600109
10.1021/acsnano.7b07856
10.1021/acsnano.7b05442
10.1021/acs.nanolett.6b04781
10.1039/C7TC01300K
10.1016/j.nantod.2017.07.001
10.1002/anie.201608160
10.1103/PhysRevB.92.045414
10.1038/nphoton.2012.328
10.1021/acs.jpclett.6b02800
10.1021/acs.chemmater.5b00660
10.1038/nature13829
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr06191f
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 19139
ExternalDocumentID 10_1039_C9NR06191F
c9nr06191f
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-78ad2ede972528b4c1303da20a857e994d13eb81636df90d8fd77e3ca848190c3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 15:57:43 EDT 2025
Mon Jun 30 05:19:33 EDT 2025
Tue Jul 01 01:13:45 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Dec 17 20:59:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-78ad2ede972528b4c1303da20a857e994d13eb81636df90d8fd77e3ca848190c3
Notes Jing Feng received her B.S. and Ph.D. degrees from Jilin University in 1997 and 2003, respectively. She worked as a postdoctoral researcher in RIKEN, Japan, from 2003 to 2006. In 2006, she joined Jilin University, and now she is a professor at the College of Electronic Science and Engineering and State Key Lab of Integrated Optoelectronics. Her research interests have been focused on organic optoelectronic devices.
Hong-Bo Sun received his B.S. and Ph.D. degrees from Jilin University in 1992 and 1996, respectively. He worked as a postdoctoral researcher at the University of Tokushima, Japan, from 1996 to 2000, and then as an assistant professor at Osaka University, Japan. In 2005, he was promoted to a full professor (Changjiang Scholar) at Jilin University, China. In 2017, he joined Tsinghua University, and now he is a professor at the State Key Lab of Precision Measurement Technology and Instruments and Department of Precision Instrument, Tsinghua University, China. His research interests have been focused on ultrafast optoelectronics. In 2017, he was selected as an IEEE fellow, OSA fellow, SPIE fellow, and COS fellow.
Yun-Fei Li received her B.S. and Ph.D. degrees from Jilin University in 2012 and 2018, respectively. She is a lecturer at the School of Electronics and Information Engineering, Hebei University of Technology. Her current research includes organic light-emitting devices and perovskite light-emitting devices.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2127-8610
PQID 2308430111
PQPubID 2047485
PageCount 21
ParticipantIDs rsc_primary_c9nr06191f
proquest_miscellaneous_2298146951
proquest_journals_2308430111
crossref_primary_10_1039_C9NR06191F
crossref_citationtrail_10_1039_C9NR06191F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-07
PublicationDateYYYYMMDD 2019-11-07
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-07
  day: 07
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hou (C9NR06191F-(cit124)/*[position()=1]) 2018; 7
Wei (C9NR06191F-(cit27)/*[position()=1]) 2019; 10
Li (C9NR06191F-(cit24)/*[position()=1]) 2019; 31
Akkerman (C9NR06191F-(cit73)/*[position()=1]) 2015; 137
Mittal (C9NR06191F-(cit80)/*[position()=1]) 2016; 7
Koolyk (C9NR06191F-(cit105)/*[position()=1]) 2016; 8
Wang (C9NR06191F-(cit21)/*[position()=1]) 2018; 14
Jellicoe (C9NR06191F-(cit81)/*[position()=1]) 2016; 138
Swarnkar (C9NR06191F-(cit20)/*[position()=1]) 2017; 2
Wang (C9NR06191F-(cit121)/*[position()=1]) 2017; 53
Aygüler (C9NR06191F-(cit143)/*[position()=1]) 2015; 119
Quan (C9NR06191F-(cit26)/*[position()=1]) 2018; 30
De Roo (C9NR06191F-(cit116)/*[position()=1]) 2016; 10
Liu (C9NR06191F-(cit109)/*[position()=1]) 2016; 16
Huang (C9NR06191F-(cit57)/*[position()=1]) 2015; 2
Zou (C9NR06191F-(cit141)/*[position()=1]) 2017; 139
LaMer (C9NR06191F-(cit103)/*[position()=1]) 1950; 72
Xing (C9NR06191F-(cit125)/*[position()=1]) 2016; 10
Chiba (C9NR06191F-(cit36)/*[position()=1]) 2018; 12
van der Stam (C9NR06191F-(cit82)/*[position()=1]) 2017; 139
Wang (C9NR06191F-(cit5)/*[position()=1]) 2017; 16
Huang (C9NR06191F-(cit56)/*[position()=1]) 2016; 7
Giustino (C9NR06191F-(cit88)/*[position()=1]) 2016; 1
Wang (C9NR06191F-(cit4)/*[position()=1]) 2014; 4
Dai (C9NR06191F-(cit11)/*[position()=1]) 2014; 515
Dirin (C9NR06191F-(cit19)/*[position()=1]) 2016; 16
Wang (C9NR06191F-(cit92)/*[position()=1]) 2016; 28
Koscher (C9NR06191F-(cit122)/*[position()=1]) 2017; 139
Protesescu (C9NR06191F-(cit54)/*[position()=1]) 2016; 138
Bade (C9NR06191F-(cit137)/*[position()=1]) 2016; 10
Wang (C9NR06191F-(cit53)/*[position()=1]) 2016; 59
Begum (C9NR06191F-(cit96)/*[position()=1]) 2017; 139
Li (C9NR06191F-(cit139)/*[position()=1]) 2015; 15
Song (C9NR06191F-(cit35)/*[position()=1]) 2018; 30
Chen (C9NR06191F-(cit84)/*[position()=1]) 2018; 140
Zhang (C9NR06191F-(cit128)/*[position()=1]) 2016; 16
Sun (C9NR06191F-(cit144)/*[position()=1]) 2016; 28
Gonzalez-Carrero (C9NR06191F-(cit14)/*[position()=1]) 2015; 3
Kim (C9NR06191F-(cit126)/*[position()=1]) 2017; 38
Zhang (C9NR06191F-(cit79)/*[position()=1]) 2017; 29
Li (C9NR06191F-(cit117)/*[position()=1]) 2017; 29
Xu (C9NR06191F-(cit95)/*[position()=1]) 2017; 29
Brus (C9NR06191F-(cit1)/*[position()=1]) 1986; 90
Pan (C9NR06191F-(cit15)/*[position()=1]) 2016; 28
Butkus (C9NR06191F-(cit42)/*[position()=1]) 2017; 29
Brus (C9NR06191F-(cit8)/*[position()=1]) 1984; 80
Zhang (C9NR06191F-(cit104)/*[position()=1]) 2017; 3
Liu (C9NR06191F-(cit140)/*[position()=1]) 2011
Li (C9NR06191F-(cit45)/*[position()=1]) 2015; 6
Cheng (C9NR06191F-(cit78)/*[position()=1]) 2019; 791
Malgras (C9NR06191F-(cit52)/*[position()=1]) 2016; 138
Liu (C9NR06191F-(cit29)/*[position()=1]) 2017; 11
Naghadeh (C9NR06191F-(cit43)/*[position()=1]) 2018; 122
Tan (C9NR06191F-(cit44)/*[position()=1]) 2014; 9
Pan (C9NR06191F-(cit32)/*[position()=1]) 2018; 140
Huang (C9NR06191F-(cit59)/*[position()=1]) 2015; 7
Shirasaki (C9NR06191F-(cit3)/*[position()=1]) 2013; 7
Protesescu (C9NR06191F-(cit10)/*[position()=1]) 2015; 15
Dong (C9NR06191F-(cit46)/*[position()=1]) 2018; 6
Prochowicz (C9NR06191F-(cit65)/*[position()=1]) 2015; 3
Schmidt (C9NR06191F-(cit13)/*[position()=1]) 2014; 136
Chan (C9NR06191F-(cit58)/*[position()=1]) 2017; 5
Zhang (C9NR06191F-(cit62)/*[position()=1]) 2018; 6
Qu (C9NR06191F-(cit106)/*[position()=1]) 2002; 124
Hintermayr (C9NR06191F-(cit67)/*[position()=1]) 2016; 28
Aristidou (C9NR06191F-(cit112)/*[position()=1]) 2017; 8
Vickers (C9NR06191F-(cit123)/*[position()=1]) 2018; 3
Saparov (C9NR06191F-(cit75)/*[position()=1]) 2016; 116
Yan (C9NR06191F-(cit33)/*[position()=1]) 2018; 18
Cha (C9NR06191F-(cit48)/*[position()=1]) 2017; 5
Liang (C9NR06191F-(cit40)/*[position()=1]) 2004; 65
Wei (C9NR06191F-(cit28)/*[position()=1]) 2019; 48
Chen (C9NR06191F-(cit111)/*[position()=1]) 2016; 59
Bhalla (C9NR06191F-(cit18)/*[position()=1]) 2000; 4
Han (C9NR06191F-(cit34)/*[position()=1]) 2018; 12
Luo (C9NR06191F-(cit119)/*[position()=1]) 2016; 55
Efros (C9NR06191F-(cit100)/*[position()=1]) 2000; 30
Cho (C9NR06191F-(cit134)/*[position()=1]) 2015; 350
Levchuk (C9NR06191F-(cit77)/*[position()=1]) 2017; 17
Shi (C9NR06191F-(cit130)/*[position()=1]) 2018; 12
Frost (C9NR06191F-(cit113)/*[position()=1]) 2014; 14
Yu (C9NR06191F-(cit136)/*[position()=1]) 2016; 10
Zhang (C9NR06191F-(cit16)/*[position()=1]) 2015; 9
Deng (C9NR06191F-(cit60)/*[position()=1]) 2016; 26
Leguy (C9NR06191F-(cit114)/*[position()=1]) 2015; 27
Chiba (C9NR06191F-(cit131)/*[position()=1]) 2018; 12
Panfil (C9NR06191F-(cit9)/*[position()=1]) 2018; 57
Mitzi (C9NR06191F-(cit39)/*[position()=1]) 2007; 48
Zhao (C9NR06191F-(cit23)/*[position()=1]) 2017; 5
Zhang (C9NR06191F-(cit93)/*[position()=1]) 2016; 30
Alivisatos (C9NR06191F-(cit2)/*[position()=1]) 1996; 271
Zhang (C9NR06191F-(cit102)/*[position()=1]) 2017; 29
Pan (C9NR06191F-(cit115)/*[position()=1]) 2016; 10
Zhang (C9NR06191F-(cit72)/*[position()=1]) 2016; 7
Sun (C9NR06191F-(cit70)/*[position()=1]) 2017; 28
Zhang (C9NR06191F-(cit38)/*[position()=1]) 2018; 359
Kojima (C9NR06191F-(cit51)/*[position()=1]) 2012; 41
Kang (C9NR06191F-(cit108)/*[position()=1]) 2017; 8
Wang (C9NR06191F-(cit94)/*[position()=1]) 2017; 29
Chen (C9NR06191F-(cit7)/*[position()=1]) 2018; 120
Li (C9NR06191F-(cit61)/*[position()=1]) 2016; 26
Li (C9NR06191F-(cit129)/*[position()=1]) 2017; 29
Pan (C9NR06191F-(cit120)/*[position()=1]) 2015; 6
Xu (C9NR06191F-(cit133)/*[position()=1]) 2017; 5
Dai (C9NR06191F-(cit101)/*[position()=1]) 2017; 29
Li (C9NR06191F-(cit99)/*[position()=1]) 2016; 28
Senden (C9NR06191F-(cit6)/*[position()=1]) 2018; 7
Shan (C9NR06191F-(cit17)/*[position()=1]) 2017; 13
Meng (C9NR06191F-(cit76)/*[position()=1]) 2017; 29
Zhang (C9NR06191F-(cit132)/*[position()=1]) 2016; 26
Li (C9NR06191F-(cit138)/*[position()=1]) 2015; 27
Kovalenko (C9NR06191F-(cit25)/*[position()=1]) 2017; 358
Pu (C9NR06191F-(cit107)/*[position()=1]) 2016; 138
Gan (C9NR06191F-(cit71)/*[position()=1]) 2019; 4
Rajeev Kumar (C9NR06191F-(cit89)/*[position()=1]) 2018; 227
Protesescu (C9NR06191F-(cit55)/*[position()=1]) 2017; 11
Yong (C9NR06191F-(cit30)/*[position()=1]) 2018; 140
Chang (C9NR06191F-(cit50)/*[position()=1]) 2018; 6
Filip (C9NR06191F-(cit86)/*[position()=1]) 2014; 5
Shan (C9NR06191F-(cit142)/*[position()=1]) 2017; 5
Leng (C9NR06191F-(cit85)/*[position()=1]) 2016; 55
Fries (C9NR06191F-(cit12)/*[position()=1]) 2018; 7
Xiao (C9NR06191F-(cit87)/*[position()=1]) 2017; 4
Hou (C9NR06191F-(cit68)/*[position()=1]) 2017; 9
Jain (C9NR06191F-(cit90)/*[position()=1]) 2017; 18
Wang (C9NR06191F-(cit47)/*[position()=1]) 2016; 28
Zhang (C9NR06191F-(cit64)/*[position()=1]) 2019; 7
Green (C9NR06191F-(cit97)/*[position()=1]) 2014; 8
Wang (C9NR06191F-(cit135)/*[position()=1]) 2016; 10
Liu (C9NR06191F-(cit83)/*[position()=1]) 2016; 138
Chiba (C9NR06191F-(cit118)/*[position()=1]) 2017; 9
Wang (C9NR06191F-(cit31)/*[position()=1]) 2018; 9
Zhang (C9NR06191F-(cit22)/*[position()=1]) 2017; 19
De Graef (C9NR06191F-(cit37)/*[position()=1]) 2012
Yaffe (C9NR06191F-(cit66)/*[position()=1]) 2015; 92
ten Brinck (C9NR06191F-(cit110)/*[position()=1]) 2016; 1
Sichert (C9NR06191F-(cit41)/*[position()=1]) 2015; 15
Pan (C9NR06191F-(cit49)/*[position()=1]) 2017; 17
Long (C9NR06191F-(cit69)/*[position()=1]) 2017; 53
Liu (C9NR06191F-(cit91)/*[position()=1]) 2019; 15
Lignos (C9NR06191F-(cit98)/*[position()=1]) 2016; 16
Nedelcu (C9NR06191F-(cit74)/*[position()=1]) 2015; 15
Zhou (C9NR06191F-(cit63)/*[position()=1]) 2016; 28
Song (C9NR06191F-(cit127)/*[position()=1]) 2015; 27
References_xml – issn: 2012
  publication-title: Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry
  doi: De Graef McHenry
– issn: 2011
  publication-title: LED packaging for lighting applications: design, manufacturing, and testing
  doi: Liu Luo
– volume: 5
  start-page: 531
  year: 2017
  ident: C9NR06191F-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04934F
– volume: 55
  start-page: 8864
  year: 2016
  ident: C9NR06191F-(cit119)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602236
– volume: 48
  start-page: 1
  year: 2007
  ident: C9NR06191F-(cit39)/*[position()=1]
  publication-title: Prog. Inorg. Chem.
– volume: 7
  start-page: 3270
  year: 2016
  ident: C9NR06191F-(cit80)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01406
– volume: 18
  start-page: 28
  year: 2017
  ident: C9NR06191F-(cit90)/*[position()=1]
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 3119
  year: 2017
  ident: C9NR06191F-(cit55)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00116
– volume: 7
  start-page: 28128
  year: 2015
  ident: C9NR06191F-(cit59)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10373
– volume: 27
  start-page: 7162
  year: 2015
  ident: C9NR06191F-(cit127)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502567
– volume: 15
  start-page: 6521
  year: 2015
  ident: C9NR06191F-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02985
– volume: 10
  start-page: 1795
  year: 2016
  ident: C9NR06191F-(cit137)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07506
– volume: 80
  start-page: 4403
  year: 1984
  ident: C9NR06191F-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447218
– volume: 6
  start-page: 444
  year: 2018
  ident: C9NR06191F-(cit62)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00444
– volume: 359
  start-page: 675
  year: 2018
  ident: C9NR06191F-(cit38)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aao0865
– volume: 14
  start-page: 1702433
  year: 2018
  ident: C9NR06191F-(cit21)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702433
– volume: 791
  start-page: 814
  year: 2019
  ident: C9NR06191F-(cit78)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.03.408
– volume: 30
  start-page: 1801996
  year: 2018
  ident: C9NR06191F-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801996
– volume: 30
  start-page: 511
  year: 2016
  ident: C9NR06191F-(cit93)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.039
– volume: 7
  start-page: 4602
  year: 2016
  ident: C9NR06191F-(cit72)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02073
– volume: 10
  start-page: 2071
  year: 2016
  ident: C9NR06191F-(cit116)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06295
– volume: 139
  start-page: 11443
  year: 2017
  ident: C9NR06191F-(cit141)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04000
– volume: 138
  start-page: 13874
  year: 2016
  ident: C9NR06191F-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05608
– volume: 124
  start-page: 2049
  year: 2002
  ident: C9NR06191F-(cit106)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017002j
– volume: 38
  start-page: 51
  year: 2017
  ident: C9NR06191F-(cit126)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.002
– volume: 10
  start-page: 11044
  year: 2016
  ident: C9NR06191F-(cit136)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05913
– volume: 8
  start-page: 6403
  year: 2016
  ident: C9NR06191F-(cit105)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR09127F
– volume: 271
  start-page: 933
  year: 1996
  ident: C9NR06191F-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 41
  start-page: 397399
  year: 2012
  ident: C9NR06191F-(cit51)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.397
– volume: 29
  start-page: 1607022
  year: 2017
  ident: C9NR06191F-(cit101)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201607022
– volume: 7
  start-page: 17170
  year: 2018
  ident: C9NR06191F-(cit124)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2017.170
– volume: 138
  start-page: 8134
  year: 2016
  ident: C9NR06191F-(cit107)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02909
– volume: 16
  start-page: 3335
  year: 2016
  ident: C9NR06191F-(cit109)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00964
– volume: 139
  start-page: 731
  year: 2017
  ident: C9NR06191F-(cit96)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09575
– volume-title: LED packaging for lighting applications: design, manufacturing, and testing
  year: 2011
  ident: C9NR06191F-(cit140)/*[position()=1]
  doi: 10.1002/9780470827857
– volume: 140
  start-page: 9942
  year: 2018
  ident: C9NR06191F-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04763
– volume: 29
  start-page: 5168
  year: 2017
  ident: C9NR06191F-(cit129)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00692
– volume: 5
  start-page: 6667
  year: 2017
  ident: C9NR06191F-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01562C
– volume: 12
  start-page: 681
  year: 2018
  ident: C9NR06191F-(cit131)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0260-y
– volume: 4
  start-page: 3
  year: 2000
  ident: C9NR06191F-(cit18)/*[position()=1]
  publication-title: Mater. Res. Innovations
  doi: 10.1007/s100190000062
– volume: 6
  start-page: 8238
  year: 2015
  ident: C9NR06191F-(cit45)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9238
– volume: 28
  start-page: 8718
  year: 2016
  ident: C9NR06191F-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600784
– volume: 4
  start-page: 206
  year: 2017
  ident: C9NR06191F-(cit87)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00519E
– volume: 140
  start-page: 562
  year: 2018
  ident: C9NR06191F-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10647
– volume: 28
  start-page: 365601
  year: 2017
  ident: C9NR06191F-(cit70)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa7c86
– volume-title: Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry
  year: 2012
  ident: C9NR06191F-(cit37)/*[position()=1]
  doi: 10.1017/CBO9781139051637
– volume: 10
  start-page: 6623
  year: 2016
  ident: C9NR06191F-(cit125)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01540
– volume: 90
  start-page: 2555
  year: 1986
  ident: C9NR06191F-(cit1)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100403a003
– volume: 29
  start-page: 1603885
  year: 2017
  ident: C9NR06191F-(cit117)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603885
– volume: 72
  start-page: 4847
  year: 1950
  ident: C9NR06191F-(cit103)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01167a001
– volume: 10
  start-page: 3035
  year: 2019
  ident: C9NR06191F-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00277
– volume: 29
  start-page: 1603826
  year: 2017
  ident: C9NR06191F-(cit76)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603826
– volume: 15
  start-page: 3692
  year: 2015
  ident: C9NR06191F-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5048779
– volume: 28
  start-page: 10710
  year: 2016
  ident: C9NR06191F-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603964
– volume: 116
  start-page: 4558
  year: 2016
  ident: C9NR06191F-(cit75)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 7
  start-page: 5699
  year: 2016
  ident: C9NR06191F-(cit56)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01758D
– volume: 358
  start-page: 745
  year: 2017
  ident: C9NR06191F-(cit25)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aam7093
– volume: 10
  start-page: 699
  year: 2016
  ident: C9NR06191F-(cit135)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.185
– volume: 30
  start-page: 1805409
  year: 2018
  ident: C9NR06191F-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805409
– volume: 26
  start-page: 4797
  year: 2016
  ident: C9NR06191F-(cit60)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601054
– volume: 53
  start-page: 232
  year: 2017
  ident: C9NR06191F-(cit121)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08282C
– volume: 29
  start-page: 6493
  year: 2017
  ident: C9NR06191F-(cit94)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02089
– volume: 3
  start-page: 9187
  year: 2015
  ident: C9NR06191F-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05878J
– volume: 29
  start-page: 3793
  year: 2017
  ident: C9NR06191F-(cit102)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01100
– volume: 10
  start-page: 7943
  year: 2016
  ident: C9NR06191F-(cit115)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03863
– volume: 227
  start-page: 289
  year: 2018
  ident: C9NR06191F-(cit89)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.05.082
– volume: 5
  start-page: 2182
  year: 2017
  ident: C9NR06191F-(cit58)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05329G
– volume: 9
  start-page: 687
  year: 2014
  ident: C9NR06191F-(cit44)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 4
  start-page: 1301882
  year: 2014
  ident: C9NR06191F-(cit4)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301882
– volume: 6
  start-page: 1800380
  year: 2018
  ident: C9NR06191F-(cit50)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800380
– volume: 30
  start-page: 475
  year: 2000
  ident: C9NR06191F-(cit100)/*[position()=1]
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.30.1.475
– volume: 9
  start-page: 4533
  year: 2015
  ident: C9NR06191F-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01154
– volume: 122
  start-page: 15799
  year: 2018
  ident: C9NR06191F-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03681
– volume: 28
  start-page: 10088
  year: 2016
  ident: C9NR06191F-(cit144)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603081
– volume: 53
  start-page: 9914
  year: 2017
  ident: C9NR06191F-(cit69)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04862A
– volume: 31
  start-page: 1807516
  year: 2019
  ident: C9NR06191F-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807516
– volume: 119
  start-page: 12047
  year: 2015
  ident: C9NR06191F-(cit143)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02959
– volume: 136
  start-page: 850
  year: 2014
  ident: C9NR06191F-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4109209
– volume: 9
  start-page: 18054
  year: 2017
  ident: C9NR06191F-(cit118)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03382
– volume: 9
  start-page: 4166
  year: 2018
  ident: C9NR06191F-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01752
– volume: 15
  start-page: 1900801
  year: 2019
  ident: C9NR06191F-(cit91)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201900801
– volume: 137
  start-page: 10276
  year: 2015
  ident: C9NR06191F-(cit73)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05602
– volume: 138
  start-page: 2941
  year: 2016
  ident: C9NR06191F-(cit81)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13470
– volume: 28
  start-page: 3528
  year: 2016
  ident: C9NR06191F-(cit99)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600064
– volume: 138
  start-page: 14954
  year: 2016
  ident: C9NR06191F-(cit83)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08085
– volume: 65
  start-page: 855
  year: 2004
  ident: C9NR06191F-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2003.08.021
– volume: 3
  start-page: 303
  year: 2017
  ident: C9NR06191F-(cit104)/*[position()=1]
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201700034
– volume: 3
  start-page: 2931
  year: 2018
  ident: C9NR06191F-(cit123)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01754
– volume: 3
  start-page: 20772
  year: 2015
  ident: C9NR06191F-(cit65)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04904K
– volume: 6
  start-page: 21729
  year: 2018
  ident: C9NR06191F-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06376A
– volume: 8
  start-page: 15218
  year: 2017
  ident: C9NR06191F-(cit112)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15218
– volume: 120
  start-page: 185701
  year: 2018
  ident: C9NR06191F-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.185701
– volume: 26
  start-page: 4595
  year: 2016
  ident: C9NR06191F-(cit132)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600958
– volume: 2
  start-page: 1500194
  year: 2015
  ident: C9NR06191F-(cit57)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500194
– volume: 140
  start-page: 9942
  year: 2018
  ident: C9NR06191F-(cit84)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04763
– volume: 7
  start-page: 18
  year: 2018
  ident: C9NR06191F-(cit12)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-018-0014-0
– volume: 5
  start-page: 4565
  year: 2017
  ident: C9NR06191F-(cit142)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05578H
– volume: 138
  start-page: 142025
  year: 2016
  ident: C9NR06191F-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08900
– volume: 4
  start-page: 1308
  year: 2019
  ident: C9NR06191F-(cit71)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00634
– volume: 13
  start-page: 1701770
  year: 2017
  ident: C9NR06191F-(cit17)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201701770
– volume: 57
  start-page: 2
  year: 2018
  ident: C9NR06191F-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708510
– volume: 12
  start-page: 681
  year: 2018
  ident: C9NR06191F-(cit36)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0260-y
– volume: 1
  start-page: 1233
  year: 2016
  ident: C9NR06191F-(cit88)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00499
– volume: 27
  start-page: 5196
  year: 2015
  ident: C9NR06191F-(cit138)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502490
– volume: 29
  start-page: 1606405
  year: 2017
  ident: C9NR06191F-(cit79)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606405
– volume: 2
  start-page: 1089
  year: 2017
  ident: C9NR06191F-(cit20)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00191
– volume: 8
  start-page: 506
  year: 2014
  ident: C9NR06191F-(cit97)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.134
– volume: 350
  start-page: 1222
  year: 2015
  ident: C9NR06191F-(cit134)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad1818
– volume: 16
  start-page: 5866
  year: 2016
  ident: C9NR06191F-(cit19)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02688
– volume: 139
  start-page: 4087
  year: 2017
  ident: C9NR06191F-(cit82)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13079
– volume: 14
  start-page: 2584
  year: 2014
  ident: C9NR06191F-(cit113)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500390f
– volume: 12
  start-page: 8808
  year: 2018
  ident: C9NR06191F-(cit34)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05172
– volume: 1
  start-page: 1266
  year: 2016
  ident: C9NR06191F-(cit110)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00595
– volume: 19
  start-page: 1920
  year: 2017
  ident: C9NR06191F-(cit22)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04083G
– volume: 28
  start-page: 9163
  year: 2016
  ident: C9NR06191F-(cit63)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602651
– volume: 18
  start-page: 3157
  year: 2018
  ident: C9NR06191F-(cit33)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00789
– volume: 29
  start-page: 4265
  year: 2017
  ident: C9NR06191F-(cit95)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00345
– volume: 5
  start-page: 5757
  year: 2014
  ident: C9NR06191F-(cit86)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6757
– volume: 15
  start-page: 2640
  year: 2015
  ident: C9NR06191F-(cit139)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00235
– volume: 139
  start-page: 6566
  year: 2017
  ident: C9NR06191F-(cit122)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02817
– volume: 59
  start-page: 7924
  year: 2016
  ident: C9NR06191F-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603698
– volume: 7
  start-page: 8
  year: 2018
  ident: C9NR06191F-(cit6)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-018-0013-1
– volume: 59
  start-page: 719
  year: 2016
  ident: C9NR06191F-(cit111)/*[position()=1]
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-016-5123-1
– volume: 28
  start-page: 8132
  year: 2016
  ident: C9NR06191F-(cit92)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01329
– volume: 16
  start-page: 1415
  year: 2016
  ident: C9NR06191F-(cit128)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04959
– volume: 16
  start-page: 1869
  year: 2016
  ident: C9NR06191F-(cit98)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04981
– volume: 6
  start-page: 5027
  year: 2015
  ident: C9NR06191F-(cit120)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02460
– volume: 7
  start-page: 1900774
  year: 2019
  ident: C9NR06191F-(cit64)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900774
– volume: 28
  start-page: 9478
  year: 2016
  ident: C9NR06191F-(cit67)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602897
– volume: 17
  start-page: 6759
  year: 2017
  ident: C9NR06191F-(cit49)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02959
– volume: 29
  start-page: 3644
  year: 2017
  ident: C9NR06191F-(cit42)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00478
– volume: 48
  start-page: 310
  year: 2019
  ident: C9NR06191F-(cit28)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00740C
– volume: 9
  start-page: 18417
  year: 2017
  ident: C9NR06191F-(cit68)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03445
– volume: 15
  start-page: 5635
  year: 2015
  ident: C9NR06191F-(cit74)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02404
– volume: 26
  start-page: 2435
  year: 2016
  ident: C9NR06191F-(cit61)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600109
– volume: 12
  start-page: 1462
  year: 2018
  ident: C9NR06191F-(cit130)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07856
– volume: 11
  start-page: 10373
  year: 2017
  ident: C9NR06191F-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05442
– volume: 17
  start-page: 2765
  year: 2017
  ident: C9NR06191F-(cit77)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04781
– volume: 5
  start-page: 6123
  year: 2017
  ident: C9NR06191F-(cit133)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01300K
– volume: 16
  start-page: 30
  year: 2017
  ident: C9NR06191F-(cit5)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.07.001
– volume: 55
  start-page: 15012
  year: 2016
  ident: C9NR06191F-(cit85)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608160
– volume: 92
  start-page: 045414
  year: 2015
  ident: C9NR06191F-(cit66)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.045414
– volume: 7
  start-page: 13
  year: 2013
  ident: C9NR06191F-(cit3)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.328
– volume: 8
  start-page: 489
  year: 2017
  ident: C9NR06191F-(cit108)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02800
– volume: 27
  start-page: 3397
  year: 2015
  ident: C9NR06191F-(cit114)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00660
– volume: 515
  start-page: 96
  year: 2014
  ident: C9NR06191F-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13829
SSID ssj0069363
Score 2.5891666
SecondaryResourceType review_article
Snippet Perovskite quantum dots (QDs) have been hotly pursued in recent decades owing to their quantum confinement effect and defect-tolerant nature. Their unique...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19119
SubjectTerms Biocompatibility
Composition
Configuration management
Light emitting diodes
Optical properties
Optimization
Perovskites
Photoluminescence
Quantum confinement
Quantum dots
Toxicity
Visible spectrum
Title Perovskite quantum dots for light-emitting devices
URI https://www.proquest.com/docview/2308430111
https://www.proquest.com/docview/2298146951
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4FDxatiS0FBcEFVSvzIw8dSdbWgUiG0lcopcuwJqtQmaB8c-PWMHSfOilaiXKKs7c2u_DnffH7MDCHvIJUc8lrETIGMBU7X4oprHtOspopTozLnIfflPJtdiM-X6WXIree8S1bVkf59q1_J_6CKZYir9ZK9B7LDQ7EA7xFfvCLCeP0njL_Cov21tOuv1jkSrcfNIU4yXYSFw2sXIQRurrqDzQYcJYy1KBJru0SIBmjP3M7-93UTT-EqaER_Zre3cW4HyXHVrG1-xB_b8cIBlc6DLg_8wuxhQs67IOJHMC7LNwmSjgZCF6bK0x1O9jzhQf-5C030FzEn3MY11bJZoICQtA7mZzgUGCq3yA5D1Y88u3N8Ov901pvWTHKXGm_45328WS4_hG9vKowwbdha9DldnHaYPya7XvRHxx2CT8gDaJ6SR6NQkM8IC1hGHsvIYhkhltEmlpHH8jm5mJ7OT2axz2cRa07FKs4LZRgYkDlLWVEJbfWDUSxRRZqDlMJQDlWBCjkztUxMUZs8B66VTXkgE833yHbTNvCCRFCLNNUG2ZPWwmRa8SqtssRoZnOuJjAh7_s-KLUP9m5zjlyX7tABl-WJPP_m-ms6IW-Htj-7ECe3tjrou7L0r8CyxPlrIayJoBPyZqhGgrK7TqqBdo1tmLTLzKjkJ2QPIRh-IyC2f1fFS_IwjNwDsr1arOEVisBV9doPjT8mzlql
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+quantum+dots+for+light-emitting+devices&rft.jtitle=Nanoscale&rft.au=Li%2C+Yun-Fei&rft.au=Feng%2C+Jing&rft.au=Sun%2C+Hong-Bo&rft.date=2019-11-07&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=41&rft.spage=19119&rft.epage=19139&rft_id=info:doi/10.1039%2Fc9nr06191f&rft.externalDocID=c9nr06191f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon