A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density "hot spot" SERS substrate and rolling circle amplification strategy
Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causin...
Saved in:
Published in | Analyst (London) Vol. 146; no. 17; pp. 5326 - 5336 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
07.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO
2
array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO
2
array substrate with the SERS enhancement factor of 7.49 × 10
6
. The substrate was synthesized by using a monolayer SiO
2
array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL
−1
, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10
−4
U mL
−1
and 2.51 × 10
−4
U mL
−1
, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Herein, a novel biosensor based on a high-density "hot spot" Au@SiO
2
array SERS substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity was devoloped. |
---|---|
AbstractList | Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO
2
array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO
2
array substrate with the SERS enhancement factor of 7.49 × 10
6
. The substrate was synthesized by using a monolayer SiO
2
array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL
−1
, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10
−4
U mL
−1
and 2.51 × 10
−4
U mL
−1
, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Herein, a novel biosensor based on a high-density "hot spot" Au@SiO
2
array SERS substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity was devoloped. Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL−1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10−4 U mL−1 and 2.51 × 10−4 U mL−1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors. Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO 2 array substrate with the SERS enhancement factor of 7.49 × 10 6 . The substrate was synthesized by using a monolayer SiO 2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL −1 , and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10 −4 U mL −1 and 2.51 × 10 −4 U mL −1 , respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors. Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL-1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10-4 U mL-1 and 2.51 × 10-4 U mL-1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL-1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10-4 U mL-1 and 2.51 × 10-4 U mL-1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors. |
Author | Ran, Menglin Ge, Shengjie Sun, Yue Li, Li Cao, Xiaowei Zhou, Xinyu Mao, Yu |
AuthorAffiliation | Yangzhou University Institute of Translational Medicine Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Medical College Children's Hospital of Nanjing Medical University The First Clinical College Dalian Medical University |
AuthorAffiliation_xml | – name: Medical College – name: Children's Hospital of Nanjing Medical University – name: Institute of Translational Medicine – name: Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research – name: Yangzhou University – name: Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases – name: Dalian Medical University – name: The First Clinical College |
Author_xml | – sequence: 1 givenname: Shengjie surname: Ge fullname: Ge, Shengjie – sequence: 2 givenname: Menglin surname: Ran fullname: Ran, Menglin – sequence: 3 givenname: Yu surname: Mao fullname: Mao, Yu – sequence: 4 givenname: Yue surname: Sun fullname: Sun, Yue – sequence: 5 givenname: Xinyu surname: Zhou fullname: Zhou, Xinyu – sequence: 6 givenname: Li surname: Li fullname: Li, Li – sequence: 7 givenname: Xiaowei surname: Cao fullname: Cao, Xiaowei |
BookMark | eNptkk1rGzEQhkVIIE7SS-8BkV5CYVNptdpdH02cpoWQQt2eF316FWTJlbSG_V_9gZXXoQGTg5Bm9LzviBldgFPnnQLgI0Z3GJH5F4mZQ_lUyRMww6SuCkrL9hTMEEKkKGtanYOLGF9yiBFFM_B3AZ3fKQuXzwvIjY_KRR-gziv1Cg42BbbPmWR2CkqVlEjGO-j1pNio1I97xkWt9iRk-X5n0gh5jiTMKIO9WfeFnFxGeNP7BOPWpxu4evi5gnHgMRukLHUSBm-tcWsoTBA2pzZba7QRbCp64NbjFTjTzEb14XW_BL-_Pvy6_1Y8_Xj8fr94KgTBVSoapGsmhFSC1LwSmEvKBaJtzrUcUV4RSjArGyYRrUqsxbwlSGHUCsJrrCm5BLcH323wfwYVU7cxUShrmVN-iF1JKZ03pCQoo5-O0Bc_BJdfl6makKatyiZTnw-UCD7GoHS3DWbDwthh1O0H2C3x4nka4DLD6AgWJk2NyG0w9n3J9UESovhv_fYnyD8vW6wf |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e37396 crossref_primary_10_1039_D2SD00235C crossref_primary_10_3390_chemosensors12030044 crossref_primary_10_1016_j_talanta_2023_125014 crossref_primary_10_1016_j_smaim_2025_01_002 crossref_primary_10_1002_admt_202400504 crossref_primary_10_1186_s12951_022_01315_x crossref_primary_10_1007_s41664_024_00306_1 crossref_primary_10_1002_advs_202413679 crossref_primary_10_1016_j_biosx_2022_100245 crossref_primary_10_1021_acs_analchem_4c05700 crossref_primary_10_1021_acsabm_2c00324 crossref_primary_10_1016_j_snb_2024_135804 crossref_primary_10_3390_bios13030328 crossref_primary_10_1002_adbi_202300668 crossref_primary_10_3390_chemosensors12080154 |
Cites_doi | 10.1016/j.jallcom.2021.159870 10.1016/j.aca.2013.01.026 10.1039/c2cs35118h 10.1016/j.cap.2017.08.004 10.1016/j.snb.2018.03.127 10.1002/jccs.201700028 10.1021/acssuschemeng.6b01909 10.1021/ja00457a071 10.1016/j.jallcom.2014.08.062 10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z 10.1016/j.jmrt.2021.01.069 10.1016/j.jallcom.2020.157952 10.1039/C7AY01785E 10.1002/anie.201205748 10.1016/j.foodchem.2020.127105 10.1016/j.cell.2014.04.017 10.1021/acs.analchem.8b00853 10.1002/jrs.2730 10.1016/j.talanta.2020.121852 10.1038/nrg3354 10.1186/s13148-021-01009-5 10.1016/j.snb.2021.130031 10.1039/C7FD00122C 10.1016/j.snb.2016.07.087 10.1158/0008-5472.CAN-15-3278 10.1073/pnas.88.15.6394 10.1080/01635581.2018.1539189 10.1021/acs.analchem.8b05595 10.1016/j.bios.2012.10.022 10.1016/j.bios.2014.08.082 10.1016/j.aca.2017.10.009 10.1093/nar/29.18.3784 10.1016/j.cbpa.2016.05.030 10.1016/j.cell.2017.01.021 10.1088/0957-4484/27/14/145502 10.1016/j.saa.2019.117731 10.1021/acsami.7b16618 10.1039/C5CC05463J 10.1016/j.scitotenv.2020.144839 10.1021/acssensors.0c02016 10.1016/j.saa.2021.119447 10.1016/0378-4347(94)00327-0 10.1016/0378-4347(94)00433-6 10.1016/j.snb.2018.10.010 10.1021/acs.analchem.5b04889 10.1186/s12870-018-1546-4 10.1038/nrg3270 10.1039/c2cp44030j 10.1016/j.snb.2018.11.085 10.1038/s41378-021-00250-5 10.1016/j.bios.2016.02.057 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d1an01034d |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 5336 |
ExternalDocumentID | 10_1039_D1AN01034D d1an01034d |
GroupedDBID | - 0-7 02 0R 1TJ 23M 4.4 5RE 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABOCM ABPTK ABRYZ ACGFS ACHRU ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- F5P GNO HR HZ H~N IDZ J3I JG M4U N9A O9- P2P R7B R7E RCNCU RIG RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 X --- -~X .HR 0R~ 2WC 70~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKMSF APEMP CITATION COF GGIMP H13 HZ~ R56 RAOCF ~02 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-70f6accdec36b4c1bd5bc058acc8b05b43531a27ad05421fc9830e108c3b61f53 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Thu Jul 10 18:48:21 EDT 2025 Mon Jun 30 06:24:56 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Tue Jul 01 01:57:07 EDT 2025 Sun Apr 17 04:30:15 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-70f6accdec36b4c1bd5bc058acc8b05b43531a27ad05421fc9830e108c3b61f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8948-3325 0000-0003-1845-9111 |
PQID | 2563378427 |
PQPubID | 2047505 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_D1AN01034D rsc_primary_d1an01034d crossref_citationtrail_10_1039_D1AN01034D proquest_miscellaneous_2555973230 proquest_journals_2563378427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-07 |
PublicationDateYYYYMMDD | 2021-09-07 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Analyst (London) |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Luo (D1AN01034D/cit38) 2020; 5 He (D1AN01034D/cit28) 2021; 341 Yao (D1AN01034D/cit34) 2021; 11 Zhao (D1AN01034D/cit37) 2019; 279 Wu (D1AN01034D/cit47) 2021; 7 Dadmehr (D1AN01034D/cit2) 2020; 228 Guerrini (D1AN01034D/cit22) 2012; 41 Wang (D1AN01034D/cit40) 2015; 51 Li (D1AN01034D/cit19) 2019; 281 Barveen (D1AN01034D/cit36) 2021; 861 Strelau (D1AN01034D/cit48) 2011; 42 Zhu (D1AN01034D/cit27) 2020; 224 Albrecht (D1AN01034D/cit24) 1977; 99 Wang (D1AN01034D/cit52) 2013; 768 Paknejad (D1AN01034D/cit31) 2014; 617 Esteller (D1AN01034D/cit6) 2001; 61 Klutstein (D1AN01034D/cit12) 2016; 76 Lennard (D1AN01034D/cit15) 1994; 661 Reenilä (D1AN01034D/cit16) 1995; 663 Cui (D1AN01034D/cit41) 2018; 997 Song (D1AN01034D/cit20) 2015; 64 Chen (D1AN01034D/cit4) 2021; 771 Li (D1AN01034D/cit49) 2017; 238 Vinod (D1AN01034D/cit33) 2017; 17 Khezri (D1AN01034D/cit46) 2017; 9 Smith (D1AN01034D/cit7) 2013; 14 Wu (D1AN01034D/cit25) 2020; 328 Tang (D1AN01034D/cit5) 2009; 30 Spencer (D1AN01034D/cit11) 2017; 168 Xie (D1AN01034D/cit9) 2018; 70 Wang (D1AN01034D/cit26) 2021; 251 Ma (D1AN01034D/cit43) 2018; 90 Zhu (D1AN01034D/cit50) 2016; 88 Chouaibi (D1AN01034D/cit45) 2021; 874 Moskovits (D1AN01034D/cit23) 2013; 15 Wang (D1AN01034D/cit8) 2018; 18 Zhao (D1AN01034D/cit51) 2013; 42 Schlücker (D1AN01034D/cit21) 2014; 53 Li (D1AN01034D/cit39) 2016; 81 Heyn (D1AN01034D/cit13) 2012; 13 Xu (D1AN01034D/cit42) 2018; 266 Cheng (D1AN01034D/cit10) 2001; 29 Wang (D1AN01034D/cit1) 2014; 157 Chen (D1AN01034D/cit53) 2019; 91 Schapira (D1AN01034D/cit14) 2016; 33 Fraga (D1AN01034D/cit18) 2018; 23 Chen (D1AN01034D/cit30) 2017; 9 Bergerat (D1AN01034D/cit17) 1991; 88 Wang (D1AN01034D/cit3) 2021; 13 Gieseking (D1AN01034D/cit29) 2017; 205 Zhang (D1AN01034D/cit32) 2017; 64 Wang (D1AN01034D/cit44) 2017; 5 Shan (D1AN01034D/cit35) 2016; 27 |
References_xml | – volume: 874 start-page: 159870 year: 2021 ident: D1AN01034D/cit45 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159870 – volume: 768 start-page: 76 year: 2013 ident: D1AN01034D/cit52 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.01.026 – volume: 41 start-page: 7085 year: 2012 ident: D1AN01034D/cit22 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35118h – volume: 17 start-page: 1430 year: 2017 ident: D1AN01034D/cit33 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2017.08.004 – volume: 61 start-page: 3225 year: 2001 ident: D1AN01034D/cit6 publication-title: Cancer Res. – volume: 266 start-page: 124 year: 2018 ident: D1AN01034D/cit42 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.03.127 – volume: 64 start-page: 1308 year: 2017 ident: D1AN01034D/cit32 publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201700028 – volume: 5 start-page: 1408 year: 2017 ident: D1AN01034D/cit44 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01909 – volume: 99 start-page: 5215 year: 1977 ident: D1AN01034D/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 617 start-page: 994 year: 2014 ident: D1AN01034D/cit31 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.062 – volume: 23 start-page: 1677 year: 2018 ident: D1AN01034D/cit18 publication-title: Electrophoresis doi: 10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z – volume: 11 start-page: 857 year: 2021 ident: D1AN01034D/cit34 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.01.069 – volume: 861 start-page: 157952 year: 2021 ident: D1AN01034D/cit36 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157952 – volume: 9 start-page: 6513 year: 2017 ident: D1AN01034D/cit46 publication-title: Anal. Methods doi: 10.1039/C7AY01785E – volume: 53 start-page: 4756 year: 2014 ident: D1AN01034D/cit21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205748 – volume: 328 start-page: 127105 year: 2020 ident: D1AN01034D/cit25 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127105 – volume: 157 start-page: 979 year: 2014 ident: D1AN01034D/cit1 publication-title: Cell doi: 10.1016/j.cell.2014.04.017 – volume: 90 start-page: 7415 year: 2018 ident: D1AN01034D/cit43 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00853 – volume: 42 start-page: 243 year: 2011 ident: D1AN01034D/cit48 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2730 – volume: 224 start-page: 121852 year: 2020 ident: D1AN01034D/cit27 publication-title: Talanta doi: 10.1016/j.talanta.2020.121852 – volume: 14 start-page: 204 year: 2013 ident: D1AN01034D/cit7 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3354 – volume: 13 start-page: 35 year: 2021 ident: D1AN01034D/cit3 publication-title: Clin. Epigenet. doi: 10.1186/s13148-021-01009-5 – volume: 341 start-page: 130031 year: 2021 ident: D1AN01034D/cit28 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.130031 – volume: 205 start-page: 149 year: 2017 ident: D1AN01034D/cit29 publication-title: Faraday Discuss. doi: 10.1039/C7FD00122C – volume: 238 start-page: 626 year: 2017 ident: D1AN01034D/cit49 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.07.087 – volume: 76 start-page: 3446 year: 2016 ident: D1AN01034D/cit12 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3278 – volume: 88 start-page: 6394 year: 1991 ident: D1AN01034D/cit17 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.15.6394 – volume: 70 start-page: 1339 year: 2018 ident: D1AN01034D/cit9 publication-title: Nutr. Cancer doi: 10.1080/01635581.2018.1539189 – volume: 91 start-page: 3597 year: 2019 ident: D1AN01034D/cit53 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05595 – volume: 42 start-page: 56 year: 2013 ident: D1AN01034D/cit51 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.10.022 – volume: 64 start-page: 234 year: 2015 ident: D1AN01034D/cit20 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.08.082 – volume: 997 start-page: 1 year: 2018 ident: D1AN01034D/cit41 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.10.009 – volume: 29 start-page: 3784 year: 2001 ident: D1AN01034D/cit10 publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.18.3784 – volume: 33 start-page: 81 year: 2016 ident: D1AN01034D/cit14 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.05.030 – volume: 168 start-page: 801 year: 2017 ident: D1AN01034D/cit11 publication-title: Cell doi: 10.1016/j.cell.2017.01.021 – volume: 30 start-page: 157 year: 2009 ident: D1AN01034D/cit5 publication-title: Andrology – volume: 27 start-page: 145502 year: 2016 ident: D1AN01034D/cit35 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/14/145502 – volume: 228 start-page: 117731 year: 2020 ident: D1AN01034D/cit2 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2019.117731 – volume: 9 start-page: 42156 year: 2017 ident: D1AN01034D/cit30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16618 – volume: 51 start-page: 13983 year: 2015 ident: D1AN01034D/cit40 publication-title: Chem. Commun. doi: 10.1039/C5CC05463J – volume: 771 start-page: 144839 year: 2021 ident: D1AN01034D/cit4 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144839 – volume: 5 start-page: 3639 year: 2020 ident: D1AN01034D/cit38 publication-title: ACS Sens. doi: 10.1021/acssensors.0c02016 – volume: 251 start-page: 119447 year: 2021 ident: D1AN01034D/cit26 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.119447 – volume: 661 start-page: 25 year: 1994 ident: D1AN01034D/cit15 publication-title: J. Chromatogr. B: Biomed. Sci. Appl. doi: 10.1016/0378-4347(94)00327-0 – volume: 663 start-page: 137 year: 1995 ident: D1AN01034D/cit16 publication-title: J. Chromatogr. B: Biomed. Sci. Appl. doi: 10.1016/0378-4347(94)00433-6 – volume: 279 start-page: 313 year: 2019 ident: D1AN01034D/cit37 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.10.010 – volume: 88 start-page: 3817 year: 2016 ident: D1AN01034D/cit50 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04889 – volume: 18 start-page: 352 year: 2018 ident: D1AN01034D/cit8 publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1546-4 – volume: 13 start-page: 679 year: 2012 ident: D1AN01034D/cit13 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3270 – volume: 15 start-page: 5301 year: 2013 ident: D1AN01034D/cit23 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44030j – volume: 281 start-page: 1073 year: 2019 ident: D1AN01034D/cit19 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.11.085 – volume: 7 start-page: 23 year: 2021 ident: D1AN01034D/cit47 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-021-00250-5 – volume: 81 start-page: 111 year: 2016 ident: D1AN01034D/cit39 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.02.057 |
SSID | ssj0001050 |
Score | 2.4481473 |
Snippet | Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO
2
array substrate and rolling circle amplification (RCA) strategy for the... Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the... Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the... Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5326 |
SubjectTerms | Amplification Arrays Biosensors Cancer Density Gold Nanoparticles Reliability analysis Silicon dioxide Substrates |
Title | A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density "hot spot" SERS substrate and rolling circle amplification strategy |
URI | https://www.proquest.com/docview/2563378427 https://www.proquest.com/docview/2555973230 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7QEuiL-KQEGL4IIsF9vrvxytJqWgECRIpHKy9s9tUGWjxEEqpz4IvAfPwrFPwuyu105EhICLFW3GayvzZXZm9tsZhJ6HUcDB7DOXezGHAEWkLg0C7iaUi0St34VhW0zik1n45jQ67fV-rrGWVjU75F-3niv5H63CGOhVnZL9B822k8IAfAb9whU0DNe_0nHmlNUXCXZrkjlsXi0hJK0WLXFwdVEvqBoz9CAha8mtf6juUM2jL5UMeK5SSerCGrqXhFrbhNpHoI6qZ-wKPculY6kRR-dV7UBAXNuBofNBnVVYghnS5W4Nbb0p-M3nC3hxhyryetHkCB0jd7axq2wqpNTrbUbaPMUrkys_l-XZp3lH2JXqGHLpvO9A_pbq7O_HVbffVZoBuZ7iCHzN4UpaUJpEimWxapZK0wtvw7ITN4hNQepDaYw5iUM3iprD59baNxnPBtbJmvGOSBCvOQLgCMdbFxmPqBqtwqeK1kpC0S2llj4weZcfz8bjfDo6ne6gvQBCGLDBe9lo-nrc-gng2Xq2n6N6c1s8lwxednNvuktdDLSzsA1qtCM0vY1uNREMzgwc76CeLO-iG-2PdQ_9yLCGJQaQ4RaWGGCJAZZ4E5a4hSWuCn3Hb7DEFpZYwxKDKMXrsMTXV98AkFgB8vrqO1ZQxC0UMUARN1DEBop4A4rYQvE-mh2PpkcnbtMgxOXED2s38YqYci4kJzELuc9ExLgXpTCWMi9iEAoQnwYJFRCYBH7BBynxpO-lnLDYLyKyj3bLqpQPEOaeYCwNUuoRFkYDn1JYqQQNRRoXIfWKPnph9ZDzpnq-auJykWsWBxnkQz-baJ0N--hZK_vZ1IzZKnVg1Zk3NmWZQwBCSJKGQdJHT9uvQX9qG4-WslopGZUFIAHx-mgfYNA-o0PNwz_P_Qjd7P5mB2i3XqzkY_Cta_akAekvtoDYLw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+DNA+biosensor+for+the+ultrasensitive+detection+of+DNA+methyltransferase+activity+based+on+a+high-density+%E2%80%9Chot+spot%E2%80%9D+SERS+substrate+and+rolling+circle+amplification+strategy&rft.jtitle=Analyst+%28London%29&rft.au=Ge%2C+Shengjie&rft.au=Menglin+Ran&rft.au=Mao%2C+Yu&rft.au=Sun%2C+Yue&rft.date=2021-09-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=146&rft.issue=17&rft.spage=5326&rft.epage=5336&rft_id=info:doi/10.1039%2Fd1an01034d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |