A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density "hot spot" SERS substrate and rolling circle amplification strategy

Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causin...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 146; no. 17; pp. 5326 - 5336
Main Authors Ge, Shengjie, Ran, Menglin, Mao, Yu, Sun, Yue, Zhou, Xinyu, Li, Li, Cao, Xiaowei
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 07.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO 2 array substrate with the SERS enhancement factor of 7.49 × 10 6 . The substrate was synthesized by using a monolayer SiO 2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL −1 , and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10 −4 U mL −1 and 2.51 × 10 −4 U mL −1 , respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors. Herein, a novel biosensor based on a high-density "hot spot" Au@SiO 2 array SERS substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity was devoloped.
AbstractList Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO 2 array substrate with the SERS enhancement factor of 7.49 × 10 6 . The substrate was synthesized by using a monolayer SiO 2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL −1 , and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10 −4 U mL −1 and 2.51 × 10 −4 U mL −1 , respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors. Herein, a novel biosensor based on a high-density "hot spot" Au@SiO 2 array SERS substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity was devoloped.
Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL−1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10−4 U mL−1 and 2.51 × 10−4 U mL−1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO 2 array substrate with the SERS enhancement factor of 7.49 × 10 6 . The substrate was synthesized by using a monolayer SiO 2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL −1 , and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10 −4 U mL −1 and 2.51 × 10 −4 U mL −1 , respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL-1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10-4 U mL-1 and 2.51 × 10-4 U mL-1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the ultrasensitive detection of CpG methyltransferase (M.SssI) activity. In the presence of M.SssI, the RCA process can be triggered, causing the augmentation of the single-stranded DNA (ssDNA) at the tail of the double-stranded DNA (dsDNA), and the ssDNA can be hybridized with numerous DNA probes labeled with Raman reporters in the next steps. Afterwards, the resultant ssDNA can be modified to the Au@SiO2 array substrate with the SERS enhancement factor of 7.49 × 106. The substrate was synthesized by using a monolayer SiO2 array to pick up the Au nanoparticle (AuNP) array and finite-difference time-domain (FDTD) simulation showed its excellent SERS effect. Particularly, the developed biosensor displayed a significant sensitivity with a broad detection range covering from 0.005 to 50 U mL-1, and the limits of detection (LODs) in PBS buffer and human serum were 2.37 × 10-4 U mL-1 and 2.51 × 10-4 U mL-1, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects and breast cancer, prostate cancer, gastric cancer and cervical cancer patients were analyzed, and the reliability of the results was also confirmed by western blot (WB) experiments. Taking advantage of these merits, the proposed biosensor can be a very promising alternative tool for the detection of M.SssI activity, which is of vital importance in the early detection and prevention of tumors.
Author Ran, Menglin
Ge, Shengjie
Sun, Yue
Li, Li
Cao, Xiaowei
Zhou, Xinyu
Mao, Yu
AuthorAffiliation Yangzhou University
Institute of Translational Medicine
Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research
Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
Medical College
Children's Hospital of Nanjing Medical University
The First Clinical College
Dalian Medical University
AuthorAffiliation_xml – name: Medical College
– name: Children's Hospital of Nanjing Medical University
– name: Institute of Translational Medicine
– name: Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research
– name: Yangzhou University
– name: Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases
– name: Dalian Medical University
– name: The First Clinical College
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Ge
  fullname: Ge, Shengjie
– sequence: 2
  givenname: Menglin
  surname: Ran
  fullname: Ran, Menglin
– sequence: 3
  givenname: Yu
  surname: Mao
  fullname: Mao, Yu
– sequence: 4
  givenname: Yue
  surname: Sun
  fullname: Sun, Yue
– sequence: 5
  givenname: Xinyu
  surname: Zhou
  fullname: Zhou, Xinyu
– sequence: 6
  givenname: Li
  surname: Li
  fullname: Li, Li
– sequence: 7
  givenname: Xiaowei
  surname: Cao
  fullname: Cao, Xiaowei
BookMark eNptkk1rGzEQhkVIIE7SS-8BkV5CYVNptdpdH02cpoWQQt2eF316FWTJlbSG_V_9gZXXoQGTg5Bm9LzviBldgFPnnQLgI0Z3GJH5F4mZQ_lUyRMww6SuCkrL9hTMEEKkKGtanYOLGF9yiBFFM_B3AZ3fKQuXzwvIjY_KRR-gziv1Cg42BbbPmWR2CkqVlEjGO-j1pNio1I97xkWt9iRk-X5n0gh5jiTMKIO9WfeFnFxGeNP7BOPWpxu4evi5gnHgMRukLHUSBm-tcWsoTBA2pzZba7QRbCp64NbjFTjTzEb14XW_BL-_Pvy6_1Y8_Xj8fr94KgTBVSoapGsmhFSC1LwSmEvKBaJtzrUcUV4RSjArGyYRrUqsxbwlSGHUCsJrrCm5BLcH323wfwYVU7cxUShrmVN-iF1JKZ03pCQoo5-O0Bc_BJdfl6makKatyiZTnw-UCD7GoHS3DWbDwthh1O0H2C3x4nka4DLD6AgWJk2NyG0w9n3J9UESovhv_fYnyD8vW6wf
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e37396
crossref_primary_10_1039_D2SD00235C
crossref_primary_10_3390_chemosensors12030044
crossref_primary_10_1016_j_talanta_2023_125014
crossref_primary_10_1016_j_smaim_2025_01_002
crossref_primary_10_1002_admt_202400504
crossref_primary_10_1186_s12951_022_01315_x
crossref_primary_10_1007_s41664_024_00306_1
crossref_primary_10_1002_advs_202413679
crossref_primary_10_1016_j_biosx_2022_100245
crossref_primary_10_1021_acs_analchem_4c05700
crossref_primary_10_1021_acsabm_2c00324
crossref_primary_10_1016_j_snb_2024_135804
crossref_primary_10_3390_bios13030328
crossref_primary_10_1002_adbi_202300668
crossref_primary_10_3390_chemosensors12080154
Cites_doi 10.1016/j.jallcom.2021.159870
10.1016/j.aca.2013.01.026
10.1039/c2cs35118h
10.1016/j.cap.2017.08.004
10.1016/j.snb.2018.03.127
10.1002/jccs.201700028
10.1021/acssuschemeng.6b01909
10.1021/ja00457a071
10.1016/j.jallcom.2014.08.062
10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z
10.1016/j.jmrt.2021.01.069
10.1016/j.jallcom.2020.157952
10.1039/C7AY01785E
10.1002/anie.201205748
10.1016/j.foodchem.2020.127105
10.1016/j.cell.2014.04.017
10.1021/acs.analchem.8b00853
10.1002/jrs.2730
10.1016/j.talanta.2020.121852
10.1038/nrg3354
10.1186/s13148-021-01009-5
10.1016/j.snb.2021.130031
10.1039/C7FD00122C
10.1016/j.snb.2016.07.087
10.1158/0008-5472.CAN-15-3278
10.1073/pnas.88.15.6394
10.1080/01635581.2018.1539189
10.1021/acs.analchem.8b05595
10.1016/j.bios.2012.10.022
10.1016/j.bios.2014.08.082
10.1016/j.aca.2017.10.009
10.1093/nar/29.18.3784
10.1016/j.cbpa.2016.05.030
10.1016/j.cell.2017.01.021
10.1088/0957-4484/27/14/145502
10.1016/j.saa.2019.117731
10.1021/acsami.7b16618
10.1039/C5CC05463J
10.1016/j.scitotenv.2020.144839
10.1021/acssensors.0c02016
10.1016/j.saa.2021.119447
10.1016/0378-4347(94)00327-0
10.1016/0378-4347(94)00433-6
10.1016/j.snb.2018.10.010
10.1021/acs.analchem.5b04889
10.1186/s12870-018-1546-4
10.1038/nrg3270
10.1039/c2cp44030j
10.1016/j.snb.2018.11.085
10.1038/s41378-021-00250-5
10.1016/j.bios.2016.02.057
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1an01034d
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 5336
ExternalDocumentID 10_1039_D1AN01034D
d1an01034d
GroupedDBID -
0-7
02
0R
1TJ
23M
4.4
5RE
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABOCM
ABPTK
ABRYZ
ACGFS
ACHRU
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
F5P
GNO
HR
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7E
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
X
---
-~X
.HR
0R~
2WC
70~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKMSF
APEMP
CITATION
COF
GGIMP
H13
HZ~
R56
RAOCF
~02
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-70f6accdec36b4c1bd5bc058acc8b05b43531a27ad05421fc9830e108c3b61f53
ISSN 0003-2654
1364-5528
IngestDate Thu Jul 10 18:48:21 EDT 2025
Mon Jun 30 06:24:56 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Tue Jul 01 01:57:07 EDT 2025
Sun Apr 17 04:30:15 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-70f6accdec36b4c1bd5bc058acc8b05b43531a27ad05421fc9830e108c3b61f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8948-3325
0000-0003-1845-9111
PQID 2563378427
PQPubID 2047505
PageCount 11
ParticipantIDs crossref_primary_10_1039_D1AN01034D
rsc_primary_d1an01034d
crossref_citationtrail_10_1039_D1AN01034D
proquest_miscellaneous_2555973230
proquest_journals_2563378427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-07
PublicationDateYYYYMMDD 2021-09-07
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Analyst (London)
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Luo (D1AN01034D/cit38) 2020; 5
He (D1AN01034D/cit28) 2021; 341
Yao (D1AN01034D/cit34) 2021; 11
Zhao (D1AN01034D/cit37) 2019; 279
Wu (D1AN01034D/cit47) 2021; 7
Dadmehr (D1AN01034D/cit2) 2020; 228
Guerrini (D1AN01034D/cit22) 2012; 41
Wang (D1AN01034D/cit40) 2015; 51
Li (D1AN01034D/cit19) 2019; 281
Barveen (D1AN01034D/cit36) 2021; 861
Strelau (D1AN01034D/cit48) 2011; 42
Zhu (D1AN01034D/cit27) 2020; 224
Albrecht (D1AN01034D/cit24) 1977; 99
Wang (D1AN01034D/cit52) 2013; 768
Paknejad (D1AN01034D/cit31) 2014; 617
Esteller (D1AN01034D/cit6) 2001; 61
Klutstein (D1AN01034D/cit12) 2016; 76
Lennard (D1AN01034D/cit15) 1994; 661
Reenilä (D1AN01034D/cit16) 1995; 663
Cui (D1AN01034D/cit41) 2018; 997
Song (D1AN01034D/cit20) 2015; 64
Chen (D1AN01034D/cit4) 2021; 771
Li (D1AN01034D/cit49) 2017; 238
Vinod (D1AN01034D/cit33) 2017; 17
Khezri (D1AN01034D/cit46) 2017; 9
Smith (D1AN01034D/cit7) 2013; 14
Wu (D1AN01034D/cit25) 2020; 328
Tang (D1AN01034D/cit5) 2009; 30
Spencer (D1AN01034D/cit11) 2017; 168
Xie (D1AN01034D/cit9) 2018; 70
Wang (D1AN01034D/cit26) 2021; 251
Ma (D1AN01034D/cit43) 2018; 90
Zhu (D1AN01034D/cit50) 2016; 88
Chouaibi (D1AN01034D/cit45) 2021; 874
Moskovits (D1AN01034D/cit23) 2013; 15
Wang (D1AN01034D/cit8) 2018; 18
Zhao (D1AN01034D/cit51) 2013; 42
Schlücker (D1AN01034D/cit21) 2014; 53
Li (D1AN01034D/cit39) 2016; 81
Heyn (D1AN01034D/cit13) 2012; 13
Xu (D1AN01034D/cit42) 2018; 266
Cheng (D1AN01034D/cit10) 2001; 29
Wang (D1AN01034D/cit1) 2014; 157
Chen (D1AN01034D/cit53) 2019; 91
Schapira (D1AN01034D/cit14) 2016; 33
Fraga (D1AN01034D/cit18) 2018; 23
Chen (D1AN01034D/cit30) 2017; 9
Bergerat (D1AN01034D/cit17) 1991; 88
Wang (D1AN01034D/cit3) 2021; 13
Gieseking (D1AN01034D/cit29) 2017; 205
Zhang (D1AN01034D/cit32) 2017; 64
Wang (D1AN01034D/cit44) 2017; 5
Shan (D1AN01034D/cit35) 2016; 27
References_xml – volume: 874
  start-page: 159870
  year: 2021
  ident: D1AN01034D/cit45
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159870
– volume: 768
  start-page: 76
  year: 2013
  ident: D1AN01034D/cit52
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.01.026
– volume: 41
  start-page: 7085
  year: 2012
  ident: D1AN01034D/cit22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35118h
– volume: 17
  start-page: 1430
  year: 2017
  ident: D1AN01034D/cit33
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2017.08.004
– volume: 61
  start-page: 3225
  year: 2001
  ident: D1AN01034D/cit6
  publication-title: Cancer Res.
– volume: 266
  start-page: 124
  year: 2018
  ident: D1AN01034D/cit42
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.03.127
– volume: 64
  start-page: 1308
  year: 2017
  ident: D1AN01034D/cit32
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201700028
– volume: 5
  start-page: 1408
  year: 2017
  ident: D1AN01034D/cit44
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01909
– volume: 99
  start-page: 5215
  year: 1977
  ident: D1AN01034D/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 617
  start-page: 994
  year: 2014
  ident: D1AN01034D/cit31
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.08.062
– volume: 23
  start-page: 1677
  year: 2018
  ident: D1AN01034D/cit18
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z
– volume: 11
  start-page: 857
  year: 2021
  ident: D1AN01034D/cit34
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.01.069
– volume: 861
  start-page: 157952
  year: 2021
  ident: D1AN01034D/cit36
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157952
– volume: 9
  start-page: 6513
  year: 2017
  ident: D1AN01034D/cit46
  publication-title: Anal. Methods
  doi: 10.1039/C7AY01785E
– volume: 53
  start-page: 4756
  year: 2014
  ident: D1AN01034D/cit21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205748
– volume: 328
  start-page: 127105
  year: 2020
  ident: D1AN01034D/cit25
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127105
– volume: 157
  start-page: 979
  year: 2014
  ident: D1AN01034D/cit1
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.017
– volume: 90
  start-page: 7415
  year: 2018
  ident: D1AN01034D/cit43
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00853
– volume: 42
  start-page: 243
  year: 2011
  ident: D1AN01034D/cit48
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2730
– volume: 224
  start-page: 121852
  year: 2020
  ident: D1AN01034D/cit27
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121852
– volume: 14
  start-page: 204
  year: 2013
  ident: D1AN01034D/cit7
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3354
– volume: 13
  start-page: 35
  year: 2021
  ident: D1AN01034D/cit3
  publication-title: Clin. Epigenet.
  doi: 10.1186/s13148-021-01009-5
– volume: 341
  start-page: 130031
  year: 2021
  ident: D1AN01034D/cit28
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.130031
– volume: 205
  start-page: 149
  year: 2017
  ident: D1AN01034D/cit29
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00122C
– volume: 238
  start-page: 626
  year: 2017
  ident: D1AN01034D/cit49
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.07.087
– volume: 76
  start-page: 3446
  year: 2016
  ident: D1AN01034D/cit12
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-3278
– volume: 88
  start-page: 6394
  year: 1991
  ident: D1AN01034D/cit17
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.15.6394
– volume: 70
  start-page: 1339
  year: 2018
  ident: D1AN01034D/cit9
  publication-title: Nutr. Cancer
  doi: 10.1080/01635581.2018.1539189
– volume: 91
  start-page: 3597
  year: 2019
  ident: D1AN01034D/cit53
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05595
– volume: 42
  start-page: 56
  year: 2013
  ident: D1AN01034D/cit51
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.10.022
– volume: 64
  start-page: 234
  year: 2015
  ident: D1AN01034D/cit20
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.08.082
– volume: 997
  start-page: 1
  year: 2018
  ident: D1AN01034D/cit41
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.10.009
– volume: 29
  start-page: 3784
  year: 2001
  ident: D1AN01034D/cit10
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.18.3784
– volume: 33
  start-page: 81
  year: 2016
  ident: D1AN01034D/cit14
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.05.030
– volume: 168
  start-page: 801
  year: 2017
  ident: D1AN01034D/cit11
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.021
– volume: 30
  start-page: 157
  year: 2009
  ident: D1AN01034D/cit5
  publication-title: Andrology
– volume: 27
  start-page: 145502
  year: 2016
  ident: D1AN01034D/cit35
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/14/145502
– volume: 228
  start-page: 117731
  year: 2020
  ident: D1AN01034D/cit2
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2019.117731
– volume: 9
  start-page: 42156
  year: 2017
  ident: D1AN01034D/cit30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16618
– volume: 51
  start-page: 13983
  year: 2015
  ident: D1AN01034D/cit40
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05463J
– volume: 771
  start-page: 144839
  year: 2021
  ident: D1AN01034D/cit4
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144839
– volume: 5
  start-page: 3639
  year: 2020
  ident: D1AN01034D/cit38
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c02016
– volume: 251
  start-page: 119447
  year: 2021
  ident: D1AN01034D/cit26
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.119447
– volume: 661
  start-page: 25
  year: 1994
  ident: D1AN01034D/cit15
  publication-title: J. Chromatogr. B: Biomed. Sci. Appl.
  doi: 10.1016/0378-4347(94)00327-0
– volume: 663
  start-page: 137
  year: 1995
  ident: D1AN01034D/cit16
  publication-title: J. Chromatogr. B: Biomed. Sci. Appl.
  doi: 10.1016/0378-4347(94)00433-6
– volume: 279
  start-page: 313
  year: 2019
  ident: D1AN01034D/cit37
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.10.010
– volume: 88
  start-page: 3817
  year: 2016
  ident: D1AN01034D/cit50
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04889
– volume: 18
  start-page: 352
  year: 2018
  ident: D1AN01034D/cit8
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1546-4
– volume: 13
  start-page: 679
  year: 2012
  ident: D1AN01034D/cit13
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3270
– volume: 15
  start-page: 5301
  year: 2013
  ident: D1AN01034D/cit23
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44030j
– volume: 281
  start-page: 1073
  year: 2019
  ident: D1AN01034D/cit19
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.11.085
– volume: 7
  start-page: 23
  year: 2021
  ident: D1AN01034D/cit47
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00250-5
– volume: 81
  start-page: 111
  year: 2016
  ident: D1AN01034D/cit39
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.02.057
SSID ssj0001050
Score 2.4481473
Snippet Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the...
Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO 2 array substrate and rolling circle amplification (RCA) strategy for the...
Herein, we proposed a novel biosensor based on a high-density “hot spot” Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the...
Herein, we proposed a novel biosensor based on a high-density "hot spot" Au@SiO2 array substrate and rolling circle amplification (RCA) strategy for the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5326
SubjectTerms Amplification
Arrays
Biosensors
Cancer
Density
Gold
Nanoparticles
Reliability analysis
Silicon dioxide
Substrates
Title A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density "hot spot" SERS substrate and rolling circle amplification strategy
URI https://www.proquest.com/docview/2563378427
https://www.proquest.com/docview/2555973230
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7QEuiL-KQEGL4IIsF9vrvxytJqWgECRIpHKy9s9tUGWjxEEqpz4IvAfPwrFPwuyu105EhICLFW3GayvzZXZm9tsZhJ6HUcDB7DOXezGHAEWkLg0C7iaUi0St34VhW0zik1n45jQ67fV-rrGWVjU75F-3niv5H63CGOhVnZL9B822k8IAfAb9whU0DNe_0nHmlNUXCXZrkjlsXi0hJK0WLXFwdVEvqBoz9CAha8mtf6juUM2jL5UMeK5SSerCGrqXhFrbhNpHoI6qZ-wKPculY6kRR-dV7UBAXNuBofNBnVVYghnS5W4Nbb0p-M3nC3hxhyryetHkCB0jd7axq2wqpNTrbUbaPMUrkys_l-XZp3lH2JXqGHLpvO9A_pbq7O_HVbffVZoBuZ7iCHzN4UpaUJpEimWxapZK0wtvw7ITN4hNQepDaYw5iUM3iprD59baNxnPBtbJmvGOSBCvOQLgCMdbFxmPqBqtwqeK1kpC0S2llj4weZcfz8bjfDo6ne6gvQBCGLDBe9lo-nrc-gng2Xq2n6N6c1s8lwxednNvuktdDLSzsA1qtCM0vY1uNREMzgwc76CeLO-iG-2PdQ_9yLCGJQaQ4RaWGGCJAZZ4E5a4hSWuCn3Hb7DEFpZYwxKDKMXrsMTXV98AkFgB8vrqO1ZQxC0UMUARN1DEBop4A4rYQvE-mh2PpkcnbtMgxOXED2s38YqYci4kJzELuc9ExLgXpTCWMi9iEAoQnwYJFRCYBH7BBynxpO-lnLDYLyKyj3bLqpQPEOaeYCwNUuoRFkYDn1JYqQQNRRoXIfWKPnph9ZDzpnq-auJykWsWBxnkQz-baJ0N--hZK_vZ1IzZKnVg1Zk3NmWZQwBCSJKGQdJHT9uvQX9qG4-WslopGZUFIAHx-mgfYNA-o0PNwz_P_Qjd7P5mB2i3XqzkY_Cta_akAekvtoDYLw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+DNA+biosensor+for+the+ultrasensitive+detection+of+DNA+methyltransferase+activity+based+on+a+high-density+%E2%80%9Chot+spot%E2%80%9D+SERS+substrate+and+rolling+circle+amplification+strategy&rft.jtitle=Analyst+%28London%29&rft.au=Ge%2C+Shengjie&rft.au=Menglin+Ran&rft.au=Mao%2C+Yu&rft.au=Sun%2C+Yue&rft.date=2021-09-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=146&rft.issue=17&rft.spage=5326&rft.epage=5336&rft_id=info:doi/10.1039%2Fd1an01034d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon