Modeling cellular self-organization in strain-stiffening hydrogels
We derive a three-dimensional hydrogel model as a two-phase system of a fibre network and liquid solvent, where the nonlinear elastic network accounts for the strain-stiffening properties typically encountered in biological gels. We use this model to formulate free boundary value problems for a hydr...
Saved in:
Published in | Computational mechanics Vol. 75; no. 2; pp. 875 - 896 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-7675 1432-0924 |
DOI | 10.1007/s00466-024-02536-7 |
Cover
Loading…
Abstract | We derive a three-dimensional hydrogel model as a two-phase system of a fibre network and liquid solvent, where the nonlinear elastic network accounts for the strain-stiffening properties typically encountered in biological gels. We use this model to formulate free boundary value problems for a hydrogel layer that allows for swelling or contraction. We derive two-dimensional plain-strain and plain-stress approximations for thick and thin layers respectively, that are subject to external loads and serve as a minimal model for scaffolds for cell attachment and growth. For the collective evolution of the cells as they mechanically interact with the hydrogel layer, we couple it to an agent-based model that also accounts for the traction force exerted by each cell on the hydrogel sheet and other cells during migration. We develop a numerical algorithm for the coupled system and present results on the influence of strain-stiffening, layer geometry, external load and solvent in/outflux on the shape of the layers and on the cell patterns. In particular, we discuss alignment of cells and chain formation under varying conditions. |
---|---|
AbstractList | We derive a three-dimensional hydrogel model as a two-phase system of a fibre network and liquid solvent, where the nonlinear elastic network accounts for the strain-stiffening properties typically encountered in biological gels. We use this model to formulate free boundary value problems for a hydrogel layer that allows for swelling or contraction. We derive two-dimensional plain-strain and plain-stress approximations for thick and thin layers respectively, that are subject to external loads and serve as a minimal model for scaffolds for cell attachment and growth. For the collective evolution of the cells as they mechanically interact with the hydrogel layer, we couple it to an agent-based model that also accounts for the traction force exerted by each cell on the hydrogel sheet and other cells during migration. We develop a numerical algorithm for the coupled system and present results on the influence of strain-stiffening, layer geometry, external load and solvent in/outflux on the shape of the layers and on the cell patterns. In particular, we discuss alignment of cells and chain formation under varying conditions. |
Author | Wagner, B. Petersen, A. Schmeller, L. Erhardt, A. H. Dazzi, C. Peschka, D. Münch, A. Checa, S. |
Author_xml | – sequence: 1 givenname: A. H. orcidid: 0000-0003-4389-8554 surname: Erhardt fullname: Erhardt, A. H. email: andre.erhardt@wias-berlin.de organization: Weierstrass Institute – sequence: 2 givenname: D. orcidid: 0000-0002-3047-1140 surname: Peschka fullname: Peschka, D. organization: Weierstrass Institute – sequence: 3 givenname: C. orcidid: 0000-0002-5435-0554 surname: Dazzi fullname: Dazzi, C. organization: Julius Wolff Institute, Berlin Institute of Health, Charité Universitätsmedizin – sequence: 4 givenname: L. orcidid: 0000-0001-8144-6028 surname: Schmeller fullname: Schmeller, L. organization: Weierstrass Institute – sequence: 5 givenname: A. surname: Petersen fullname: Petersen, A. organization: Julius Wolff Institute, Berlin Institute of Health, Charité Universitätsmedizin, BIH Center for Regenerative Therapies, Berlin Institute of Health, Charité Universitätsmedizin – sequence: 6 givenname: S. orcidid: 0000-0002-1444-5858 surname: Checa fullname: Checa, S. organization: Julius Wolff Institute, Berlin Institute of Health, Charité Universitätsmedizin – sequence: 7 givenname: A. orcidid: 0000-0002-8325-3809 surname: Münch fullname: Münch, A. organization: Mathematical Institute, University of Oxford – sequence: 8 givenname: B. orcidid: 0000-0001-8306-3645 surname: Wagner fullname: Wagner, B. organization: Weierstrass Institute |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYjacY8dORqigIBWxwGw5yTm4Cnax06E8PSlBYmM4nU76_v-kb0FmPngk5JLBNQNQNwlASEkhF-MUXFJ1QuZM8JxClYsZmQNTJVVSFWdkkdIWgBUlL-bk7jm02DvfZQ32_b43MUvYWxpiZ7z7MoMLPnM-S0M0ztM0OGvRH_n3QxtDh306J6fW9AkvfveSvD3cv64e6eZl_bS63dCGMzFQaQslrGyLEusaSlkzxbisIceyajmwNm8YAkeFJSKa8TDCispIMIJZVfEluZp6dzF87jENehv20Y8vNWeSVxUrJIxUPlFNDClFtHoX3YeJB81AH13pyZUeXekfV1qNIT6F0gj7DuNf9T-pb4tebqM |
Cites_doi | 10.1137/130927619 10.1039/D1BM01089A 10.1021/acsami.6b01755 10.1002/advs.201801780 10.1098/rsif.2020.0823 10.1016/j.jmps.2010.07.020 10.1126/sciadv.abp8351 10.1007/s10439-008-9594-9 10.1039/D0SM01442G 10.1002/btm2.10158 10.1021/acs.chemrev.2c00179 10.1016/j.semcdb.2009.08.005 10.1016/j.mtbio.2022.100537 10.1016/j.jmbbm.2015.04.013 10.1007/s10237-021-01472-2 10.1101/2023.12.21.572812 10.1021/acs.chemrev.1c00046 10.1038/s41563-022-01294-2 10.1016/j.mechmat.2016.08.012 10.1007/s10237-021-01466-0 10.1007/s00466-018-1604-7 10.1016/j.jmps.2014.10.004 10.1115/1.4024463 10.1073/pnas.1504258112 10.1002/mabi.201800079 10.1371/journal.pone.0006382 10.1371/journal.pcbi.1008937 10.1051/m2an/2014010 10.3389/fphys.2017.00287 10.1038/ncomms6808 10.1002/advs.201801664 10.1091/mbc.E20-01-0079 10.1038/nmeth.3685 10.1007/978-3-642-23099-8 10.1021/la501058j 10.3109/03008200009005639 10.1137/22M148478X 10.1016/S0022-5096(03)00091-7 10.1002/adfm.201300435 10.1002/advs.201900344 10.1016/j.yexcr.2013.05.017 10.1098/rsfs.2013.0038 10.1007/s10915-021-01508-w 10.1007/s10237-022-01648-4 10.1089/ten.tea.2010.0273 10.1016/j.bpj.2019.02.029 10.1098/rsif.2008.0327 10.1039/C7CS00638A 10.1021/ja01259a068 10.1111/1523-1747.ep12274528 10.1016/j.jmps.2019.103829 10.1016/j.ceb.2021.04.002 10.1016/j.progpolymsci.2011.06.003 10.1016/j.ijsolstr.2005.03.031 10.1137/090754443 10.1161/CIRCULATIONAHA.123.067097 10.1007/s12541-012-0099-y 10.5254/1.3538357 10.1063/1.1723621 10.1039/C7BM00261K 10.1073/pnas.1117810109 10.1016/j.bioactmat.2021.08.002 10.1073/pnas.1222787110 10.1103/PhysRevLett.90.074302 10.1038/ncomms15478 10.1007/s10237-014-0581-9 10.1371/journal.pcbi.1011647 10.1002/jbm.a.35914 10.1073/pnas.1412285111 10.1103/PhysRevE.101.032501 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Feb 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Feb 2025 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00466-024-02536-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1432-0924 |
EndPage | 896 |
ExternalDocumentID | 10_1007_s00466_024_02536_7 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: CRC 1444, project ID: 427826188; MATH+: EXC-2046/1, project ID: 390685689; SPP 2171, project ID: 422786086; SPP 2171, project ID: 422792530 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c314t-6f574f6d58ebb086b17136b02e89d301d2c1e03e7e8eeeac1ea4f49a60a41f793 |
IEDL.DBID | U2A |
ISSN | 0178-7675 |
IngestDate | Fri Jul 25 10:59:08 EDT 2025 Tue Jul 01 03:52:35 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 65Z05 92C10 Hydrogels Nonlinear diffusion and reaction 74B05 Agent-based modeling 92C17 74B20 Cell migration Hyperelasticity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-6f574f6d58ebb086b17136b02e89d301d2c1e03e7e8eeeac1ea4f49a60a41f793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8144-6028 0000-0002-8325-3809 0000-0001-8306-3645 0000-0003-4389-8554 0000-0002-3047-1140 0000-0002-1444-5858 0000-0002-5435-0554 |
OpenAccessLink | https://link.springer.com/10.1007/s00466-024-02536-7 |
PQID | 3163991560 |
PQPubID | 2043755 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3163991560 crossref_primary_10_1007_s00466_024_02536_7 springer_journals_10_1007_s00466_024_02536_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing |
PublicationTitle | Computational mechanics |
PublicationTitleAbbrev | Comput Mech |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ME Rognes (2536_CR44) 2009; 70 AN Gent (2536_CR53) 1996; 69 L Trichet (2536_CR64) 2012; 109 AJ Licup (2536_CR31) 2015; 112 B Kim (2536_CR52) 2012; 13 H Ji (2536_CR41) 2006; 43 MG Hennessy (2536_CR43) 2020; 101 ML Huggins (2536_CR49) 1942; 64 M Jaspers (2536_CR73) 2017; 8 S Checa (2536_CR10) 2009; 37 PJ Flory (2536_CR50) 1942; 10 A Drozdov (2536_CR48) 2016; 102 T Kuboki (2536_CR62) 2014; 30 2536_CR74 M Jaspers (2536_CR72) 2014; 5 M Yuan (2536_CR45) 2021; 87 T Liu (2536_CR18) 2024; 149 D Caccavo (2536_CR19) 2018; 47 KM Hakkinen (2536_CR63) 2011; 17 KY Lee (2536_CR1) 2012; 37 JP Winer (2536_CR33) 2009; 4 A Mandal (2536_CR14) 2020; 5 T Abdalrahman (2536_CR11) 2022; 21 L Schmeller (2536_CR46) 2023; 83 M Cóndor (2536_CR75) 2019; 116 E Brauer (2536_CR8) 2019; 6 S Talebian (2536_CR13) 2019; 6 K Liu (2536_CR29) 2022; 9 T Koppl (2536_CR68) 2014; 52 AM Hopkins (2536_CR2) 2013; 23 P Gaziano (2536_CR4) 2023; 74 AM Westman (2536_CR66) 2021; 17 NJ Hogrebe (2536_CR7) 2017; 105 F Alisafaei (2536_CR27) 2021; 17 G Grekas (2536_CR35) 2021; 18 J Dolbow (2536_CR40) 2004; 52 S Natan (2536_CR28) 2020; 31 S Haupert (2536_CR32) 2015; 48 L Jin (2536_CR54) 2015; 74 A Isomursu (2536_CR25) 2022; 21 Q Wen (2536_CR34) 2013; 319 FJ Vernerey (2536_CR39) 2021; 121 A Logg (2536_CR59) 2012 2536_CR55 2536_CR58 C Dazzi (2536_CR26) 2023; 19 E Borgiani (2536_CR6) 2017; 8 A Elosegui-Artola (2536_CR76) 2021; 72 M Ahearne (2536_CR12) 2014; 4 JW Reinhardt (2536_CR36) 2013; 135 AD Drozdov (2536_CR42) 2016; 102 S Checa (2536_CR9) 2015; 14 K Wolf (2536_CR30) 2009; 20 E Borgiani (2536_CR37) 2021; 20 B Peña (2536_CR16) 2018; 18 C Imaoka (2536_CR57) 2023; 9 S Wong (2536_CR61) 2014; 111 JH Wang (2536_CR24) 2000; 41 S Van Helvert (2536_CR71) 2016; 8 MG Dunn (2536_CR56) 1985; 84 C Perier-Metz (2536_CR38) 2021; 20 SA Chester (2536_CR47) 2010; 58 P Bertsch (2536_CR17) 2023; 123 J Hazur (2536_CR21) 2022; 10 O Chaudhuri (2536_CR22) 2017; 5 E Cerda (2536_CR70) 2003; 90 N Noor (2536_CR15) 2019; 6 N Bosnjak (2536_CR51) 2020; 137 AJ Pablo (2536_CR69) 2014; 48 S Münster (2536_CR23) 2013; 110 2536_CR60 J Steinwachs (2536_CR67) 2016; 13 SJ Mousavi (2536_CR3) 2019; 63 PA Janmey (2536_CR5) 2009; 6 2536_CR65 2536_CR20 |
References_xml | – volume: 52 start-page: 1753 year: 2014 ident: 2536_CR68 publication-title: SIAM J Numer Anal doi: 10.1137/130927619 – volume: 10 start-page: 270 year: 2022 ident: 2536_CR21 publication-title: Biomaterials Science doi: 10.1039/D1BM01089A – volume: 8 start-page: 21946 year: 2016 ident: 2536_CR71 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b01755 – volume: 6 start-page: 1801780 year: 2019 ident: 2536_CR8 publication-title: Advanced Science doi: 10.1002/advs.201801780 – volume: 18 start-page: 20200823 year: 2021 ident: 2536_CR35 publication-title: J R Soc Interface doi: 10.1098/rsif.2020.0823 – volume: 58 start-page: 1879 year: 2010 ident: 2536_CR47 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2010.07.020 – volume: 9 start-page: eabp8351 year: 2023 ident: 2536_CR57 publication-title: Sci Adv doi: 10.1126/sciadv.abp8351 – volume: 37 start-page: 129 year: 2009 ident: 2536_CR10 publication-title: Ann Biomed Eng doi: 10.1007/s10439-008-9594-9 – ident: 2536_CR55 – volume: 74 start-page: 1 year: 2023 ident: 2536_CR4 publication-title: Comput Mech – volume: 17 start-page: 241 year: 2021 ident: 2536_CR27 publication-title: Soft Matter doi: 10.1039/D0SM01442G – volume: 5 year: 2020 ident: 2536_CR14 publication-title: Bioengineering & Translational Medicine doi: 10.1002/btm2.10158 – volume: 123 start-page: 834 year: 2023 ident: 2536_CR17 publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00179 – volume: 20 start-page: 931 year: 2009 ident: 2536_CR30 publication-title: Seminars in Cell & Developmental Biology doi: 10.1016/j.semcdb.2009.08.005 – ident: 2536_CR20 doi: 10.1016/j.mtbio.2022.100537 – volume: 48 start-page: 210 year: 2015 ident: 2536_CR32 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2015.04.013 – volume: 20 start-page: 1723 year: 2021 ident: 2536_CR38 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01472-2 – ident: 2536_CR60 doi: 10.1101/2023.12.21.572812 – ident: 2536_CR65 – volume: 121 start-page: 11085 year: 2021 ident: 2536_CR39 publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00046 – volume: 21 start-page: 1081 year: 2022 ident: 2536_CR25 publication-title: Nat Mater doi: 10.1038/s41563-022-01294-2 – volume: 102 start-page: 61 year: 2016 ident: 2536_CR48 publication-title: Mech Mater doi: 10.1016/j.mechmat.2016.08.012 – volume: 20 start-page: 1627 year: 2021 ident: 2536_CR37 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01466-0 – volume: 63 start-page: 471 year: 2019 ident: 2536_CR3 publication-title: Comput Mech doi: 10.1007/s00466-018-1604-7 – volume: 74 start-page: 68 year: 2015 ident: 2536_CR54 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2014.10.004 – volume: 135 year: 2013 ident: 2536_CR36 publication-title: J Biomech Eng doi: 10.1115/1.4024463 – volume: 112 start-page: 9573 year: 2015 ident: 2536_CR31 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1504258112 – volume: 18 start-page: 1800079 year: 2018 ident: 2536_CR16 publication-title: Macromol Biosci doi: 10.1002/mabi.201800079 – volume: 4 year: 2009 ident: 2536_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0006382 – volume: 17 start-page: 1 year: 2021 ident: 2536_CR66 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008937 – volume: 48 start-page: 1557 year: 2014 ident: 2536_CR69 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2014010 – volume: 8 start-page: 287 year: 2017 ident: 2536_CR6 publication-title: Front Physiol doi: 10.3389/fphys.2017.00287 – volume: 5 start-page: 1 year: 2014 ident: 2536_CR72 publication-title: Nat Commun doi: 10.1038/ncomms6808 – volume: 6 start-page: 1801664 year: 2019 ident: 2536_CR13 publication-title: Advanced Science doi: 10.1002/advs.201801664 – volume: 31 start-page: 1474 year: 2020 ident: 2536_CR28 publication-title: Mol Biol Cell doi: 10.1091/mbc.E20-01-0079 – volume: 13 start-page: 171 year: 2016 ident: 2536_CR67 publication-title: Nat Methods doi: 10.1038/nmeth.3685 – volume-title: Automated solution of differential equations by the finite element method: the FEniCS book year: 2012 ident: 2536_CR59 doi: 10.1007/978-3-642-23099-8 – volume: 30 start-page: 6187 year: 2014 ident: 2536_CR62 publication-title: Langmuir doi: 10.1021/la501058j – volume: 41 start-page: 29 year: 2000 ident: 2536_CR24 publication-title: Connect Tissue Res doi: 10.3109/03008200009005639 – volume: 83 start-page: 225 year: 2023 ident: 2536_CR46 publication-title: SIAM J Appl Math doi: 10.1137/22M148478X – volume: 52 start-page: 51 year: 2004 ident: 2536_CR40 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(03)00091-7 – volume: 23 start-page: 5140 year: 2013 ident: 2536_CR2 publication-title: Adv Func Mater doi: 10.1002/adfm.201300435 – volume: 6 start-page: 1900344 year: 2019 ident: 2536_CR15 publication-title: Advanced Science doi: 10.1002/advs.201900344 – volume: 102 start-page: 61 year: 2016 ident: 2536_CR42 publication-title: Mech Mater doi: 10.1016/j.mechmat.2016.08.012 – volume: 319 start-page: 2481 year: 2013 ident: 2536_CR34 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2013.05.017 – volume: 4 start-page: 20130038 year: 2014 ident: 2536_CR12 publication-title: Interface Focus doi: 10.1098/rsfs.2013.0038 – volume: 87 start-page: 78 year: 2021 ident: 2536_CR45 publication-title: J Sci Comput doi: 10.1007/s10915-021-01508-w – volume: 21 start-page: 1623 year: 2022 ident: 2536_CR11 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-022-01648-4 – volume: 17 start-page: 713 year: 2011 ident: 2536_CR63 publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2010.0273 – volume: 116 start-page: 1305 year: 2019 ident: 2536_CR75 publication-title: Biophys J doi: 10.1016/j.bpj.2019.02.029 – volume: 6 start-page: 1 year: 2009 ident: 2536_CR5 publication-title: J R Soc Interface doi: 10.1098/rsif.2008.0327 – volume: 47 start-page: 2357 year: 2018 ident: 2536_CR19 publication-title: Chem Soc Rev doi: 10.1039/C7CS00638A – volume: 64 start-page: 1712 year: 1942 ident: 2536_CR49 publication-title: J Am Chem Soc doi: 10.1021/ja01259a068 – volume: 84 start-page: 9 year: 1985 ident: 2536_CR56 publication-title: J Investig Dermatol doi: 10.1111/1523-1747.ep12274528 – volume: 137 year: 2020 ident: 2536_CR51 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2019.103829 – volume: 72 start-page: 10 year: 2021 ident: 2536_CR76 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2021.04.002 – volume: 37 start-page: 106 year: 2012 ident: 2536_CR1 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2011.06.003 – volume: 43 start-page: 1878 year: 2006 ident: 2536_CR41 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.03.031 – volume: 70 start-page: 1305 year: 2009 ident: 2536_CR44 publication-title: SIAM J Appl Math doi: 10.1137/090754443 – volume: 149 start-page: 2002 year: 2024 ident: 2536_CR18 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.123.067097 – volume: 13 start-page: 759 year: 2012 ident: 2536_CR52 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-012-0099-y – volume: 69 start-page: 59 year: 1996 ident: 2536_CR53 publication-title: Rubber Chem Technol doi: 10.5254/1.3538357 – ident: 2536_CR58 – ident: 2536_CR74 – volume: 10 start-page: 51 year: 1942 ident: 2536_CR50 publication-title: J Chem Phys doi: 10.1063/1.1723621 – volume: 5 start-page: 1480 year: 2017 ident: 2536_CR22 publication-title: Biomaterials Science doi: 10.1039/C7BM00261K – volume: 109 start-page: 6933 year: 2012 ident: 2536_CR64 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1117810109 – volume: 9 start-page: 316 year: 2022 ident: 2536_CR29 publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.08.002 – volume: 110 start-page: 12197 year: 2013 ident: 2536_CR23 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1222787110 – volume: 90 year: 2003 ident: 2536_CR70 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.90.074302 – volume: 8 start-page: 1 year: 2017 ident: 2536_CR73 publication-title: Nat Commun doi: 10.1038/ncomms15478 – volume: 14 start-page: 1 year: 2015 ident: 2536_CR9 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-014-0581-9 – volume: 19 start-page: 1 year: 2023 ident: 2536_CR26 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1011647 – volume: 105 start-page: 640 year: 2017 ident: 2536_CR7 publication-title: J Biomed Mater Res, Part A doi: 10.1002/jbm.a.35914 – volume: 111 start-page: 17176 year: 2014 ident: 2536_CR61 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1412285111 – volume: 101 year: 2020 ident: 2536_CR43 publication-title: Phys Rev E doi: 10.1103/PhysRevE.101.032501 |
SSID | ssj0015835 |
Score | 2.424912 |
Snippet | We derive a three-dimensional hydrogel model as a two-phase system of a fibre network and liquid solvent, where the nonlinear elastic network accounts for the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 875 |
SubjectTerms | Agent-based models Algorithms Binary systems Biological properties Boundary value problems Classical and Continuum Physics Computational Science and Engineering Elastic properties Engineering Free boundaries Hydrogels Numerical analysis Original Paper Solvents Stiffening Strain Theoretical and Applied Mechanics Thin films Traction force |
Title | Modeling cellular self-organization in strain-stiffening hydrogels |
URI | https://link.springer.com/article/10.1007/s00466-024-02536-7 https://www.proquest.com/docview/3163991560 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjBD9SIIunBmzZZu67rjkBAopGTJHhaVvaqJmYYhgf_e9uxARo9eFh22NLDr319n7_3AK4S1yPKSyLqoQvdCMlp4rOEzsIgFJGSWjHHHX4Yy9FE3E2DaUkKy6tq9yolWdzUa7Kbc-VcwaywT-BLGtagEVjf3Z3rCe-ucweBWo3VZNY_cq1KSqrM72t8V0cbG_NHWrTQNsND2C_NRNJd7esR7GDWhIPSZCSlQOZN2NvqJ3gMPTfZzPHLiYvHuwJTkuObofMtwiV5zUheDIagVrqNQRcYIS-f6WL-bPXkCUyGg8f-iJZDEujMZ2JJpbGgGpkGCrW2_olm1u2U2uOootRKb8pnDD0fQ1SI9pZlmAgjokR6iWDGSucp1LN5hmdAAq1V4itj_Mi3m4YqVAZ5pLgOvBnHtAXXFVbx-6oXRrzuelwgG1tk4wLZOGxBu4IzLuUij33mLCLH3m7BTQXx5vPfq53_7_cL2OVuUG9RXt2G-nLxgZfWeljqDjS6w15v7N63T_eDDtT6st8pjtAXtfG-bg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NU8IwEN1ROKgHUdQRRe3Bm4Zp2rRNj-iAKB8nmMFTp2k36uiAQ-Ggv96ktICMHjj01E4m3d1sdpN9bwGuQ80RZYY-MVEf3TDXIqFNQxJ5jsd87gpONXa423NbA_Y0dIYZKCzJq93zK8nUUy_AbjqV0wWzTD2O7RJvG4pM5eBOAYr1h-d2Y3F74PB5Y02qMiRNVpKBZf4e5feGtIwy1y5G0_2mWYJBPtN5mcl7bTYVteh7jcRx0185gP0sADXqc4s5hC0claGUBaNGttSTMuytMBUewZ3umaaR64Y-6delq0aCH5KMV6CcxtvISNKWE0T5DSlRH7kYr1_xZPyiduBjGDQb_fsWydovkMimbEpcqdQl3djhKITKfARVCa0rTAu5Hyu_EFsRRdNGDzmi8t8UQyaZH7pmyKhU6_4ECqPxCE_BcITgoc2ltH1bmQNyj0u0fG4Jx4wsjCtwk-sg-JyzbAQLPuVUWIESVpAKK_AqUM3VFGQrLglsqmMtjQuvwG0u9eXr_0c72-zzK9hp9budoPPYa5_DrqXbAadF3FUoTCczvFAxylRcZib5A1Mu2mk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQoEMbGARJ47jjFCoyqtioFK3yG7OgITSqgkD_x47j7YgGBgyJfLwOed7-L7vAE6l1YhyZURctKUbxj0ifSrJKAxCFgmuBLXc4cc-7w3Y3TAYLrD4i273-kqy5DRYlaY0v5gk-mJGfLNpnW2eZeYJfE7CZVgxmQq1TX0d3pndIwSiHLFJTa5kZUsq2szva3x3TfN488cVaeF5uluwUYWMzmW5x9uwhGkTNqvw0amMM2vC-oK24A5c2Slnlmvu2Nq8bTZ1MnzXZLxAvnTeUicrhkQQY-laoy2SOK-fyXT8YnzmLgy6N8-dHqkGJpCRT1lOuDYAa54EApUyuYqiJgXlyvVQRImx5MQbUXR9DFEgmhOXomSaRZK7klFtLHUPGuk4xX1wAqWE9IXWfuSbDUQRCo1eJDwVuCMPkxac1VjFk1IXI54pIBfIxgbZuEA2DlvQruGMKxvJYp_a6MgyuVtwXkM8f_33agf_-_wEVp-uu_HDbf_-ENY8O7-36LpuQyOffuCRCSpydVz8N1-qF8Ga |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+cellular+self-organization+in+strain-stiffening+hydrogels&rft.jtitle=Computational+mechanics&rft.au=Erhardt%2C+A.+H.&rft.au=Peschka%2C+D.&rft.au=Dazzi%2C+C.&rft.au=Schmeller%2C+L.&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=75&rft.issue=2&rft.spage=875&rft.epage=896&rft_id=info:doi/10.1007%2Fs00466-024-02536-7&rft.externalDocID=10_1007_s00466_024_02536_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |