Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping

Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challen...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 37; pp. 25442 - 25449
Main Authors Yan, Weiyin, Yan, Yayu, Wang, Zirui, Li, Qiao-Hong, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 27.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al 24 N 22 DyC 2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al 24 N 22 DyC 2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. A novel Dy, C co-doped material on 2D AlN monolayer is introduced. DFT calculations show that the bandgap of Al 24 N 22 DyC 2 decreases, absorption rate of visible light and catalytic activities of HER and OER increases significantly.
AbstractList Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.
Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al 24 N 22 DyC 2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al 24 N 22 DyC 2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. A novel Dy, C co-doped material on 2D AlN monolayer is introduced. DFT calculations show that the bandgap of Al 24 N 22 DyC 2 decreases, absorption rate of visible light and catalytic activities of HER and OER increases significantly.
Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.
Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al 24 N 22 DyC 2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al 24 N 22 DyC 2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.
Author Wang, Zirui
Yan, Weiyin
Yan, Yayu
Li, Qiao-Hong
Zhang, Jian
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
Fuzhou University
College of Chemistry
Shanghai Tech University
Fujian College
School of Physical Science and Technology
Fujian Institute of Research on the Structure of Matter
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: School of Physical Science and Technology
– sequence: 0
  name: Shanghai Tech University
– sequence: 0
  name: Fujian College
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: University of Chinese Academy of Sciences
– sequence: 0
  name: Fuzhou University
Author_xml – sequence: 1
  givenname: Weiyin
  surname: Yan
  fullname: Yan, Weiyin
– sequence: 2
  givenname: Yayu
  surname: Yan
  fullname: Yan, Yayu
– sequence: 3
  givenname: Zirui
  surname: Wang
  fullname: Wang, Zirui
– sequence: 4
  givenname: Qiao-Hong
  surname: Li
  fullname: Li, Qiao-Hong
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
BookMark eNpt0U1LBSEUBmCJgj437QOhTQRTOs7ouIzbJwS1qPVgeuaOMaOTOsT991k3CqKVIs85cs67izadd4DQISVnlDB5bpieCOOc9htoh1acFZI01ebPXfBttBvjKyGE1pTtoNWV65XT1i1x6gFPvU9eq6SGVbIaQ9dZbcHpFfYdTu--MHYEF613asBqmEfr5hE7m4I1gEeVIFg1xNwr-HnZ45hCflvmVkEFwKBC6rHxU_5vH211mcLB97mHnq-vnha3xf3Dzd3i4r7QjFap4KIG2ZGmNCWvXzr2YkBUoKtayAa0lJRIIygrDROEMd5QY2RHeVUqoRtWV2wPnaz7TsG_zRBTO9qoYRiUAz_Htmx4LRpZCpbp8R_66ueQR_1SsuQk06zIWungYwzQtdomlfJO8rB2aClpP7NoL9ni8SuL21xy-qdkCnZUYfU_PlrjEPWP-w2WfQBKi5cR
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_07_195
crossref_primary_10_1021_acs_langmuir_4c02282
Cites_doi 10.1039/D2TA09503C
10.1016/j.apsusc.2018.04.264
10.1103/PhysRevB.48.11810
10.1063/1.2403866
10.1126/science.1102896
10.1016/j.cej.2022.137026
10.1021/acsami.1c08824
10.1063/1.478401
10.1103/PhysRevB.39.3168
10.1039/D2GC00608A
10.1364/AOP.479017
10.1039/D0GC04236F
10.1039/D0CS01074J
10.1039/D1GC04397H
10.1002/adfm.202212538
10.1016/j.cej.2021.133594
10.1021/ja301567f
10.1016/j.ijhydene.2021.11.133
10.1016/j.cej.2020.126199
10.1002/adma.201801891
10.1103/PhysRevB.59.1758
10.1088/1402-4896/ab93a7
10.1103/PhysRevB.91.085430
10.1002/adfm.202304355
10.1039/C6EE90016J
10.1016/j.ijhydene.2022.12.357
10.1016/j.ijleo.2017.06.132
10.1021/acs.inorgchem.1c00062
10.1039/D0GC01326A
10.1016/j.cej.2021.132441
10.1021/am506396z
10.1063/1.4851239
10.1002/jcc.20495
10.1016/j.jallcom.2014.10.018
10.1002/adma.201803448
10.1016/j.jhazmat.2022.130419
10.1038/nmat4740
10.1016/j.commatsci.2021.110603
10.1039/D2TA08475A
10.1002/sstr.202300167
10.1038/s41563-023-01573-6
10.1016/j.matt.2020.07.004
10.1039/D3IM00045A
10.1103/PhysRevB.54.11169
10.1039/D2IM00028H
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cp03661h
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 25449
ExternalDocumentID 10_1039_D3CP03661H
d3cp03661h
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-675e9f082d265bf3bde74ec45798ec99109d7132d37033681dd9f1642a7c83543
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 03:45:18 EDT 2025
Mon Jun 30 04:46:43 EDT 2025
Tue Jul 01 00:48:06 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Tue Dec 17 20:58:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-675e9f082d265bf3bde74ec45798ec99109d7132d37033681dd9f1642a7c83543
Notes https://doi.org/10.1039/d3cp03661h
Electronic supplementary information (ESI) available: The structures of doping systems and detailed data of the OER and HER. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9286-3580
0000-0003-3094-0282
0000-0003-3373-9621
PQID 2869260657
PQPubID 2047499
PageCount 8
ParticipantIDs proquest_journals_2869260657
crossref_primary_10_1039_D3CP03661H
rsc_primary_d3cp03661h
crossref_citationtrail_10_1039_D3CP03661H
proquest_miscellaneous_2865789273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-27
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-27
  day: 27
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sengupta (D3CP03661H/cit30/1) 2018; 451
Liu (D3CP03661H/cit9/1) 2023; 15
Koratkar (D3CP03661H/cit5/1) 2016; 15
Yang (D3CP03661H/cit13/1) 2022; 446
Shinde (D3CP03661H/cit44/1) 2021; 33
Wang (D3CP03661H/cit34/1) 2019; 31
Tsipas (D3CP03661H/cit6/1) 2013; 103
Zhu (D3CP03661H/cit7/1) 2023; 11
Froyen (D3CP03661H/cit46/1) 1989; 39
Liao (D3CP03661H/cit48/1) 2012; 134
Yang (D3CP03661H/cit31/1) 2018; 30
Li (D3CP03661H/cit14/1) 2022; 435
Nayeri (D3CP03661H/cit37/1) 2020; 95
Kresse (D3CP03661H/cit38/1) 1996; 54
Acharya (D3CP03661H/cit4/1) 2021; 60
Chai (D3CP03661H/cit12/1) 2023
Zeng (D3CP03661H/cit22/1) 2021; 23
Yucel (D3CP03661H/cit36/1) 2017; 144
Liu (D3CP03661H/cit28/1) 2022; 433
Liu (D3CP03661H/cit25/1) 2023; 1
Kresse (D3CP03661H/cit39/1) 1999; 59
Zhan (D3CP03661H/cit18/1) 2023
Hayat (D3CP03661H/cit26/1) 2022; 47
Su (D3CP03661H/cit27/1) 2022; 24
An (D3CP03661H/cit19/1) 2022; 41
Bacaksiz (D3CP03661H/cit29/1) 2015; 91
Sun (D3CP03661H/cit33/1) 2015; 621
Zhao (D3CP03661H/cit16/1) 2020; 3
Grimme (D3CP03661H/cit41/1) 2010; 27
Ernzerhof (D3CP03661H/cit40/1) 1999; 110
Duan (D3CP03661H/cit3/1) 2022; 445
Zhao (D3CP03661H/cit23/1) 2022; 24
Wang (D3CP03661H/cit8/1) 2023; 22
Abdellatif (D3CP03661H/cit15/1) 2020; 402
Bi (D3CP03661H/cit35/1) 2021; 197
Xue (D3CP03661H/cit2/1) 2021; 13
Yan (D3CP03661H/cit47/1) 2023; 48
Novoselov (D3CP03661H/cit1/1) 2004; 306
Caudillo-Flores (D3CP03661H/cit32/1) 2020; 22
Kim (D3CP03661H/cit10/1) 2023; 33
Zhuo (D3CP03661H/cit24/1) 2023
Janesko (D3CP03661H/cit43/1) 2021; 50
Linghang (D3CP03661H/cit21/1) 2021; 40
Rubio (D3CP03661H/cit42/1) 1993; 48
Lv (D3CP03661H/cit11/1) 2023; 11
Yu (D3CP03661H/cit20/1) 2014; 6
Rahman (D3CP03661H/cit17/1) 2016; 9
Paier (D3CP03661H/cit45/1) 2006; 125
References_xml – volume: 11
  start-page: 15482
  year: 2023
  ident: D3CP03661H/cit7/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09503C
– volume: 451
  start-page: 141
  year: 2018
  ident: D3CP03661H/cit30/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.264
– volume: 48
  start-page: 11810
  year: 1993
  ident: D3CP03661H/cit42/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.11810
– volume: 125
  start-page: 249901
  year: 2006
  ident: D3CP03661H/cit45/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2403866
– volume: 306
  start-page: 666
  year: 2004
  ident: D3CP03661H/cit1/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 446
  start-page: 137026
  year: 2022
  ident: D3CP03661H/cit13/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137026
– volume: 13
  start-page: 38586
  year: 2021
  ident: D3CP03661H/cit2/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c08824
– volume: 110
  start-page: 5029
  year: 1999
  ident: D3CP03661H/cit40/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478401
– volume: 39
  start-page: 3168
  year: 1989
  ident: D3CP03661H/cit46/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.39.3168
– volume: 24
  start-page: 4728
  year: 2022
  ident: D3CP03661H/cit23/1
  publication-title: Green Chem.
  doi: 10.1039/D2GC00608A
– volume: 15
  start-page: 236
  year: 2023
  ident: D3CP03661H/cit9/1
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.479017
– volume: 23
  start-page: 1466
  year: 2021
  ident: D3CP03661H/cit22/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC04236F
– volume: 50
  start-page: 8470
  year: 2021
  ident: D3CP03661H/cit43/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01074J
– volume: 24
  start-page: 2027
  year: 2022
  ident: D3CP03661H/cit27/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC04397H
– volume: 33
  start-page: 115501
  year: 2021
  ident: D3CP03661H/cit44/1
  publication-title: J. Phys.: Condens. Matter
– volume: 33
  start-page: 2212538
  year: 2023
  ident: D3CP03661H/cit10/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202212538
– volume: 433
  start-page: 133594
  year: 2022
  ident: D3CP03661H/cit28/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133594
– volume: 134
  start-page: 13296
  year: 2012
  ident: D3CP03661H/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301567f
– volume: 47
  start-page: 5142
  year: 2022
  ident: D3CP03661H/cit26/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.133
– volume: 402
  start-page: 126199
  year: 2020
  ident: D3CP03661H/cit15/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126199
– volume: 30
  start-page: 1801891
  year: 2018
  ident: D3CP03661H/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801891
– volume: 59
  start-page: 1758
  year: 1999
  ident: D3CP03661H/cit39/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 41
  start-page: 2208037
  year: 2022
  ident: D3CP03661H/cit19/1
  publication-title: J. Struct. Chem.
– volume: 95
  start-page: 075106
  year: 2020
  ident: D3CP03661H/cit37/1
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab93a7
– volume: 91
  start-page: 085430
  year: 2015
  ident: D3CP03661H/cit29/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.085430
– start-page: 2304355
  year: 2023
  ident: D3CP03661H/cit12/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304355
– volume: 9
  start-page: 1513
  year: 2016
  ident: D3CP03661H/cit17/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE90016J
– volume: 48
  start-page: 14707
  year: 2023
  ident: D3CP03661H/cit47/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.12.357
– volume: 144
  start-page: 498
  year: 2017
  ident: D3CP03661H/cit36/1
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.06.132
– volume: 60
  start-page: 5021
  year: 2021
  ident: D3CP03661H/cit4/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00062
– volume: 22
  start-page: 4975
  year: 2020
  ident: D3CP03661H/cit32/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC01326A
– volume: 435
  start-page: 132441
  year: 2022
  ident: D3CP03661H/cit14/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132441
– volume: 6
  start-page: 22370
  year: 2014
  ident: D3CP03661H/cit20/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506396z
– volume: 103
  start-page: 251605
  year: 2013
  ident: D3CP03661H/cit6/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4851239
– volume: 27
  start-page: 1787
  year: 2010
  ident: D3CP03661H/cit41/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 40
  start-page: 1423
  year: 2021
  ident: D3CP03661H/cit21/1
  publication-title: J. Struct. Chem.
– volume: 621
  start-page: 314
  year: 2015
  ident: D3CP03661H/cit33/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.10.018
– volume: 31
  start-page: 1803448
  year: 2019
  ident: D3CP03661H/cit34/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803448
– volume: 445
  start-page: 130419
  year: 2022
  ident: D3CP03661H/cit3/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130419
– volume: 15
  start-page: 1153
  year: 2016
  ident: D3CP03661H/cit5/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4740
– volume: 197
  start-page: 110603
  year: 2021
  ident: D3CP03661H/cit35/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110603
– volume: 11
  start-page: 7115
  year: 2023
  ident: D3CP03661H/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA08475A
– start-page: 2300167
  year: 2023
  ident: D3CP03661H/cit18/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202300167
– volume: 22
  start-page: 853
  year: 2023
  ident: D3CP03661H/cit8/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01573-6
– volume: 3
  start-page: 935
  year: 2020
  ident: D3CP03661H/cit16/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.004
– year: 2023
  ident: D3CP03661H/cit24/1
  publication-title: Ind. Chem. Mater.
  doi: 10.1039/D3IM00045A
– volume: 54
  start-page: 11169
  year: 1996
  ident: D3CP03661H/cit38/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 1
  start-page: 140
  year: 2023
  ident: D3CP03661H/cit25/1
  publication-title: Ind. Chem. Mater.
  doi: 10.1039/D2IM00028H
SSID ssj0001513
Score 2.442066
Snippet Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN),...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25442
SubjectTerms Aluminum
Aluminum nitride
Carrier recombination
Design of experiments
Doping
Dysprosium
Efficiency
Electromagnetic absorption
First principles
Hydrogen evolution reactions
Molecular orbitals
Oxidation
Oxygen evolution reactions
Photocatalysis
Photocatalysts
Two dimensional materials
Title Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping
URI https://www.proquest.com/docview/2869260657
https://www.proquest.com/docview/2865789273
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB663Qd9EW-L1VVG9EVKtMkkk83jEitVVqnQxV1fQjIzoYElWdIEqb_BH-2Za7pLBfUlpJNJG3K-mXPpOd9B6DWLS14EYeGVPhdeyEvi5VEpPCokvZfIRal6Rn7-Qhfn4aeL6GI0-rWTtdR3xVv2c29dyf9IFcZArrJK9h8k674UBuAc5AtHkDAc_0rG83ot6TJswdO66RoVjtlKFlahyCFUZaXMA_jReFwy-WsWjmkOm1Ils-BhSbeVSmPt9CO71j0bQ1zLpq1MD4Ml0a2nXBVY7Zq0SytpZnvH6TM5pOMmGxV3WKapqyW71GHXb6LaVvWtwct82w9hfr0Vfa_avrKDZyoB4WuVN96iMc9i4hYBkUkWmgbAbLUhJR645oYIe3dMN42z-7MujDY41AwxdreNQk3NZVS3_Jzs1QszImlVOWHXoLGpvx60n8tJHC4eoMMAnI5gjA5P56uPZ06zg3VEdLWafnJLd0uSd8PdNw2cwWs5aG1LGWW6rO6je8bnwKcaQA_QSNQP0Z3UiusR2jogYQASvgkkPAAJNyW-BSRsgYQNkLADEjZAwg5IWAIJKyBhDaTH6PzDfJUuPNOTw2PEDzsP_EuRlGA38oBGRUkKLuJQsDCKkxPBwNmYJTz2ScAJqBJCwRviSQkueZDHTMYYyREa100tniBMZ3C_kD50wELJ0URhuyAJGG0luO3En6A39kVmzBDWy74pV5lKnCBJ9p6kS_XSFxP0ys291jQte2cdW3lkZhlvsuCEJuDU0yieoJfuMghA_nOW16Lp1RzQbAmY-hN0BHJ0vzGI_emfLjxDdwf4H6Nx1_biORiyXfHC4Os31cGkxg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+photocatalytic+efficiency+of+two-dimensional+aluminum+nitride+materials+through+strategic+rare+earth+doping&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yan%2C+Weiyin&rft.au=Yan%2C+Yayu&rft.au=Wang%2C+Zirui&rft.au=Li%2C+Qiao-Hong&rft.date=2023-09-27&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=37&rft.spage=25442&rft.epage=25449&rft_id=info:doi/10.1039%2Fd3cp03661h&rft.externalDocID=d3cp03661h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon