Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping
Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challen...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 37; pp. 25442 - 25449 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
27.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al
24
N
22
DyC
2
structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al
24
N
22
DyC
2
as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.
A novel Dy, C co-doped material on 2D AlN monolayer is introduced. DFT calculations show that the bandgap of Al
24
N
22
DyC
2
decreases, absorption rate of visible light and catalytic activities of HER and OER increases significantly. |
---|---|
AbstractList | Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al 24 N 22 DyC 2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al 24 N 22 DyC 2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. A novel Dy, C co-doped material on 2D AlN monolayer is introduced. DFT calculations show that the bandgap of Al 24 N 22 DyC 2 decreases, absorption rate of visible light and catalytic activities of HER and OER increases significantly. Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al 24 N 22 DyC 2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al 24 N 22 DyC 2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts. |
Author | Wang, Zirui Yan, Weiyin Yan, Yayu Li, Qiao-Hong Zhang, Jian |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fuzhou University College of Chemistry Shanghai Tech University Fujian College School of Physical Science and Technology Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: College of Chemistry – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: School of Physical Science and Technology – sequence: 0 name: Shanghai Tech University – sequence: 0 name: Fujian College – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: University of Chinese Academy of Sciences – sequence: 0 name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Weiyin surname: Yan fullname: Yan, Weiyin – sequence: 2 givenname: Yayu surname: Yan fullname: Yan, Yayu – sequence: 3 givenname: Zirui surname: Wang fullname: Wang, Zirui – sequence: 4 givenname: Qiao-Hong surname: Li fullname: Li, Qiao-Hong – sequence: 5 givenname: Jian surname: Zhang fullname: Zhang, Jian |
BookMark | eNpt0U1LBSEUBmCJgj437QOhTQRTOs7ouIzbJwS1qPVgeuaOMaOTOsT991k3CqKVIs85cs67izadd4DQISVnlDB5bpieCOOc9htoh1acFZI01ebPXfBttBvjKyGE1pTtoNWV65XT1i1x6gFPvU9eq6SGVbIaQ9dZbcHpFfYdTu--MHYEF613asBqmEfr5hE7m4I1gEeVIFg1xNwr-HnZ45hCflvmVkEFwKBC6rHxU_5vH211mcLB97mHnq-vnha3xf3Dzd3i4r7QjFap4KIG2ZGmNCWvXzr2YkBUoKtayAa0lJRIIygrDROEMd5QY2RHeVUqoRtWV2wPnaz7TsG_zRBTO9qoYRiUAz_Htmx4LRpZCpbp8R_66ueQR_1SsuQk06zIWungYwzQtdomlfJO8rB2aClpP7NoL9ni8SuL21xy-qdkCnZUYfU_PlrjEPWP-w2WfQBKi5cR |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_07_195 crossref_primary_10_1021_acs_langmuir_4c02282 |
Cites_doi | 10.1039/D2TA09503C 10.1016/j.apsusc.2018.04.264 10.1103/PhysRevB.48.11810 10.1063/1.2403866 10.1126/science.1102896 10.1016/j.cej.2022.137026 10.1021/acsami.1c08824 10.1063/1.478401 10.1103/PhysRevB.39.3168 10.1039/D2GC00608A 10.1364/AOP.479017 10.1039/D0GC04236F 10.1039/D0CS01074J 10.1039/D1GC04397H 10.1002/adfm.202212538 10.1016/j.cej.2021.133594 10.1021/ja301567f 10.1016/j.ijhydene.2021.11.133 10.1016/j.cej.2020.126199 10.1002/adma.201801891 10.1103/PhysRevB.59.1758 10.1088/1402-4896/ab93a7 10.1103/PhysRevB.91.085430 10.1002/adfm.202304355 10.1039/C6EE90016J 10.1016/j.ijhydene.2022.12.357 10.1016/j.ijleo.2017.06.132 10.1021/acs.inorgchem.1c00062 10.1039/D0GC01326A 10.1016/j.cej.2021.132441 10.1021/am506396z 10.1063/1.4851239 10.1002/jcc.20495 10.1016/j.jallcom.2014.10.018 10.1002/adma.201803448 10.1016/j.jhazmat.2022.130419 10.1038/nmat4740 10.1016/j.commatsci.2021.110603 10.1039/D2TA08475A 10.1002/sstr.202300167 10.1038/s41563-023-01573-6 10.1016/j.matt.2020.07.004 10.1039/D3IM00045A 10.1103/PhysRevB.54.11169 10.1039/D2IM00028H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cp03661h |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 25449 |
ExternalDocumentID | 10_1039_D3CP03661H d3cp03661h |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-675e9f082d265bf3bde74ec45798ec99109d7132d37033681dd9f1642a7c83543 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 03:45:18 EDT 2025 Mon Jun 30 04:46:43 EDT 2025 Tue Jul 01 00:48:06 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Tue Dec 17 20:58:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-675e9f082d265bf3bde74ec45798ec99109d7132d37033681dd9f1642a7c83543 |
Notes | https://doi.org/10.1039/d3cp03661h Electronic supplementary information (ESI) available: The structures of doping systems and detailed data of the OER and HER. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9286-3580 0000-0003-3094-0282 0000-0003-3373-9621 |
PQID | 2869260657 |
PQPubID | 2047499 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2869260657 crossref_primary_10_1039_D3CP03661H rsc_primary_d3cp03661h crossref_citationtrail_10_1039_D3CP03661H proquest_miscellaneous_2865789273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-27 |
PublicationDateYYYYMMDD | 2023-09-27 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sengupta (D3CP03661H/cit30/1) 2018; 451 Liu (D3CP03661H/cit9/1) 2023; 15 Koratkar (D3CP03661H/cit5/1) 2016; 15 Yang (D3CP03661H/cit13/1) 2022; 446 Shinde (D3CP03661H/cit44/1) 2021; 33 Wang (D3CP03661H/cit34/1) 2019; 31 Tsipas (D3CP03661H/cit6/1) 2013; 103 Zhu (D3CP03661H/cit7/1) 2023; 11 Froyen (D3CP03661H/cit46/1) 1989; 39 Liao (D3CP03661H/cit48/1) 2012; 134 Yang (D3CP03661H/cit31/1) 2018; 30 Li (D3CP03661H/cit14/1) 2022; 435 Nayeri (D3CP03661H/cit37/1) 2020; 95 Kresse (D3CP03661H/cit38/1) 1996; 54 Acharya (D3CP03661H/cit4/1) 2021; 60 Chai (D3CP03661H/cit12/1) 2023 Zeng (D3CP03661H/cit22/1) 2021; 23 Yucel (D3CP03661H/cit36/1) 2017; 144 Liu (D3CP03661H/cit28/1) 2022; 433 Liu (D3CP03661H/cit25/1) 2023; 1 Kresse (D3CP03661H/cit39/1) 1999; 59 Zhan (D3CP03661H/cit18/1) 2023 Hayat (D3CP03661H/cit26/1) 2022; 47 Su (D3CP03661H/cit27/1) 2022; 24 An (D3CP03661H/cit19/1) 2022; 41 Bacaksiz (D3CP03661H/cit29/1) 2015; 91 Sun (D3CP03661H/cit33/1) 2015; 621 Zhao (D3CP03661H/cit16/1) 2020; 3 Grimme (D3CP03661H/cit41/1) 2010; 27 Ernzerhof (D3CP03661H/cit40/1) 1999; 110 Duan (D3CP03661H/cit3/1) 2022; 445 Zhao (D3CP03661H/cit23/1) 2022; 24 Wang (D3CP03661H/cit8/1) 2023; 22 Abdellatif (D3CP03661H/cit15/1) 2020; 402 Bi (D3CP03661H/cit35/1) 2021; 197 Xue (D3CP03661H/cit2/1) 2021; 13 Yan (D3CP03661H/cit47/1) 2023; 48 Novoselov (D3CP03661H/cit1/1) 2004; 306 Caudillo-Flores (D3CP03661H/cit32/1) 2020; 22 Kim (D3CP03661H/cit10/1) 2023; 33 Zhuo (D3CP03661H/cit24/1) 2023 Janesko (D3CP03661H/cit43/1) 2021; 50 Linghang (D3CP03661H/cit21/1) 2021; 40 Rubio (D3CP03661H/cit42/1) 1993; 48 Lv (D3CP03661H/cit11/1) 2023; 11 Yu (D3CP03661H/cit20/1) 2014; 6 Rahman (D3CP03661H/cit17/1) 2016; 9 Paier (D3CP03661H/cit45/1) 2006; 125 |
References_xml | – volume: 11 start-page: 15482 year: 2023 ident: D3CP03661H/cit7/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09503C – volume: 451 start-page: 141 year: 2018 ident: D3CP03661H/cit30/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.264 – volume: 48 start-page: 11810 year: 1993 ident: D3CP03661H/cit42/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.11810 – volume: 125 start-page: 249901 year: 2006 ident: D3CP03661H/cit45/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2403866 – volume: 306 start-page: 666 year: 2004 ident: D3CP03661H/cit1/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 446 start-page: 137026 year: 2022 ident: D3CP03661H/cit13/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137026 – volume: 13 start-page: 38586 year: 2021 ident: D3CP03661H/cit2/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08824 – volume: 110 start-page: 5029 year: 1999 ident: D3CP03661H/cit40/1 publication-title: J. Chem. Phys. doi: 10.1063/1.478401 – volume: 39 start-page: 3168 year: 1989 ident: D3CP03661H/cit46/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.39.3168 – volume: 24 start-page: 4728 year: 2022 ident: D3CP03661H/cit23/1 publication-title: Green Chem. doi: 10.1039/D2GC00608A – volume: 15 start-page: 236 year: 2023 ident: D3CP03661H/cit9/1 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.479017 – volume: 23 start-page: 1466 year: 2021 ident: D3CP03661H/cit22/1 publication-title: Green Chem. doi: 10.1039/D0GC04236F – volume: 50 start-page: 8470 year: 2021 ident: D3CP03661H/cit43/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01074J – volume: 24 start-page: 2027 year: 2022 ident: D3CP03661H/cit27/1 publication-title: Green Chem. doi: 10.1039/D1GC04397H – volume: 33 start-page: 115501 year: 2021 ident: D3CP03661H/cit44/1 publication-title: J. Phys.: Condens. Matter – volume: 33 start-page: 2212538 year: 2023 ident: D3CP03661H/cit10/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202212538 – volume: 433 start-page: 133594 year: 2022 ident: D3CP03661H/cit28/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133594 – volume: 134 start-page: 13296 year: 2012 ident: D3CP03661H/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301567f – volume: 47 start-page: 5142 year: 2022 ident: D3CP03661H/cit26/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.133 – volume: 402 start-page: 126199 year: 2020 ident: D3CP03661H/cit15/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126199 – volume: 30 start-page: 1801891 year: 2018 ident: D3CP03661H/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801891 – volume: 59 start-page: 1758 year: 1999 ident: D3CP03661H/cit39/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 41 start-page: 2208037 year: 2022 ident: D3CP03661H/cit19/1 publication-title: J. Struct. Chem. – volume: 95 start-page: 075106 year: 2020 ident: D3CP03661H/cit37/1 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab93a7 – volume: 91 start-page: 085430 year: 2015 ident: D3CP03661H/cit29/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.085430 – start-page: 2304355 year: 2023 ident: D3CP03661H/cit12/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304355 – volume: 9 start-page: 1513 year: 2016 ident: D3CP03661H/cit17/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE90016J – volume: 48 start-page: 14707 year: 2023 ident: D3CP03661H/cit47/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.12.357 – volume: 144 start-page: 498 year: 2017 ident: D3CP03661H/cit36/1 publication-title: Optik doi: 10.1016/j.ijleo.2017.06.132 – volume: 60 start-page: 5021 year: 2021 ident: D3CP03661H/cit4/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00062 – volume: 22 start-page: 4975 year: 2020 ident: D3CP03661H/cit32/1 publication-title: Green Chem. doi: 10.1039/D0GC01326A – volume: 435 start-page: 132441 year: 2022 ident: D3CP03661H/cit14/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132441 – volume: 6 start-page: 22370 year: 2014 ident: D3CP03661H/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506396z – volume: 103 start-page: 251605 year: 2013 ident: D3CP03661H/cit6/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4851239 – volume: 27 start-page: 1787 year: 2010 ident: D3CP03661H/cit41/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 40 start-page: 1423 year: 2021 ident: D3CP03661H/cit21/1 publication-title: J. Struct. Chem. – volume: 621 start-page: 314 year: 2015 ident: D3CP03661H/cit33/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.10.018 – volume: 31 start-page: 1803448 year: 2019 ident: D3CP03661H/cit34/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803448 – volume: 445 start-page: 130419 year: 2022 ident: D3CP03661H/cit3/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130419 – volume: 15 start-page: 1153 year: 2016 ident: D3CP03661H/cit5/1 publication-title: Nat. Mater. doi: 10.1038/nmat4740 – volume: 197 start-page: 110603 year: 2021 ident: D3CP03661H/cit35/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110603 – volume: 11 start-page: 7115 year: 2023 ident: D3CP03661H/cit11/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA08475A – start-page: 2300167 year: 2023 ident: D3CP03661H/cit18/1 publication-title: Small Struct. doi: 10.1002/sstr.202300167 – volume: 22 start-page: 853 year: 2023 ident: D3CP03661H/cit8/1 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01573-6 – volume: 3 start-page: 935 year: 2020 ident: D3CP03661H/cit16/1 publication-title: Matter doi: 10.1016/j.matt.2020.07.004 – year: 2023 ident: D3CP03661H/cit24/1 publication-title: Ind. Chem. Mater. doi: 10.1039/D3IM00045A – volume: 54 start-page: 11169 year: 1996 ident: D3CP03661H/cit38/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 1 start-page: 140 year: 2023 ident: D3CP03661H/cit25/1 publication-title: Ind. Chem. Mater. doi: 10.1039/D2IM00028H |
SSID | ssj0001513 |
Score | 2.442066 |
Snippet | Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN),... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25442 |
SubjectTerms | Aluminum Aluminum nitride Carrier recombination Design of experiments Doping Dysprosium Efficiency Electromagnetic absorption First principles Hydrogen evolution reactions Molecular orbitals Oxidation Oxygen evolution reactions Photocatalysis Photocatalysts Two dimensional materials |
Title | Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping |
URI | https://www.proquest.com/docview/2869260657 https://www.proquest.com/docview/2865789273 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB663Qd9EW-L1VVG9EVKtMkkk83jEitVVqnQxV1fQjIzoYElWdIEqb_BH-2Za7pLBfUlpJNJG3K-mXPpOd9B6DWLS14EYeGVPhdeyEvi5VEpPCokvZfIRal6Rn7-Qhfn4aeL6GI0-rWTtdR3xVv2c29dyf9IFcZArrJK9h8k674UBuAc5AtHkDAc_0rG83ot6TJswdO66RoVjtlKFlahyCFUZaXMA_jReFwy-WsWjmkOm1Ils-BhSbeVSmPt9CO71j0bQ1zLpq1MD4Ml0a2nXBVY7Zq0SytpZnvH6TM5pOMmGxV3WKapqyW71GHXb6LaVvWtwct82w9hfr0Vfa_avrKDZyoB4WuVN96iMc9i4hYBkUkWmgbAbLUhJR645oYIe3dMN42z-7MujDY41AwxdreNQk3NZVS3_Jzs1QszImlVOWHXoLGpvx60n8tJHC4eoMMAnI5gjA5P56uPZ06zg3VEdLWafnJLd0uSd8PdNw2cwWs5aG1LGWW6rO6je8bnwKcaQA_QSNQP0Z3UiusR2jogYQASvgkkPAAJNyW-BSRsgYQNkLADEjZAwg5IWAIJKyBhDaTH6PzDfJUuPNOTw2PEDzsP_EuRlGA38oBGRUkKLuJQsDCKkxPBwNmYJTz2ScAJqBJCwRviSQkueZDHTMYYyREa100tniBMZ3C_kD50wELJ0URhuyAJGG0luO3En6A39kVmzBDWy74pV5lKnCBJ9p6kS_XSFxP0ys291jQte2cdW3lkZhlvsuCEJuDU0yieoJfuMghA_nOW16Lp1RzQbAmY-hN0BHJ0vzGI_emfLjxDdwf4H6Nx1_biORiyXfHC4Os31cGkxg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+photocatalytic+efficiency+of+two-dimensional+aluminum+nitride+materials+through+strategic+rare+earth+doping&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yan%2C+Weiyin&rft.au=Yan%2C+Yayu&rft.au=Wang%2C+Zirui&rft.au=Li%2C+Qiao-Hong&rft.date=2023-09-27&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=37&rft.spage=25442&rft.epage=25449&rft_id=info:doi/10.1039%2Fd3cp03661h&rft.externalDocID=d3cp03661h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |