Tight toughness bounds for path-factor critical avoidable graphs

Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-...

Full description

Saved in:
Bibliographic Details
Published inAKCE international journal of graphs and combinatorics Vol. 21; no. 2; pp. 167 - 170
Main Authors Wang, Wenqi, Dai, Guowei
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 03.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-factor excluding e. A graph G is said to be [Formula: see text]-factor critical avoidable if the graph [Formula: see text] is [Formula: see text]-factor avoidable for any [Formula: see text] with [Formula: see text]. Here we study the sharp bounds of toughness and isolated toughness conditions for the existence of [Formula: see text]-factor critical avoidable graphs. In view of graph theory approaches, this paper mainly contributes to verify that (i) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its toughness [Formula: see text]; (ii) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its isolated toughness [Formula: see text].
AbstractList Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-factor excluding e. A graph G is said to be [Formula: see text]-factor critical avoidable if the graph [Formula: see text] is [Formula: see text]-factor avoidable for any [Formula: see text] with [Formula: see text]. Here we study the sharp bounds of toughness and isolated toughness conditions for the existence of [Formula: see text]-factor critical avoidable graphs. In view of graph theory approaches, this paper mainly contributes to verify that (i) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its toughness [Formula: see text]; (ii) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its isolated toughness [Formula: see text].
Author Wang, Wenqi
Dai, Guowei
Author_xml – sequence: 1
  givenname: Wenqi
  surname: Wang
  fullname: Wang, Wenqi
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
– sequence: 2
  givenname: Guowei
  surname: Dai
  fullname: Dai, Guowei
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
BookMark eNo9kNtKw0AURQepYK39BCE_kDrXTPKmFC-Fgi_1eThzSyIxU2ZSwb93otWnszlsFpt1jRZjGB1CtwRvCK7xHW4krSuMNxRTvqGMcEHoBVpSwVnJuOQLtJw75Vy6QuuUeo2JZDVtaLVE94e-7aZiCqe2G11KhQ6n0abCh1gcYepKD2bK2cR-6g0MBXyG3oIeXNFGOHbpBl16GJJbn-8KvT09HrYv5f71ebd92JcmT5pKAY11jNmMk0RiT3nT1I33GrDjhhMsfCWsr2pjrSZMaAmAhRRWMuAVFmyFdr9cG-BdHWP_AfFLBejVzyPEVkHMEwenMr4W2Q0QpnmVLVHvuahs4zRQJnBmiV-WiSGl6Pw_j2A1W1V_VtVsVZ2tsm_enGtZ
Cites_doi 10.1016/j.disc.2008.04.022
10.7151/dmgt.2353
10.1051/ro/2022208
10.1080/09728600.2022.2094299
10.1007/978-3-540-93952-8
10.1007/s00010-021-00852-4
10.7151/dmgt.2364
10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
10.1002/jgt.22253
10.4153/CJM-1952-028-2
10.1017/S0004972721000952
10.7151/dmgt.1974
10.7151/dmgt.1426
10.1007/s00373-020-02184-7
10.1016/S0012-365X(01)00214-X
10.1016/0012-365X(73)90138-6
10.1051/ro/2022112
10.1051/ro/2021140
10.1051/ro/2022123
10.1051/ro/2022033
10.1016/S0095-8956(03)00027-3
10.1007/s10255-022-1096-2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/09728600.2024.2314512
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2543-3474
EndPage 170
ExternalDocumentID oai_doaj_org_article_70f85080a13b461082ff456d9eba2350
10_1080_09728600_2024_2314512
GroupedDBID 0R~
0SF
0YH
457
5VS
AACTN
AAFTH
AALRI
AAYXX
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AKRWK
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
FDB
GROUPED_DOAJ
J9A
KQ8
O9-
OK1
P2P
SSZ
TDBHL
M4Z
ID FETCH-LOGICAL-c314t-5a9de33dfac7170f249989ffba0e4c4105f65df68cddb135b7aa0575d73a46053
IEDL.DBID DOA
ISSN 0972-8600
IngestDate Tue Oct 22 15:12:36 EDT 2024
Wed Sep 25 14:02:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-5a9de33dfac7170f249989ffba0e4c4105f65df68cddb135b7aa0575d73a46053
OpenAccessLink https://doaj.org/article/70f85080a13b461082ff456d9eba2350
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_70f85080a13b461082ff456d9eba2350
crossref_primary_10_1080_09728600_2024_2314512
PublicationCentury 2000
PublicationDate 2024-05-03
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-03
  day: 03
PublicationDecade 2020
PublicationTitle AKCE international journal of graphs and combinatorics
PublicationYear 2024
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Bondy J. A. (e_1_3_1_4_1) 1982
Akiyama J. (e_1_3_1_2_1) 2011
Liu H (e_1_3_1_16_1) 2022; 23
e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_8_1
e_1_3_1_5_1
e_1_3_1_7_1
e_1_3_1_6_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
Yu Q. (e_1_3_1_21_1) 1987; 2
e_1_3_1_10_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_12_1
e_1_3_1_11_1
Yang J. (e_1_3_1_20_1) 2001; 16
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_15_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_23_1
  doi: 10.1016/j.disc.2008.04.022
– ident: e_1_3_1_8_1
  doi: 10.7151/dmgt.2353
– volume: 23
  start-page: 25
  issue: 1
  year: 2022
  ident: e_1_3_1_16_1
  article-title: Binding number for path-factor uniform graphs
  publication-title: Proc. Romanian Acad. Ser. A: Math. Phys. Techn. Sci. Inf. Sci
  contributor:
    fullname: Liu H
– ident: e_1_3_1_19_1
  doi: 10.1051/ro/2022208
– ident: e_1_3_1_5_1
  doi: 10.1080/09728600.2022.2094299
– ident: e_1_3_1_22_1
  doi: 10.1007/978-3-540-93952-8
– ident: e_1_3_1_26_1
  doi: 10.1007/s00010-021-00852-4
– ident: e_1_3_1_25_1
  doi: 10.7151/dmgt.2364
– ident: e_1_3_1_13_1
  doi: 10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
– ident: e_1_3_1_12_1
  doi: 10.1002/jgt.22253
– ident: e_1_3_1_17_1
  doi: 10.4153/CJM-1952-028-2
– ident: e_1_3_1_27_1
  doi: 10.1017/S0004972721000952
– ident: e_1_3_1_28_1
  doi: 10.7151/dmgt.1974
– ident: e_1_3_1_15_1
  doi: 10.7151/dmgt.1426
– start-page: 1
  volume-title: Lecture Notes in Mathematics
  year: 2011
  ident: e_1_3_1_2_1
  contributor:
    fullname: Akiyama J.
– volume: 2
  start-page: 211
  year: 1987
  ident: e_1_3_1_21_1
  article-title: On tree-factor covered graphs
  publication-title: J. Combin. Math. Combin. Comput
  contributor:
    fullname: Yu Q.
– ident: e_1_3_1_10_1
  doi: 10.1007/s00373-020-02184-7
– ident: e_1_3_1_3_1
  doi: 10.1016/S0012-365X(01)00214-X
– volume-title: Graph Theory with Applications
  year: 1982
  ident: e_1_3_1_4_1
  contributor:
    fullname: Bondy J. A.
– ident: e_1_3_1_6_1
  doi: 10.1016/0012-365X(73)90138-6
– volume: 16
  start-page: 385
  year: 2001
  ident: e_1_3_1_20_1
  article-title: Fractional (g, f)-factors in graphs
  publication-title: Appl. Math. J. Chinese Univ. Ser. A
  contributor:
    fullname: Yang J.
– ident: e_1_3_1_9_1
  doi: 10.1051/ro/2022112
– ident: e_1_3_1_11_1
  doi: 10.1051/ro/2021140
– ident: e_1_3_1_18_1
  doi: 10.1051/ro/2022123
– ident: e_1_3_1_7_1
  doi: 10.1051/ro/2022033
– ident: e_1_3_1_14_1
  doi: 10.1016/S0095-8956(03)00027-3
– ident: e_1_3_1_24_1
  doi: 10.1007/s10255-022-1096-2
SSID ssib017382926
ssj0001919885
Score 2.3154967
Snippet Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 167
SubjectTerms 05C38
factor critical avoidable graph
Graph
isolated toughness
path-factor
toughness
Title Tight toughness bounds for path-factor critical avoidable graphs
URI https://doaj.org/article/70f85080a13b461082ff456d9eba2350
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQNwbEUxQK8sCa4kcS2xsPUVVIZWqlbpEd2xJLimjg-7k3caoysbBksPKwrp3ccxzfcwi5q3lwyumQlYAlsCQnwitlFRyct1YYZSOudyzeyvkqf10X6z2rL9wT1ssD94G7VyxqABHMculQG1yLGCHpexOcFTKxdWb2yBTMJK6kFiYBi261xQC57vw5Ua4m05Dmh3IeFNqGNmwCuijyKSCevODiV6La0_PvEs_smBwlxEgf-56ekIPQnJLDxU5udXtGHpZIsWmLjjv46aIOzZK2FAApRcvhrHfVoXXyNaD2e_PusWiKdoLV23Oymr0sn-dZskbIauhdmxXW-CClh8uBj7EIJMpoE6OzLOQ1bt2MZeFjqWvvHZeFU9YiMvNKWvwTKi_IqNk04ZJQ7rTLlagLK0PuDAQieuajZtHzAA8Yk-kQh-qjV8Co-CAsmgJXYeCqFLgxecJo7U5GAeuuAYa1SsNa_TWsV_9xk2tk4b15C5MTMmo_v8INYIjW3XbT5Qcnpbzi
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+toughness+bounds+for+path-factor+critical+avoidable+graphs&rft.jtitle=AKCE+international+journal+of+graphs+and+combinatorics&rft.au=Wang%2C+Wenqi&rft.au=Dai%2C+Guowei&rft.date=2024-05-03&rft.issn=0972-8600&rft.eissn=2543-3474&rft.volume=21&rft.issue=2&rft.spage=167&rft.epage=170&rft_id=info:doi/10.1080%2F09728600.2024.2314512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09728600_2024_2314512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-8600&client=summon