Tight toughness bounds for path-factor critical avoidable graphs
Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-...
Saved in:
Published in | AKCE international journal of graphs and combinatorics Vol. 21; no. 2; pp. 167 - 170 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
03.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-factor excluding e. A graph G is said to be [Formula: see text]-factor critical avoidable if the graph [Formula: see text] is [Formula: see text]-factor avoidable for any [Formula: see text] with [Formula: see text]. Here we study the sharp bounds of toughness and isolated toughness conditions for the existence of [Formula: see text]-factor critical avoidable graphs. In view of graph theory approaches, this paper mainly contributes to verify that (i) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its toughness [Formula: see text]; (ii) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its isolated toughness [Formula: see text]. |
---|---|
AbstractList | Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path with at least k vertices. A graph G is [Formula: see text]-factor avoidable if for every edge [Formula: see text], G has a [Formula: see text]-factor excluding e. A graph G is said to be [Formula: see text]-factor critical avoidable if the graph [Formula: see text] is [Formula: see text]-factor avoidable for any [Formula: see text] with [Formula: see text]. Here we study the sharp bounds of toughness and isolated toughness conditions for the existence of [Formula: see text]-factor critical avoidable graphs. In view of graph theory approaches, this paper mainly contributes to verify that (i) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its toughness [Formula: see text]; (ii) An [Formula: see text]-connected graph is [Formula: see text]-factor critical avoidable if its isolated toughness [Formula: see text]. |
Author | Wang, Wenqi Dai, Guowei |
Author_xml | – sequence: 1 givenname: Wenqi surname: Wang fullname: Wang, Wenqi organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, P.R. China – sequence: 2 givenname: Guowei surname: Dai fullname: Dai, Guowei organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, P.R. China |
BookMark | eNo9kNtKw0AURQepYK39BCE_kDrXTPKmFC-Fgi_1eThzSyIxU2ZSwb93otWnszlsFpt1jRZjGB1CtwRvCK7xHW4krSuMNxRTvqGMcEHoBVpSwVnJuOQLtJw75Vy6QuuUeo2JZDVtaLVE94e-7aZiCqe2G11KhQ6n0abCh1gcYepKD2bK2cR-6g0MBXyG3oIeXNFGOHbpBl16GJJbn-8KvT09HrYv5f71ebd92JcmT5pKAY11jNmMk0RiT3nT1I33GrDjhhMsfCWsr2pjrSZMaAmAhRRWMuAVFmyFdr9cG-BdHWP_AfFLBejVzyPEVkHMEwenMr4W2Q0QpnmVLVHvuahs4zRQJnBmiV-WiSGl6Pw_j2A1W1V_VtVsVZ2tsm_enGtZ |
Cites_doi | 10.1016/j.disc.2008.04.022 10.7151/dmgt.2353 10.1051/ro/2022208 10.1080/09728600.2022.2094299 10.1007/978-3-540-93952-8 10.1007/s00010-021-00852-4 10.7151/dmgt.2364 10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T 10.1002/jgt.22253 10.4153/CJM-1952-028-2 10.1017/S0004972721000952 10.7151/dmgt.1974 10.7151/dmgt.1426 10.1007/s00373-020-02184-7 10.1016/S0012-365X(01)00214-X 10.1016/0012-365X(73)90138-6 10.1051/ro/2022112 10.1051/ro/2021140 10.1051/ro/2022123 10.1051/ro/2022033 10.1016/S0095-8956(03)00027-3 10.1007/s10255-022-1096-2 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/09728600.2024.2314512 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2543-3474 |
EndPage | 170 |
ExternalDocumentID | oai_doaj_org_article_70f85080a13b461082ff456d9eba2350 10_1080_09728600_2024_2314512 |
GroupedDBID | 0R~ 0SF 0YH 457 5VS AACTN AAFTH AALRI AAYXX ABMAC ACGFO ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AKRWK ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS FDB GROUPED_DOAJ J9A KQ8 O9- OK1 P2P SSZ TDBHL M4Z |
ID | FETCH-LOGICAL-c314t-5a9de33dfac7170f249989ffba0e4c4105f65df68cddb135b7aa0575d73a46053 |
IEDL.DBID | DOA |
ISSN | 0972-8600 |
IngestDate | Tue Oct 22 15:12:36 EDT 2024 Wed Sep 25 14:02:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-5a9de33dfac7170f249989ffba0e4c4105f65df68cddb135b7aa0575d73a46053 |
OpenAccessLink | https://doaj.org/article/70f85080a13b461082ff456d9eba2350 |
PageCount | 4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70f85080a13b461082ff456d9eba2350 crossref_primary_10_1080_09728600_2024_2314512 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-03 |
PublicationDateYYYYMMDD | 2024-05-03 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | AKCE international journal of graphs and combinatorics |
PublicationYear | 2024 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | Bondy J. A. (e_1_3_1_4_1) 1982 Akiyama J. (e_1_3_1_2_1) 2011 Liu H (e_1_3_1_16_1) 2022; 23 e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_8_1 e_1_3_1_5_1 e_1_3_1_7_1 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 Yu Q. (e_1_3_1_21_1) 1987; 2 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_12_1 e_1_3_1_11_1 Yang J. (e_1_3_1_20_1) 2001; 16 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_15_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_23_1 doi: 10.1016/j.disc.2008.04.022 – ident: e_1_3_1_8_1 doi: 10.7151/dmgt.2353 – volume: 23 start-page: 25 issue: 1 year: 2022 ident: e_1_3_1_16_1 article-title: Binding number for path-factor uniform graphs publication-title: Proc. Romanian Acad. Ser. A: Math. Phys. Techn. Sci. Inf. Sci contributor: fullname: Liu H – ident: e_1_3_1_19_1 doi: 10.1051/ro/2022208 – ident: e_1_3_1_5_1 doi: 10.1080/09728600.2022.2094299 – ident: e_1_3_1_22_1 doi: 10.1007/978-3-540-93952-8 – ident: e_1_3_1_26_1 doi: 10.1007/s00010-021-00852-4 – ident: e_1_3_1_25_1 doi: 10.7151/dmgt.2364 – ident: e_1_3_1_13_1 doi: 10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T – ident: e_1_3_1_12_1 doi: 10.1002/jgt.22253 – ident: e_1_3_1_17_1 doi: 10.4153/CJM-1952-028-2 – ident: e_1_3_1_27_1 doi: 10.1017/S0004972721000952 – ident: e_1_3_1_28_1 doi: 10.7151/dmgt.1974 – ident: e_1_3_1_15_1 doi: 10.7151/dmgt.1426 – start-page: 1 volume-title: Lecture Notes in Mathematics year: 2011 ident: e_1_3_1_2_1 contributor: fullname: Akiyama J. – volume: 2 start-page: 211 year: 1987 ident: e_1_3_1_21_1 article-title: On tree-factor covered graphs publication-title: J. Combin. Math. Combin. Comput contributor: fullname: Yu Q. – ident: e_1_3_1_10_1 doi: 10.1007/s00373-020-02184-7 – ident: e_1_3_1_3_1 doi: 10.1016/S0012-365X(01)00214-X – volume-title: Graph Theory with Applications year: 1982 ident: e_1_3_1_4_1 contributor: fullname: Bondy J. A. – ident: e_1_3_1_6_1 doi: 10.1016/0012-365X(73)90138-6 – volume: 16 start-page: 385 year: 2001 ident: e_1_3_1_20_1 article-title: Fractional (g, f)-factors in graphs publication-title: Appl. Math. J. Chinese Univ. Ser. A contributor: fullname: Yang J. – ident: e_1_3_1_9_1 doi: 10.1051/ro/2022112 – ident: e_1_3_1_11_1 doi: 10.1051/ro/2021140 – ident: e_1_3_1_18_1 doi: 10.1051/ro/2022123 – ident: e_1_3_1_7_1 doi: 10.1051/ro/2022033 – ident: e_1_3_1_14_1 doi: 10.1016/S0095-8956(03)00027-3 – ident: e_1_3_1_24_1 doi: 10.1007/s10255-022-1096-2 |
SSID | ssib017382926 ssj0001919885 |
Score | 2.3154967 |
Snippet | Given a graph G and an integer [Formula: see text], a spanning subgraph H of G is called a [Formula: see text]-factor of G if every component of H is a path... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 167 |
SubjectTerms | 05C38 factor critical avoidable graph Graph isolated toughness path-factor toughness |
Title | Tight toughness bounds for path-factor critical avoidable graphs |
URI | https://doaj.org/article/70f85080a13b461082ff456d9eba2350 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQNwbEUxQK8sCa4kcS2xsPUVVIZWqlbpEd2xJLimjg-7k3caoysbBksPKwrp3ccxzfcwi5q3lwyumQlYAlsCQnwitlFRyct1YYZSOudyzeyvkqf10X6z2rL9wT1ssD94G7VyxqABHMculQG1yLGCHpexOcFTKxdWb2yBTMJK6kFiYBi261xQC57vw5Ua4m05Dmh3IeFNqGNmwCuijyKSCevODiV6La0_PvEs_smBwlxEgf-56ekIPQnJLDxU5udXtGHpZIsWmLjjv46aIOzZK2FAApRcvhrHfVoXXyNaD2e_PusWiKdoLV23Oymr0sn-dZskbIauhdmxXW-CClh8uBj7EIJMpoE6OzLOQ1bt2MZeFjqWvvHZeFU9YiMvNKWvwTKi_IqNk04ZJQ7rTLlagLK0PuDAQieuajZtHzAA8Yk-kQh-qjV8Co-CAsmgJXYeCqFLgxecJo7U5GAeuuAYa1SsNa_TWsV_9xk2tk4b15C5MTMmo_v8INYIjW3XbT5Qcnpbzi |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+toughness+bounds+for+path-factor+critical+avoidable+graphs&rft.jtitle=AKCE+international+journal+of+graphs+and+combinatorics&rft.au=Wang%2C+Wenqi&rft.au=Dai%2C+Guowei&rft.date=2024-05-03&rft.issn=0972-8600&rft.eissn=2543-3474&rft.volume=21&rft.issue=2&rft.spage=167&rft.epage=170&rft_id=info:doi/10.1080%2F09728600.2024.2314512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09728600_2024_2314512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-8600&client=summon |