Approximation in the extended functional tensor train format

This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function ev...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 3
Main Authors Strössner, Christoph, Sun, Bonan, Kressner, Daniel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1019-7168
1572-9044
DOI10.1007/s10444-024-10140-9

Cover

Loading…
Abstract This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96 % compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. 347 , 59–84 2019 ).
AbstractList This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over $$96\%$$ 96 % compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. 347 , 59–84 2019).
This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96 % compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. 347 , 59–84 2019 ).
This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96% compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. 347, 59–84 2019).
ArticleNumber 54
Author Sun, Bonan
Kressner, Daniel
Strössner, Christoph
Author_xml – sequence: 1
  givenname: Christoph
  surname: Strössner
  fullname: Strössner, Christoph
  email: christoph.stroessner@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Institute of Mathematics
– sequence: 2
  givenname: Bonan
  surname: Sun
  fullname: Sun, Bonan
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Institute of Mathematics
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0003-3369-2958
  surname: Kressner
  fullname: Kressner, Daniel
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Institute of Mathematics
BookMark eNp9UEtLAzEQDlLBtvoHPC14jk4yeWzASym-oOBFz2Efs9pSNzXZQv33pq7gzdMM8z345puxSR96YuxSwLUAsDdJgFKKg1RcgFDA3QmbCm0ldxmY5B2E41aY8ozNUtoAgDNWT9ntYreL4bD-qIZ16It1XwzvVNBhoL6ltuj2fXMEqm2RLynEYohVJnUhZsU5O-2qbaKL3zlnr_d3L8tHvnp-eFouVrxBoQauqG7AEioqQRpTNlCiNLVGRKhQm7om7WSJaJVUDkh2rZXgdKtVBbW1OGdXo2-O-rmnNPhN2MccKnkEIyQqlJhZcmQ1MaQUqfO7mP-KX16AP7bkx5Z8bsn_tORdFuEoSpncv1H8s_5H9Q0BXWpC
Cites_doi 10.1137/16M1083803
10.1016/j.camwa.2006.07.013
10.1007/s10543-006-0045-4
10.1007/978-94-009-3889-2_33
10.1137/21M1415911
10.1016/j.jcp.2015.06.031
10.1007/s00041-009-9094-9
10.1007/978-3-322-92918-1
10.1137/07070111X
10.1515/9783110365832
10.1002/gamm.201310004
10.1007/BF02289464
10.1137/090756843
10.4236/am.2012.330215
10.1137/100799010
10.23919/EuCAP.2017.7928679
10.1134/S096554251902012X
10.1002/9780470770801
10.1145/2998442
10.1021/acs.jctc.1c00941
10.1137/16M1066312
10.1007/s00607-002-1469-6
10.1007/s10444-022-09979-7
10.1090/mcom/3813
10.1016/j.jco.2007.03.007
10.1016/j.jcp.2016.06.005
10.1137/20M1316639
10.1016/j.laa.2009.07.024
10.1016/j.ress.2018.11.007
10.1016/j.jcp.2019.109125
10.1137/19M1261043
10.1137/130908002
10.1137/22M1514088
10.1109/FOCI.2007.372151
10.2478/cmam-2006-0010
10.1198/TECH.2009.0015
10.1016/j.jco.2013.10.001
10.1090/mcom/3132
10.1137/120882597
10.1007/978-3-540-68093-2
10.1137/20M1356944
10.1177/0278364917753994
10.1137/090752286
10.1016/0021-9045(80)90069-6
10.1016/j.laa.2014.06.006
10.1137/S0895479896305696
10.1109/FOCS.2010.38
10.1145/355602.355603
10.1007/978-3-642-28027-6
10.1017/S0962492920000021
10.1109/nDS.2011.6076873
10.1017/S0962492904000182
10.3150/21-BEJ1371
10.1561/0400000060
10.1198/TECH.2010.09157
10.1137/140978430
10.1007/PL00005410
10.1007/s10208-021-09544-6
10.1515/9783110365917
10.1109/TGRS.2005.859347
10.1201/9781420036114
10.1137/090766498
10.1093/imanum/drac030
10.1137/19M1281848
10.1016/S0024-3795(96)00301-1
10.1007/BF01386223
10.1137/15M1036919
10.14293/P2199-8442.1.SOP-MATH.JHXASX.v1
10.1016/j.jcp.2023.112378
10.1073/pnas.112329799
10.1016/j.aop.2014.06.013
10.1016/j.laa.2020.02.010
10.1007/s11222-022-10087-1
10.1006/jcom.2001.0588
10.1016/j.cma.2018.12.015
10.1090/proc/13623
10.1007/s10915-013-9751-7
10.1080/00401706.2012.725994
10.1016/j.laa.2011.08.010
10.1007/s11786-007-0001-y
10.1007/978-3-319-12385-1_26
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-024-10140-9
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10140_9
GrantInformation_xml – fundername: EPFL Lausanne
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c314t-4ebc07e34e802668c08326b53330a356bbe592833742490e2fd72095d54a0b773
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 11:14:28 EDT 2025
Tue Jul 01 02:55:36 EDT 2025
Fri Feb 21 02:40:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Tensors
65D15
Low-rank approximation
65F55
Polynomial approximation
Multivariate functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-4ebc07e34e802668c08326b53330a356bbe592833742490e2fd72095d54a0b773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3369-2958
OpenAccessLink https://link.springer.com/10.1007/s10444-024-10140-9
PQID 3061234323
PQPubID 2043875
ParticipantIDs proquest_journals_3061234323
crossref_primary_10_1007_s10444_024_10140_9
springer_journals_10_1007_s10444_024_10140_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GorodetskyAKaramanSMarzoukYHigh-dimensional stochastic optimal control using continuous tensor decompositionsInt. J. Robot. Res.201837340377
TrefethenLNCubature, approximation, and isotropy in the hypercubeSIAM Rev.2017594694913683677
Dieterich, J., Hartke, B.: Empirical review of standard benchmark functions using evolutionary global optimization. Applied Math. 3 (2012)
KressnerDToblerCLow-rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132128813162854614
OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133229523172837533
GramacyRBLeeHKHAdaptive design and analysis of supercomputer experimentsTechnometrics2009511301452668170
Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: 51st Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 329–338 (2010)
KonakliKSudretBPolynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansionsJ. Comput. Phys.2016321114411693527610
QingADynamic differential evolution strategy and applications in electromagnetic inverse scattering problemsIEEE Trans. Geosci. Remote Sens.200644116125
DetteHPepelyshevAGeneralized Latin hypercube design for computer experimentsTechnometrics2010524214292789249
HashemiBTrefethenLNChebfun in three dimensionsSIAM J. Sci. Comput.201739C341C3633704268
BeylkinGMohlenkampMJNumerical operator calculus in higher dimensionsProc. Natl. Acad. Sci. USA20029910246102511918798
HackbuschWKhoromskijBNTensor-product approximation to operators and functions in high dimensionsJ. Complexity2007236977142372023
Trunschke, P., Nouy, A., Eigel, M.: Weighted sparsity and sparse tensor networks for least squares approximation. arXiv:2310.08942 (2023)
Ali, M., Nouy, A.: Approximation with tensor networks. Part III: Multivariate approximation. arXiv:2101.11932 (2021)
SavostyanovDVQuasioptimality of maximum-volume cross interpolation of tensorsLinear Algebra Appl.20144582172443231817
Ali, M., Nouy, A.: Approximation with tensor networks. Part II: Approximation rates for smoothness classes. arXiv:2007.00128 (2020)
SoleyMBBergoldPGorodetskyABatistaVSFunctional Tensor-Train Chebyshev method for multidimensional quantum dynamics simulationsJ. Chem. Theory Comput.2022182536
BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701241972724
Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, (2014)
MartinssonP-GTroppJARandomized numerical linear algebra: foundations and algorithmsActa Numer.2020294035724189294
Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Ser, vol. 42. Springer, Comput. Math. (2012)
QinZLidiakAGongZTangGWakinMBZhuZError analysis of tensor-train cross approximationAdv. Neural Inf. Process. Syst.2022351423614249
TrefethenLNComputing numerically with functions instead of numbersMath. Comput. Sci.200719192384813
Ali, M., Nouy, A.: Approximation with tensor networks. Part I: Approximation spaces. arXiv:2007.00118 (2020)
Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets. Retrieved November 14, 2022, from https://www.sfu.ca/~ssurjano/, (2013)
HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009157067222563780
Psenka, M., Boumal, N.: Second-order optimization for tensors with fixed tensor-train rank. arXiv:2011.13395 (2020)
Dektor, A., Venturi, D.: Tensor rank reduction via coordinate flows. arXiv:2207.11955 (2022)
GriebelMHarbrechtHSchneiderRLow-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothnessMath. Comp.202392172917464570339
BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical Tucker formatLinear Algebra Appl.20134386396572996358
TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631279311205395
Mason, J.C., Handscomb, D.C.: Chebyshev polynomials. Chapman and Hall/CRC, (2002)
Khoromskij, B.N.: Tensor numerical methods in scientific computing. Radon Ser, vol. 19. Comput. Appl. Math, De Gruyter. Berlin (2018)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. Cambridge University Press (2010)
SorensenDCEmbreeMA DEIM induced CUR factorizationSIAM J. Sci. Comput.201638A1454A14823502613
Saibaba, A.K., Minster, R., Kilmer, M.E.: Efficient randomized tensor-based algorithms for function approximation and low-rank kernel interactions. Adv. Comput. Math. 48 (2022)
Strössner, C., Kressner, D.: Fast global spectral methods for three-dimensional partial differential equations. IMA J. Numer. Anal. pp. 1–24 (2022)
ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032273727642684735
TownsendATrefethenLNAn extension of Chebfun to two dimensionsSIAM J. Sci. Comput.201335C495C5183138114
RahnamayanSTizhooshHRSalamaMMAA novel population initialization method for accelerating evolutionary algorithmsComput. Math. Appl.200753160516142332308
BungartzH-JGriebelMSparse gridsActa Numer.2004131472692249147
Haberstich, C.: Adaptive approximation of high-dimensional functions with tree tensor networks for Uncertainty Quantification. PhD thesis, École centrale de Nantes, (2020)
Grelier, E., Nouy, A., Chevreuil, M.: Learning with tree-based tensor formats. arXiv:1811.04455 (2018)
BebendorfMApproximation of boundary element matricesNumer. Math.2000865655891794343
OseledetsITyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043270882566459
Chertkov, A., Ryzhakov, G., Oseledets, I.: Black box approximation in the tensor train format initialized by ANOVA decomposition. arXiv:2208.03380 (2022)
KhoromskaiaVKhoromskijBNTensor Numerical Methods in Quantum Chemistry2018BerlinDe Gruyter
MasonJCNear-best multivariate approximation by Fourier series, Chebyshev series and Chebyshev interpolationJ. Approx. Theory198028349358589990
FriedmanJHMultivariate adaptive regression splinesAnn. Statist.19911911411091842
JamilMYangX-SA literature survey of benchmark functions for global optimisation problemsInt. J. Math. Model. Numer. Optim.20134150194
Trefethen, L.N.: Approximation theory and approximation practice. SIAM, (2013)
Griebel, M., Harbrecht, H.: Analysis of tensor approximation schemes for continuous functions. Found. Comput. Math. 1–22 (2021)
MinsterRSaibabaAKKilmerMERandomized algorithms for low-rank tensor decompositions in the Tucker formatSIAM J. Math. Data Sci.202021892154068329
OsinskyAITensor trains approximation estimates in the Chebyshev normComput. Math. Math. Phys.2019592012063950764
Ballester-RipollRParedesEGPajarolaRSobol tensor trains for global sensitivity analysisReliab. Eng. Syst. Saf.2019183311322
AnJOwenAQuasi-regressionJ. Complexity2001175886071881660
CortinovisAKressnerDLow-rank approximation in the Frobenius norm by column and row subset selectionSIAM J. Matrix Anal. Appl.202041165116734171582
Koepf, W.: Hypergeometric Summation. Adv. Lect. Math., Friedr. Vieweg & Sohn, Braunschweig, (1998)
DolgovSKressnerDStrössnerCFunctional Tucker approximation using Chebyshev interpolationSIAM J. Sci. Comput.202143A2190A22104273696
SchneiderRUschmajewAApproximation rates for the hierarchical tensor format in periodic Sobolev spacesJ. Complexity20143056713166521
ClenshawCWCurtisARA method for numerical integration on an automatic computerNumer. Math.19602197205117885
GentlemanWMAlgorithm 424: Clenshaw-Curtis quadrature [d1]Commun. ACM197215353355
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009514555002535056
Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition-based differential evolution (ODE) with variable jumping rate. In: IEEE Symp. Found. Comput. Intell. pp. 81–88 (2007)
OrúsRA practical introduction to tensor networks: matrix product states and projected entangled pair statesAnn. Phys.20143491171583244614
BoydJPPetschekRThe relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptionsJ. Sci. Comput.2014591273167725
Savostyanov, D., Oseledets, I.: Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In: 7th Int. Workshop Multidimens. (nD) Syst. pp. 1–8 (2011)
Townsend, A.: Computing with functions in two dimensions. PhD thesis, University of Oxford, (2014)
Xiu, D.: Stochastic collocation methods: a survey. In: Handbook of uncertainty quantification. Springer, pp. 699–716 (2017)
TownsendAOlverSThe automatic solution of partial differential equations using a global spectral methodJ. Comput. Phys.20152991061233384719
Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering design via surrogate modelling: a practical guide. John Wiley & Sons, (2008)
TrefethenLNMultivariate polynomial approximation in the hypercubeProc. Amer. Math. Soc.2017145483748443691999
BachmayrMCohenAKolmogorov widths and low-rank approximations of parametric elliptic PDEsMath. Comp.2017867017243584545
GoreinovSATyrtyshnikovEEZamarashkinNLA theory of pseudoskeleton approximationsLinear Algebra Appl.19972611211448862
Bachmayr, M., Nouy, A., Schneider, R.: Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions. arXiv:2112.01474 (2021)
BigoniDEngsig-KarupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638A2405A24393534473
AurentzJLTrefethenLNChopping a Chebyshev seriesACM Trans. Math. Software2017431213638570
KressnerDToblerCKrylov subspace methods for linear systems with tensor product structureSIAM J. Matrix Anal. Appl.200931168817142644733
CortinovisAKressnerDMasseiSOn maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matricesLinear Algebra Appl.20205932512684066158
GenzAKeastPFairweatherGA package for testing multiple integration subroutinesNumerical Integration1987NATO ASI SeriesSpringer337340
Eigel, M., Gruhlke, R., Marschall, M.: Low-rank tensor reconstruction of concentrated densities with application to Bayesian
D Kressner (10140_CR58) 2011; 32
S Rahnamayan (10140_CR74) 2007; 53
G Beylkin (10140_CR12) 2002; 99
S Chaturantabut (10140_CR16) 2010; 32
WM Gentleman (10140_CR33) 1972; 15
DC Sorensen (10140_CR82) 2016; 38
10140_CR65
10140_CR61
A Qing (10140_CR72) 2006; 44
W Hackbusch (10140_CR48) 2009; 15
M Bebendorf (10140_CR10) 2000; 86
H Moon (10140_CR64) 2012; 54
10140_CR7
10140_CR73
A Cortinovis (10140_CR20) 2020; 593
10140_CR75
10140_CR76
10140_CR3
10140_CR2
10140_CR70
A Townsend (10140_CR88) 2013; 35
10140_CR1
A Genz (10140_CR34) 1987
J Waldvogel (10140_CR96) 2006; 46
T Shi (10140_CR80) 2021; 42
10140_CR77
B Hashemi (10140_CR49) 2017; 39
BN Khoromskij (10140_CR52) 2006; 6
M Jamil (10140_CR50) 2013; 4
10140_CR84
10140_CR85
10140_CR86
S Dolgov (10140_CR28) 2021; 43
10140_CR83
M Bachmayr (10140_CR6) 2017; 86
R Ballester-Ripoll (10140_CR9) 2019; 183
H Dette (10140_CR25) 2010; 52
S Dolgov (10140_CR27) 2013; 34
DV Savostyanov (10140_CR78) 2014; 458
LN Trefethen (10140_CR89) 2007; 1
D Kressner (10140_CR57) 2009; 31
CW Clenshaw (10140_CR18) 1960; 2
10140_CR90
B Michel (10140_CR62) 2022; 28
V Khoromskaia (10140_CR51) 2018
A Gorodetsky (10140_CR37) 2018; 37
10140_CR95
LN Trefethen (10140_CR91) 2017; 59
10140_CR98
M Griebel (10140_CR43) 2023; 92
10140_CR93
L Grasedyck (10140_CR40) 2013; 36
10140_CR17
W Hackbusch (10140_CR47) 2007; 23
10140_CR99
R Minster (10140_CR63) 2020; 2
D Bigoni (10140_CR13) 2016; 38
A Cortinovis (10140_CR19) 2020; 41
A Townsend (10140_CR87) 2015; 299
RB Gramacy (10140_CR39) 2009; 51
LR Tucker (10140_CR94) 1966; 31
DP Woodruff (10140_CR97) 2014; 10
Z Qin (10140_CR71) 2022; 35
10140_CR26
LN Trefethen (10140_CR92) 2017; 145
10140_CR29
10140_CR23
10140_CR24
JL Aurentz (10140_CR5) 2017; 43
H-J Bungartz (10140_CR15) 2004; 13
A Dektor (10140_CR22) 2020; 404
SA Goreinov (10140_CR35) 1997; 261
A Gorodetsky (10140_CR38) 2019; 347
J An (10140_CR4) 2001; 17
10140_CR30
10140_CR31
L De Lathauwer (10140_CR21) 2000; 21
C Haberstich (10140_CR45) 2023; 11
10140_CR36
TG Kolda (10140_CR55) 2009; 51
R Orús (10140_CR66) 2014; 349
IV Oseledets (10140_CR68) 2011; 33
P-G Martinsson (10140_CR59) 2020; 29
AI Osinsky (10140_CR69) 2019; 59
10140_CR41
JP Boyd (10140_CR14) 2014; 59
10140_CR42
J Ballani (10140_CR8) 2013; 438
JH Friedman (10140_CR32) 1991; 19
MB Soley (10140_CR81) 2022; 18
10140_CR44
I Oseledets (10140_CR67) 2010; 432
10140_CR46
K Konakli (10140_CR56) 2016; 321
JC Mason (10140_CR60) 1980; 28
R Schneider (10140_CR79) 2014; 30
10140_CR53
10140_CR54
M Bebendorf (10140_CR11) 2003; 70
References_xml – reference: Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, (2014)
– reference: CortinovisAKressnerDLow-rank approximation in the Frobenius norm by column and row subset selectionSIAM J. Matrix Anal. Appl.202041165116734171582
– reference: TrefethenLNCubature, approximation, and isotropy in the hypercubeSIAM Rev.2017594694913683677
– reference: DolgovSKressnerDStrössnerCFunctional Tucker approximation using Chebyshev interpolationSIAM J. Sci. Comput.202143A2190A22104273696
– reference: Ali, M., Nouy, A.: Approximation with tensor networks. Part III: Multivariate approximation. arXiv:2101.11932 (2021)
– reference: Savostyanov, D., Oseledets, I.: Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In: 7th Int. Workshop Multidimens. (nD) Syst. pp. 1–8 (2011)
– reference: FriedmanJHMultivariate adaptive regression splinesAnn. Statist.19911911411091842
– reference: BeylkinGMohlenkampMJNumerical operator calculus in higher dimensionsProc. Natl. Acad. Sci. USA20029910246102511918798
– reference: DektorAVenturiDDynamically orthogonal tensor methods for high-dimensional nonlinear PDEsJ. Comput. Phys.20204041035014044728
– reference: AnJOwenAQuasi-regressionJ. Complexity2001175886071881660
– reference: Strössner, C., Kressner, D.: Fast global spectral methods for three-dimensional partial differential equations. IMA J. Numer. Anal. pp. 1–24 (2022)
– reference: GentlemanWMAlgorithm 424: Clenshaw-Curtis quadrature [d1]Commun. ACM197215353355
– reference: MinsterRSaibabaAKKilmerMERandomized algorithms for low-rank tensor decompositions in the Tucker formatSIAM J. Math. Data Sci.202021892154068329
– reference: GorodetskyAKaramanSMarzoukYA continuous analogue of the tensor-train decompositionComput. Methods Appl. Mech. Eng.201934759843896164
– reference: GoreinovSATyrtyshnikovEEZamarashkinNLA theory of pseudoskeleton approximationsLinear Algebra Appl.19972611211448862
– reference: ShiTTownsendAOn the compressibility of tensorsSIAM J. Matrix Anal. Appl.2021422752984223220
– reference: SoleyMBBergoldPGorodetskyABatistaVSFunctional Tensor-Train Chebyshev method for multidimensional quantum dynamics simulationsJ. Chem. Theory Comput.2022182536
– reference: TownsendATrefethenLNAn extension of Chebfun to two dimensionsSIAM J. Sci. Comput.201335C495C5183138114
– reference: Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets. Retrieved November 14, 2022, from https://www.sfu.ca/~ssurjano/, (2013)
– reference: Haberstich, C.: Adaptive approximation of high-dimensional functions with tree tensor networks for Uncertainty Quantification. PhD thesis, École centrale de Nantes, (2020)
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009514555002535056
– reference: BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical Tucker formatLinear Algebra Appl.20134386396572996358
– reference: DetteHPepelyshevAGeneralized Latin hypercube design for computer experimentsTechnometrics2010524214292789249
– reference: TrefethenLNComputing numerically with functions instead of numbersMath. Comput. Sci.200719192384813
– reference: Ali, M., Nouy, A.: Approximation with tensor networks. Part II: Approximation rates for smoothness classes. arXiv:2007.00128 (2020)
– reference: GenzAKeastPFairweatherGA package for testing multiple integration subroutinesNumerical Integration1987NATO ASI SeriesSpringer337340
– reference: Dektor, A., Venturi, D.: Tensor rank reduction via coordinate flows. arXiv:2207.11955 (2022)
– reference: MichelBNouyALearning with tree tensor networks: complexity estimates and model selectionBernoulli2022289109364388924
– reference: BigoniDEngsig-KarupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638A2405A24393534473
– reference: HashemiBTrefethenLNChebfun in three dimensionsSIAM J. Sci. Comput.201739C341C3633704268
– reference: Eigel, M., Gruhlke, R., Marschall, M.: Low-rank tensor reconstruction of concentrated densities with application to Bayesian inversion. Stat. Comput., 32 , p. Paper No. 27 (2022)
– reference: Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition-based differential evolution (ODE) with variable jumping rate. In: IEEE Symp. Found. Comput. Intell. pp. 81–88 (2007)
– reference: SchneiderRUschmajewAApproximation rates for the hierarchical tensor format in periodic Sobolev spacesJ. Complexity20143056713166521
– reference: OseledetsITyrtyshnikovETT-cross approximation for multidimensional arraysLinear Algebra Appl.201043270882566459
– reference: Ballester-RipollRParedesEGPajarolaRSobol tensor trains for global sensitivity analysisReliab. Eng. Syst. Saf.2019183311322
– reference: QinZLidiakAGongZTangGWakinMBZhuZError analysis of tensor-train cross approximationAdv. Neural Inf. Process. Syst.2022351423614249
– reference: Khoromskij, B.N.: Tensor numerical methods in scientific computing. Radon Ser, vol. 19. Comput. Appl. Math, De Gruyter. Berlin (2018)
– reference: WaldvogelJFast construction of the Fejér and Clenshaw-Curtis quadrature rulesBIT2006461952022214855
– reference: HackbuschWKühnSA new scheme for the tensor representationJ. Fourier Anal. Appl.2009157067222563780
– reference: Xiu, D.: Stochastic collocation methods: a survey. In: Handbook of uncertainty quantification. Springer, pp. 699–716 (2017)
– reference: TownsendAOlverSThe automatic solution of partial differential equations using a global spectral methodJ. Comput. Phys.20152991061233384719
– reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631279311205395
– reference: KonakliKSudretBPolynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansionsJ. Comput. Phys.2016321114411693527610
– reference: Sauter, S.A., Schwab, C.: Boundary element methods. Springer Ser, vol. 39. Springer, Comput. Math. (2011)
– reference: Vanaret, C., Gotteland, J.-B., Durand, N., Alliot, J.-M.: Certified global minima for a benchmark of difficult optimization problems. arXiv:2003.09867 (2020)
– reference: BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701241972724
– reference: AurentzJLTrefethenLNChopping a Chebyshev seriesACM Trans. Math. Software2017431213638570
– reference: ChaturantabutSSorensenDCNonlinear model reduction via discrete empirical interpolationSIAM J. Sci. Comput.201032273727642684735
– reference: Mason, J.C., Handscomb, D.C.: Chebyshev polynomials. Chapman and Hall/CRC, (2002)
– reference: SorensenDCEmbreeMA DEIM induced CUR factorizationSIAM J. Sci. Comput.201638A1454A14823502613
– reference: Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. Cambridge University Press (2010)
– reference: DolgovSKhoromskijBTwo-level QTT-Tucker format for optimized tensor calculusSIAM J. Matrix Anal. Appl.2013345936233055240
– reference: MartinssonP-GTroppJARandomized numerical linear algebra: foundations and algorithmsActa Numer.2020294035724189294
– reference: HackbuschWKhoromskijBNTensor-product approximation to operators and functions in high dimensionsJ. Complexity2007236977142372023
– reference: Psenka, M., Boumal, N.: Second-order optimization for tensors with fixed tensor-train rank. arXiv:2011.13395 (2020)
– reference: TrefethenLNMultivariate polynomial approximation in the hypercubeProc. Amer. Math. Soc.2017145483748443691999
– reference: GorodetskyAKaramanSMarzoukYHigh-dimensional stochastic optimal control using continuous tensor decompositionsInt. J. Robot. Res.201837340377
– reference: BoydJPPetschekRThe relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptionsJ. Sci. Comput.2014591273167725
– reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133229523172837533
– reference: RahnamayanSTizhooshHRSalamaMMAA novel population initialization method for accelerating evolutionary algorithmsComput. Math. Appl.200753160516142332308
– reference: SavostyanovDVQuasioptimality of maximum-volume cross interpolation of tensorsLinear Algebra Appl.20144582172443231817
– reference: KhoromskijBNStructured rank-(R1,⋯,RD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_1,\dots, R_D)$$\end{document} decomposition of function-related tensors in RD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R} ^D$$\end{document}Comput. Methods. Appl. Math.200661942202280939
– reference: KressnerDToblerCKrylov subspace methods for linear systems with tensor product structureSIAM J. Matrix Anal. Appl.200931168817142644733
– reference: Grelier, E., Nouy, A., Chevreuil, M.: Learning with tree-based tensor formats. arXiv:1811.04455 (2018)
– reference: JamilMYangX-SA literature survey of benchmark functions for global optimisation problemsInt. J. Math. Model. Numer. Optim.20134150194
– reference: OrúsRA practical introduction to tensor networks: matrix product states and projected entangled pair statesAnn. Phys.20143491171583244614
– reference: Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: 51st Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 329–338 (2010)
– reference: HaberstichCNouyAPerrinGActive learning of tree tensor networks using optimal least squaresSIAM/ASA J. Uncertain. Quantif.2023118488764615266
– reference: KhoromskaiaVKhoromskijBNTensor Numerical Methods in Quantum Chemistry2018BerlinDe Gruyter
– reference: Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering design via surrogate modelling: a practical guide. John Wiley & Sons, (2008)
– reference: OsinskyAITensor trains approximation estimates in the Chebyshev normComput. Math. Math. Phys.2019592012063950764
– reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021125312781780272
– reference: GramacyRBLeeHKHAdaptive design and analysis of supercomputer experimentsTechnometrics2009511301452668170
– reference: ClenshawCWCurtisARA method for numerical integration on an automatic computerNumer. Math.19602197205117885
– reference: CortinovisAKressnerDMasseiSOn maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matricesLinear Algebra Appl.20205932512684066158
– reference: WoodruffDPSketching as a tool for numerical linear algebraFound. Trends Theor. Comput. Sci.2014101573285427
– reference: MasonJCNear-best multivariate approximation by Fourier series, Chebyshev series and Chebyshev interpolationJ. Approx. Theory198028349358589990
– reference: Zankin, V.P., Ryzhakov, G.V., Oseledets, I.V.: Gradient descent-based D-optimal design for the least-squares polynomial approximation. arXiv e-prints arXiv:1806.06631 (2018)
– reference: BachmayrMCohenAKolmogorov widths and low-rank approximations of parametric elliptic PDEsMath. Comp.2017867017243584545
– reference: Townsend, A.: Computing with functions in two dimensions. PhD thesis, University of Oxford, (2014)
– reference: Chertkov, A., Ryzhakov, G., Oseledets, I.: Black box approximation in the tensor train format initialized by ANOVA decomposition. arXiv:2208.03380 (2022)
– reference: GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM-Mitt.20133653783095914
– reference: Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT, Cambridge, MA, (2017)
– reference: BungartzH-JGriebelMSparse gridsActa Numer.2004131472692249147
– reference: Griebel, M., Harbrecht, H.: Analysis of tensor approximation schemes for continuous functions. Found. Comput. Math. 1–22 (2021)
– reference: GriebelMHarbrechtHSchneiderRLow-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothnessMath. Comp.202392172917464570339
– reference: KressnerDToblerCLow-rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132128813162854614
– reference: Koepf, W.: Hypergeometric Summation. Adv. Lect. Math., Friedr. Vieweg & Sohn, Braunschweig, (1998)
– reference: QingADynamic differential evolution strategy and applications in electromagnetic inverse scattering problemsIEEE Trans. Geosci. Remote Sens.200644116125
– reference: Ali, M., Nouy, A.: Approximation with tensor networks. Part I: Approximation spaces. arXiv:2007.00118 (2020)
– reference: Trunschke, P., Nouy, A., Eigel, M.: Weighted sparsity and sparse tensor networks for least squares approximation. arXiv:2310.08942 (2023)
– reference: Sudret, B., Marelli, S., Wiart, J.: Surrogate models for uncertainty quantification: an overview. In: 17th Eur. Conf. Antennas Propag. pp. 793–797 (2017)
– reference: BebendorfMApproximation of boundary element matricesNumer. Math.2000865655891794343
– reference: Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Ser, vol. 42. Springer, Comput. Math. (2012)
– reference: MoonHDeanAMSantnerTJTwo-stage sensitivity-based group screening in computer experimentsTechnometrics2012543763873006387
– reference: Trefethen, L.N.: Approximation theory and approximation practice. SIAM, (2013)
– reference: Bachmayr, M., Nouy, A., Schneider, R.: Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions. arXiv:2112.01474 (2021)
– reference: Saibaba, A.K., Minster, R., Kilmer, M.E.: Efficient randomized tensor-based algorithms for function approximation and low-rank kernel interactions. Adv. Comput. Math. 48 (2022)
– reference: Dieterich, J., Hartke, B.: Empirical review of standard benchmark functions using evolutionary global optimization. Applied Math. 3 (2012)
– volume: 39
  start-page: C341
  year: 2017
  ident: 10140_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1083803
– volume: 53
  start-page: 1605
  year: 2007
  ident: 10140_CR74
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.07.013
– volume: 46
  start-page: 195
  year: 2006
  ident: 10140_CR96
  publication-title: BIT
  doi: 10.1007/s10543-006-0045-4
– start-page: 337
  volume-title: Numerical Integration
  year: 1987
  ident: 10140_CR34
  doi: 10.1007/978-94-009-3889-2_33
– volume: 11
  start-page: 848
  year: 2023
  ident: 10140_CR45
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/21M1415911
– volume: 299
  start-page: 106
  year: 2015
  ident: 10140_CR87
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.06.031
– volume: 15
  start-page: 706
  year: 2009
  ident: 10140_CR48
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-009-9094-9
– ident: 10140_CR54
  doi: 10.1007/978-3-322-92918-1
– volume: 51
  start-page: 455
  year: 2009
  ident: 10140_CR55
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume-title: Tensor Numerical Methods in Quantum Chemistry
  year: 2018
  ident: 10140_CR51
  doi: 10.1515/9783110365832
– volume: 36
  start-page: 53
  year: 2013
  ident: 10140_CR40
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201310004
– volume: 31
  start-page: 279
  year: 1966
  ident: 10140_CR94
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 31
  start-page: 1688
  year: 2009
  ident: 10140_CR57
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090756843
– ident: 10140_CR26
  doi: 10.4236/am.2012.330215
– volume: 32
  start-page: 1288
  year: 2011
  ident: 10140_CR58
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/100799010
– ident: 10140_CR84
  doi: 10.23919/EuCAP.2017.7928679
– volume: 59
  start-page: 201
  year: 2019
  ident: 10140_CR69
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S096554251902012X
– ident: 10140_CR31
  doi: 10.1002/9780470770801
– ident: 10140_CR36
– ident: 10140_CR95
– volume: 43
  start-page: 1
  year: 2017
  ident: 10140_CR5
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/2998442
– volume: 18
  start-page: 25
  year: 2022
  ident: 10140_CR81
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00941
– volume: 59
  start-page: 469
  year: 2017
  ident: 10140_CR91
  publication-title: SIAM Rev.
  doi: 10.1137/16M1066312
– ident: 10140_CR3
– volume: 70
  start-page: 1
  year: 2003
  ident: 10140_CR11
  publication-title: Computing
  doi: 10.1007/s00607-002-1469-6
– ident: 10140_CR75
  doi: 10.1007/s10444-022-09979-7
– volume: 92
  start-page: 1729
  year: 2023
  ident: 10140_CR43
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3813
– volume: 23
  start-page: 697
  year: 2007
  ident: 10140_CR47
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2007.03.007
– volume: 35
  start-page: 14236
  year: 2022
  ident: 10140_CR71
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 321
  start-page: 1144
  year: 2016
  ident: 10140_CR56
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.06.005
– volume: 42
  start-page: 275
  year: 2021
  ident: 10140_CR80
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/20M1316639
– ident: 10140_CR85
– volume: 432
  start-page: 70
  year: 2010
  ident: 10140_CR67
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.07.024
– volume: 183
  start-page: 311
  year: 2019
  ident: 10140_CR9
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.007
– volume: 404
  start-page: 103501
  year: 2020
  ident: 10140_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109125
– volume: 2
  start-page: 189
  year: 2020
  ident: 10140_CR63
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/19M1261043
– volume: 35
  start-page: C495
  year: 2013
  ident: 10140_CR88
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130908002
– ident: 10140_CR17
  doi: 10.1137/22M1514088
– ident: 10140_CR73
  doi: 10.1109/FOCI.2007.372151
– volume: 6
  start-page: 194
  year: 2006
  ident: 10140_CR52
  publication-title: Comput. Methods. Appl. Math.
  doi: 10.2478/cmam-2006-0010
– volume: 51
  start-page: 130
  year: 2009
  ident: 10140_CR39
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.0015
– volume: 30
  start-page: 56
  year: 2014
  ident: 10140_CR79
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2013.10.001
– volume: 86
  start-page: 701
  year: 2017
  ident: 10140_CR6
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3132
– volume: 34
  start-page: 593
  year: 2013
  ident: 10140_CR27
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120882597
– ident: 10140_CR76
  doi: 10.1007/978-3-540-68093-2
– ident: 10140_CR93
– volume: 43
  start-page: A2190
  year: 2021
  ident: 10140_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1356944
– volume: 37
  start-page: 340
  year: 2018
  ident: 10140_CR37
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917753994
– volume: 33
  start-page: 2295
  year: 2011
  ident: 10140_CR68
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– ident: 10140_CR65
– volume: 28
  start-page: 349
  year: 1980
  ident: 10140_CR60
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(80)90069-6
– volume: 458
  start-page: 217
  year: 2014
  ident: 10140_CR78
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2014.06.006
– volume: 21
  start-page: 1253
  year: 2000
  ident: 10140_CR21
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– ident: 10140_CR24
  doi: 10.1109/FOCS.2010.38
– ident: 10140_CR29
– volume: 15
  start-page: 353
  year: 1972
  ident: 10140_CR33
  publication-title: Commun. ACM
  doi: 10.1145/355602.355603
– ident: 10140_CR46
  doi: 10.1007/978-3-642-28027-6
– volume: 29
  start-page: 403
  year: 2020
  ident: 10140_CR59
  publication-title: Acta Numer.
  doi: 10.1017/S0962492920000021
– ident: 10140_CR77
  doi: 10.1109/nDS.2011.6076873
– volume: 13
  start-page: 147
  year: 2004
  ident: 10140_CR15
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 28
  start-page: 910
  year: 2022
  ident: 10140_CR62
  publication-title: Bernoulli
  doi: 10.3150/21-BEJ1371
– volume: 10
  start-page: 157
  year: 2014
  ident: 10140_CR97
  publication-title: Found. Trends Theor. Comput. Sci.
  doi: 10.1561/0400000060
– volume: 52
  start-page: 421
  year: 2010
  ident: 10140_CR25
  publication-title: Technometrics
  doi: 10.1198/TECH.2010.09157
– volume: 38
  start-page: A1454
  year: 2016
  ident: 10140_CR82
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140978430
– ident: 10140_CR2
– volume: 86
  start-page: 565
  year: 2000
  ident: 10140_CR10
  publication-title: Numer. Math.
  doi: 10.1007/PL00005410
– ident: 10140_CR42
  doi: 10.1007/s10208-021-09544-6
– ident: 10140_CR53
  doi: 10.1515/9783110365917
– volume: 44
  start-page: 116
  year: 2006
  ident: 10140_CR72
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.859347
– ident: 10140_CR90
– ident: 10140_CR61
  doi: 10.1201/9781420036114
– volume: 4
  start-page: 150
  year: 2013
  ident: 10140_CR50
  publication-title: Int. J. Math. Model. Numer. Optim.
– ident: 10140_CR99
– ident: 10140_CR70
– volume: 32
  start-page: 2737
  year: 2010
  ident: 10140_CR16
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– ident: 10140_CR83
  doi: 10.1093/imanum/drac030
– volume: 41
  start-page: 1651
  year: 2020
  ident: 10140_CR19
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/19M1281848
– volume: 261
  start-page: 1
  year: 1997
  ident: 10140_CR35
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(96)00301-1
– ident: 10140_CR7
– volume: 2
  start-page: 197
  year: 1960
  ident: 10140_CR18
  publication-title: Numer. Math.
  doi: 10.1007/BF01386223
– volume: 38
  start-page: A2405
  year: 2016
  ident: 10140_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1036919
– ident: 10140_CR41
  doi: 10.14293/P2199-8442.1.SOP-MATH.JHXASX.v1
– volume: 19
  start-page: 1
  year: 1991
  ident: 10140_CR32
  publication-title: Ann. Statist.
– ident: 10140_CR23
  doi: 10.1016/j.jcp.2023.112378
– volume: 99
  start-page: 10246
  year: 2002
  ident: 10140_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.112329799
– volume: 349
  start-page: 117
  year: 2014
  ident: 10140_CR66
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2014.06.013
– volume: 593
  start-page: 251
  year: 2020
  ident: 10140_CR20
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.02.010
– ident: 10140_CR30
  doi: 10.1007/s11222-022-10087-1
– volume: 17
  start-page: 588
  year: 2001
  ident: 10140_CR4
  publication-title: J. Complexity
  doi: 10.1006/jcom.2001.0588
– volume: 347
  start-page: 59
  year: 2019
  ident: 10140_CR38
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.12.015
– volume: 145
  start-page: 4837
  year: 2017
  ident: 10140_CR92
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/13623
– volume: 59
  start-page: 1
  year: 2014
  ident: 10140_CR14
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9751-7
– ident: 10140_CR1
– ident: 10140_CR44
– volume: 54
  start-page: 376
  year: 2012
  ident: 10140_CR64
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.725994
– ident: 10140_CR86
– volume: 438
  start-page: 639
  year: 2013
  ident: 10140_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2011.08.010
– volume: 1
  start-page: 9
  year: 2007
  ident: 10140_CR89
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-007-0001-y
– ident: 10140_CR98
  doi: 10.1007/978-3-319-12385-1_26
SSID ssj0009675
Score 2.384303
Snippet This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Chebyshev approximation
Compressing
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Format
Functionals
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Tensors
Visualization
Title Approximation in the extended functional tensor train format
URI https://link.springer.com/article/10.1007/s10444-024-10140-9
https://www.proquest.com/docview/3061234323
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DARwFRKJUHNrCU-iuxxBJVLRWoTFQqUxQnjtQlRU2R-PlcnIQAgoHZlod3tu_d-e4Z4Dr2MimZTqhJEkGF1CNqgkxRoRKjmTVx6qoq509qthAPS7msm8KKptq9eZJ0N_WXZjchBEWfQkeuKFHvQldi7F7u6wULW6ld5eR1cZKmGA0EdavM72t8d0ctx_zxLOq8zfQIDmqaSMLKrsewY_MeHNaUkdQHsujB_vxTdrU4gbuwVAh_X1XtiGSVExwkTZ6blD6sSv2Rsm59vSHugwhS8dZTWEwnz-MZrb9HoAkfiS0V1iSeb7mwAYKgggTZFFMG-Rv3Yi6VMVZqZA8co1-hPcuy1GfIqFIpYs_4Pj-DTr7O7TkQH0lbqtPYlOIyyEl07KFlU5n5vpdZI_tw06AUvVYqGFGrd1xiGiGmkcM00n0YNEBG9YkoIu6EXgRnvA-3Dbjt8N-rXfxv-iXssdK-LlEygM5282avkDdszRC64f3L42QIu2M1HrpN8wEpdrnN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hK44_EEktVURVoO7VSNytOHKlLitoi8fM5OwkVFQzMtjy8s3XvznfvAO6TIBciVCk1acopF6pDTZxLymVqVGhNkvmqytFYDqb8dSZmlUyO64XZ-r93LW6cc4qehHZ8KaLahT2OkbLTye_J3kZgV3pRXdykKMYAcdUg8_sZP53QhllufYZ6H9M_gaOKHJJuac1T2LFFE44rokiqZ7hqwuHoW2x1dQZPXacL_jkvmxDJvCC4SOrsNnGeq0z4EVetvlgSPxaClGz1HKb950lvQKuhCDRlHb6m3Jo0iCzjNsbwScYpcqhQGmRtLEiYkMZYoZAzMIx5uQpsmGdRiDwqEzwJTBSxC2gUi8JeAomQqmUqS4yTlEEmopIA7ZmJPIqC3BrRgocaJf1eal_ojcqxw1QjptpjqlUL2jWQunoHK828vAtnIWvBYw3uZvnv067-t_0O9geT0VAPX8Zv13AQOlv7VEkbGuvlh71B5rA2t_7KfAFra7Yu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGCR-JHEEksFVOXRioFK3aw4caQuadUGiZ-P7SSkIBiYbXn4zvZ9d777DHAZexnnRCRYJQnDjAsfqygLMAsSJYhWceqqKoejYDBmTxM-Wenid9Xu9ZNk2dNgVZry4maeZjcrjW-MMWz8C_ZdgaJYhw1zHfu2qGtMeo3sbuCkds0kgU1kEFVtM7-v8d01NXzzxxOp8zz9PdipKCPqlTbehzWdt2G3oo-oOpzLNmwPvyRYlwdw27Nq4R_TsjURTXNkBlGd80bWn5VpQGRr2GcL5D6LQCWHPYRx_-HtboCrrxJwQn1WYKZV4oWaMh2ZoCqIEsOsSKAMl6NeTHmglObCMAlqImEmPE2yNCSGXaWcxZ4KQ3oErXyW62NAoSFwqUhjZYVmDD8RsWesnPIsDL1MK96BqxolOS8VMWSjfWwxlQZT6TCVogPdGkhZnY6lpE70hVFCO3Bdg9sM_73ayf-mX8Dm631fvjyOnk9hi1hTu_xJF1rF4l2fGTpRqHO3Yz4BHxK-iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+in+the+extended+functional+tensor+train+format&rft.jtitle=Advances+in+computational+mathematics&rft.au=Str%C3%B6ssner%2C+Christoph&rft.au=Sun%2C+Bonan&rft.au=Kressner%2C+Daniel&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=3&rft_id=info:doi/10.1007%2Fs10444-024-10140-9&rft.externalDocID=10_1007_s10444_024_10140_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon