Strain-engineering on GeSe: Raman spectroscopy study
Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental w...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 23; no. 47; pp. 26997 - 274 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.
GeSe has unique photoelectric properties and an adjustable band gap. We report a detailed anisotropic Raman study of GeSe flakes under uniaxial tension strain. We achieved effective control of the GeSe lattice, modulating its anisotropic electric and optical properties. |
---|---|
AbstractList | Among the IV–VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe. Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe. Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe. GeSe has unique photoelectric properties and an adjustable band gap. We report a detailed anisotropic Raman study of GeSe flakes under uniaxial tension strain. We achieved effective control of the GeSe lattice, modulating its anisotropic electric and optical properties. |
Author | Wang, Xiao-Ting Zhao, Yi-Feng Wang, Jin-Jin Xiang, Ping-Hua Zheng, Jun-Ding Zhong, Ni Wei, Zhong-Ming Yue, Fang-Yu Duan, Chun-Gang Ma, Ru-Ru Guan, Zhao Deng, Xing |
AuthorAffiliation | Ministry of Education Chinese Academy of Sciences Institute of Semiconductors Key Laboratory of Polar Materials and Devices Shanxi University State Key Laboratory of Superlattices and Microstructures State Key Laboratory of Precision Spectroscopy East China Normal University Collaborative Innovation Center of Extreme Optics Department of Electronics |
AuthorAffiliation_xml | – name: East China Normal University – name: State Key Laboratory of Superlattices and Microstructures – name: Shanxi University – name: Institute of Semiconductors – name: State Key Laboratory of Precision Spectroscopy – name: Chinese Academy of Sciences – name: Department of Electronics – name: Ministry of Education – name: Collaborative Innovation Center of Extreme Optics – name: Key Laboratory of Polar Materials and Devices |
Author_xml | – sequence: 1 givenname: Jin-Jin surname: Wang fullname: Wang, Jin-Jin – sequence: 2 givenname: Yi-Feng surname: Zhao fullname: Zhao, Yi-Feng – sequence: 3 givenname: Jun-Ding surname: Zheng fullname: Zheng, Jun-Ding – sequence: 4 givenname: Xiao-Ting surname: Wang fullname: Wang, Xiao-Ting – sequence: 5 givenname: Xing surname: Deng fullname: Deng, Xing – sequence: 6 givenname: Zhao surname: Guan fullname: Guan, Zhao – sequence: 7 givenname: Ru-Ru surname: Ma fullname: Ma, Ru-Ru – sequence: 8 givenname: Ni surname: Zhong fullname: Zhong, Ni – sequence: 9 givenname: Fang-Yu surname: Yue fullname: Yue, Fang-Yu – sequence: 10 givenname: Zhong-Ming surname: Wei fullname: Wei, Zhong-Ming – sequence: 11 givenname: Ping-Hua surname: Xiang fullname: Xiang, Ping-Hua – sequence: 12 givenname: Chun-Gang surname: Duan fullname: Duan, Chun-Gang |
BookMark | eNptkc1Lw0AQxRepYFu9eBcCXkSI7ma_Em8StRUKitVz2GwnNSXdjbubQ_97UysViqeZw-89Zt4boYGxBhA6J_iGYJrdLohuMZUJ-TxCQ8IEjTOcssF-l-IEjbxfYYwJJ3SI2Dw4VZsYzLI2AK42y8iaaAJzuIve1FqZyLegg7Ne23YT-dAtNqfouFKNh7PfOUYfT4_v-TSevUye8_tZrClhIWYpTvmiZFlS6USWIECUWKZZUpZMKQZcVBkvJSUpyUBXjPNEEc2oogok5oyO0dXOt3X2qwMfinXtNTSNMmA7XyQCMyYkpbxHLw_Qle2c6a_bUlLQlKWkp653lO7_8Q6qonX1WrlNQXCxDbB4IPnrT4DTHsYHsK6DCrU128ia_yUXO4nzem_91wn9BsidfGc |
CitedBy_id | crossref_primary_10_1021_acsami_3c02522 crossref_primary_10_1021_acs_inorgchem_4c03454 crossref_primary_10_1002_adfm_202410783 crossref_primary_10_1002_smll_202400987 crossref_primary_10_7498_aps_73_20241155 crossref_primary_10_1038_s41467_025_57138_5 crossref_primary_10_1039_D4TC03921A crossref_primary_10_1021_acsaelm_4c01791 crossref_primary_10_1088_2053_1583_ac6677 |
Cites_doi | 10.1002/adom.201801311 10.7498/aps.68.20182266 10.1002/smtd.201700143 10.1038/nmat4299 10.1021/jacs.5b10144 10.1002/smtd.201700409 10.1021/acs.nanolett.6b02035 10.1039/C9QM00727J 10.1103/PhysRevB.98.184104 10.1021/acs.nanolett.6b00999 10.1002/adma.201201855 10.1103/PhysRevLett.116.246401 10.1021/acsnano.5b07388 10.1039/C9TA01219B 10.1002/adfm.201600986 10.1021/acsnano.8b06940 10.1039/C9CP05058B 10.1002/jcc.20495 10.1021/acs.nanolett.0c00581 10.1021/acs.nanolett.5b02861 10.1038/ncomms6246 10.1038/nnano.2014.35 10.1039/C7CP07993A 10.1021/nl502865s 10.1016/j.jallcom.2020.155989 10.1063/1.4926508 10.1021/am404847d 10.1021/nn501226z 10.1021/acs.nanolett.5b04540 10.1002/smtd.201700315 10.1039/D0NJ04273K 10.1039/C8TA00129D 10.1016/j.apsusc.2020.146256 10.1021/nl5032293 10.1002/adfm.201704855 10.1021/acsnano.7b02686 10.1007/s12274-017-1646-8 10.1002/advs.201800478 10.1103/PhysRevB.102.165307 10.1002/smll.201700823 10.1021/jacs.7b06314 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d1cp03721h |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 274 |
ExternalDocumentID | 10_1039_D1CP03721H d1cp03721h |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-48085db492fc27be6e6b07892bb4aa4e56f95b731819ecf4552a1c43a3ae70543 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Thu Jul 10 19:56:56 EDT 2025 Mon Jun 30 06:50:42 EDT 2025 Tue Jul 01 00:54:05 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Mon Apr 11 04:40:51 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-48085db492fc27be6e6b07892bb4aa4e56f95b731819ecf4552a1c43a3ae70543 |
Notes | 10.1039/d1cp03721h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6875-4007 0000-0002-5380-4980 0000-0002-6237-0993 0000-0003-2944-4986 |
PQID | 2607638481 |
PQPubID | 2047499 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D1CP03721H crossref_citationtrail_10_1039_D1CP03721H rsc_primary_d1cp03721h proquest_journals_2607638481 proquest_miscellaneous_2604467335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-08 |
PublicationDateYYYYMMDD | 2021-12-08 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mao (D1CP03721H/cit20) 2019; 7 Zhao (D1CP03721H/cit21) 2017; 28 Xue (D1CP03721H/cit19) 2012; 24 Mao (D1CP03721H/cit1) 2018; 2 Saito (D1CP03721H/cit11) 2016; 16 Debnath (D1CP03721H/cit12) 2018; 2 Li (D1CP03721H/cit4) 2014; 9 Liu (D1CP03721H/cit31) 2014; 5 Li (D1CP03721H/cit32) 2017; 27 Ling (D1CP03721H/cit30) 2016; 16 Zhao (D1CP03721H/cit43) 2021; 8 Favron (D1CP03721H/cit8) 2015; 14 Liu (D1CP03721H/cit17) 2020; 4 Parkin (D1CP03721H/cit41) 2016; 10 Liu (D1CP03721H/cit6) 2014; 8 Wang (D1CP03721H/cit22) 2017; 139 Lin (D1CP03721H/cit2) 2015; 137 Villegas (D1CP03721H/cit5) 2016; 16 Zhou (D1CP03721H/cit23) 2018; 5 Rudenko (D1CP03721H/cit7) 2016; 116 Wood (D1CP03721H/cit14) 2014; 14 Yap (D1CP03721H/cit25) 2017; 11 Grimme (D1CP03721H/cit38) 2006; 27 Usachov (D1CP03721H/cit29) 2017; 11 Wang (D1CP03721H/cit13) 2020; 20 Lv (D1CP03721H/cit18) 2018; 6 Li (D1CP03721H/cit35) 2020; 521 Kong (D1CP03721H/cit27) 2018; 98 Xu (D1CP03721H/cit42); 2103 Liu (D1CP03721H/cit3) 2017; 1 Yang (D1CP03721H/cit26) 2019; 7 Li (D1CP03721H/cit36) 2020; 22 Taube (D1CP03721H/cit39) 2015; 107 Huang (D1CP03721H/cit9) 2017; 13 Alencar (D1CP03721H/cit28) 2020; 102 Mao (D1CP03721H/cit34) 2018; 20 Fei (D1CP03721H/cit10) 2014; 14 Thripuranthaka (D1CP03721H/cit40) 2014; 6 Zhu (D1CP03721H/cit33) 2018; 12 Shi (D1CP03721H/cit24) 2015; 15 Bhat (D1CP03721H/cit16) 2020; 843 Zuo (D1CP03721H/cit37) 2019; 68 Bhat (D1CP03721H/cit15) 2020; 44 |
References_xml | – issue: 2103 doi: Xu Deng Ding Sun Liu – volume: 7 start-page: 1801311 year: 2019 ident: D1CP03721H/cit26 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801311 – volume: 68 start-page: 113103 year: 2019 ident: D1CP03721H/cit37 publication-title: Acta Phys. Sin. doi: 10.7498/aps.68.20182266 – volume: 1 start-page: 1700143 year: 2017 ident: D1CP03721H/cit3 publication-title: Small Methods doi: 10.1002/smtd.201700143 – volume: 14 start-page: 826 year: 2015 ident: D1CP03721H/cit8 publication-title: Nat. Mater. doi: 10.1038/nmat4299 – volume: 137 start-page: 15511 year: 2015 ident: D1CP03721H/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10144 – volume: 2 start-page: 1700409 year: 2018 ident: D1CP03721H/cit1 publication-title: Small Methods doi: 10.1002/smtd.201700409 – volume: 16 start-page: 5095 year: 2016 ident: D1CP03721H/cit5 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02035 – volume: 4 start-page: 775 year: 2020 ident: D1CP03721H/cit17 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00727J – volume: 98 start-page: 1804 year: 2018 ident: D1CP03721H/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.184104 – volume: 16 start-page: 4819 year: 2016 ident: D1CP03721H/cit11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00999 – volume: 24 start-page: 4528 year: 2012 ident: D1CP03721H/cit19 publication-title: Adv. Mater. doi: 10.1002/adma.201201855 – volume: 116 start-page: 246401 year: 2016 ident: D1CP03721H/cit7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.246401 – volume: 10 start-page: 4134 year: 2016 ident: D1CP03721H/cit41 publication-title: ACS Nano doi: 10.1021/acsnano.5b07388 – volume: 7 start-page: 11265 year: 2019 ident: D1CP03721H/cit20 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01219B – volume: 27 start-page: 1600986 year: 2017 ident: D1CP03721H/cit32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600986 – volume: 12 start-page: 12512 year: 2018 ident: D1CP03721H/cit33 publication-title: ACS Nano doi: 10.1021/acsnano.8b06940 – volume: 22 start-page: 914 year: 2020 ident: D1CP03721H/cit36 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP05058B – volume: 2103 ident: D1CP03721H/cit42 – volume: 27 start-page: 1787 year: 2006 ident: D1CP03721H/cit38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 20 start-page: 3651 year: 2020 ident: D1CP03721H/cit13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00581 – volume: 15 start-page: 6926 year: 2015 ident: D1CP03721H/cit24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02861 – volume: 5 start-page: 5246 year: 2014 ident: D1CP03721H/cit31 publication-title: Nat. Commun. doi: 10.1038/ncomms6246 – volume: 9 start-page: 372 year: 2014 ident: D1CP03721H/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 20 start-page: 6929 year: 2018 ident: D1CP03721H/cit34 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07993A – volume: 14 start-page: 6393 year: 2014 ident: D1CP03721H/cit10 publication-title: Nano Lett. doi: 10.1021/nl502865s – volume: 843 start-page: 155989 year: 2020 ident: D1CP03721H/cit16 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155989 – volume: 107 start-page: 013105 year: 2015 ident: D1CP03721H/cit39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4926508 – volume: 6 start-page: 1158 year: 2014 ident: D1CP03721H/cit40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404847d – volume: 8 start-page: 377 year: 2021 ident: D1CP03721H/cit43 publication-title: Front. Mater. – volume: 8 start-page: 4033 year: 2014 ident: D1CP03721H/cit6 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 16 start-page: 2260 year: 2016 ident: D1CP03721H/cit30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04540 – volume: 2 start-page: 1700315 year: 2018 ident: D1CP03721H/cit12 publication-title: Small Methods doi: 10.1002/smtd.201700315 – volume: 44 start-page: 17664 year: 2020 ident: D1CP03721H/cit15 publication-title: New J. Chem. doi: 10.1039/D0NJ04273K – volume: 6 start-page: 5032 year: 2018 ident: D1CP03721H/cit18 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00129D – volume: 521 start-page: 146256 year: 2020 ident: D1CP03721H/cit35 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146256 – volume: 14 start-page: 6964 year: 2014 ident: D1CP03721H/cit14 publication-title: Nano Lett. doi: 10.1021/nl5032293 – volume: 28 start-page: 1704855 year: 2017 ident: D1CP03721H/cit21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704855 – volume: 11 start-page: 6336 year: 2017 ident: D1CP03721H/cit29 publication-title: ACS Nano doi: 10.1021/acsnano.7b02686 – volume: 11 start-page: 420 year: 2017 ident: D1CP03721H/cit25 publication-title: Nano Res. doi: 10.1007/s12274-017-1646-8 – volume: 5 start-page: 1800478 year: 2018 ident: D1CP03721H/cit23 publication-title: Adv. Sci. doi: 10.1002/advs.201800478 – volume: 102 start-page: 165307 year: 2020 ident: D1CP03721H/cit28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.165307 – volume: 13 start-page: 1700823 year: 2017 ident: D1CP03721H/cit9 publication-title: Small doi: 10.1002/smll.201700823 – volume: 139 start-page: 14976 year: 2017 ident: D1CP03721H/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06314 |
SSID | ssj0001513 |
Score | 2.4394398 |
Snippet | Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though... Among the IV–VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26997 |
SubjectTerms | Anisotropy Control methods Energy gap Nanoelectronics Optical properties Photoelectric effect Photoelectricity Physical properties Raman spectroscopy Strain analysis |
Title | Strain-engineering on GeSe: Raman spectroscopy study |
URI | https://www.proquest.com/docview/2607638481 https://www.proquest.com/docview/2604467335 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcJW2B7ggXhWBgozgwmEh9q5f3Ko0JUShRNQRERdrd71WIyE7apND-XpmnzYiQsDFstajtTMzmdfOA6HXVcWVkKM4lSOBqQhrzELweTivCGVpSCuhTnQ_XSTTJZ2t4tVgcNvLWtpt-VvxY29dyf9QFdaArqpK9h8o6zeFBbgH-sIVKAzXv6LxpR7wgGXXU1DF_j_IS11w_oWp-LwupVQtK9vNba-ZrLVHF45Mwg1-M3dqyQQ9bnTQYDEe-0KwGbxyZloPfGVW8Sm5scaAHC05vl2x1kPvGny2duuyg1-tWYsL-8RvZAMQUaiTOTLPMibM4XJMdQ6J_eCeWKUJweCG26bX_TUzIM7JYlN7bHnOtOJ0kjXJTSKvVdPqwJzu1QEjolqoVqHYjAj4t1edpnOn-xefy_PlfF4Wk1VxgI4i8DBARB6dToqPc6_GwRQipjTNfLrrbUvyd93ev1oznYtycO3mx2g7pbiP7lkHIzg13PIADWTzEN3x2HqE6O9cE7RNoLjmfaB5JujzTKB55jFank-K8RTb2RlYkJBuMc3Alq44zaNaRCmXiUy4miwQcU4ZozJO6jzmKUj0MJeipnEcsVBQwgiTKZjx5BgdNm0jn6AgSeI6I4QSCeZelmZZDFYsi4gktSBVJIbojcNBKWxjefVDvpc6wYHk5Vk4Xmh8TYfolYfdmHYqe6FOHCpL-3e7KcHxBl2opj8M0Uv_GHCnTrhYI9udhqGg-QmJh-gYSODf0VHs6Z_3fobudjx-gg631zv5HMzOLX9hGeQnN5iBCQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-engineering+on+GeSe%3A+Raman+spectroscopy+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Jin-Jin%2C+Wang&rft.au=Yi-Feng%2C+Zhao&rft.au=Jun-Ding%2C+Zheng&rft.au=Xiao-Ting%2C+Wang&rft.date=2021-12-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=47&rft.spage=26997&rft.epage=27004&rft_id=info:doi/10.1039%2Fd1cp03721h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |