Strain-engineering on GeSe: Raman spectroscopy study

Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental w...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 23; no. 47; pp. 26997 - 274
Main Authors Wang, Jin-Jin, Zhao, Yi-Feng, Zheng, Jun-Ding, Wang, Xiao-Ting, Deng, Xing, Guan, Zhao, Ma, Ru-Ru, Zhong, Ni, Yue, Fang-Yu, Wei, Zhong-Ming, Xiang, Ping-Hua, Duan, Chun-Gang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe. GeSe has unique photoelectric properties and an adjustable band gap. We report a detailed anisotropic Raman study of GeSe flakes under uniaxial tension strain. We achieved effective control of the GeSe lattice, modulating its anisotropic electric and optical properties.
AbstractList Among the IV–VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.
Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.
Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe. GeSe has unique photoelectric properties and an adjustable band gap. We report a detailed anisotropic Raman study of GeSe flakes under uniaxial tension strain. We achieved effective control of the GeSe lattice, modulating its anisotropic electric and optical properties.
Author Wang, Xiao-Ting
Zhao, Yi-Feng
Wang, Jin-Jin
Xiang, Ping-Hua
Zheng, Jun-Ding
Zhong, Ni
Wei, Zhong-Ming
Yue, Fang-Yu
Duan, Chun-Gang
Ma, Ru-Ru
Guan, Zhao
Deng, Xing
AuthorAffiliation Ministry of Education
Chinese Academy of Sciences
Institute of Semiconductors
Key Laboratory of Polar Materials and Devices
Shanxi University
State Key Laboratory of Superlattices and Microstructures
State Key Laboratory of Precision Spectroscopy
East China Normal University
Collaborative Innovation Center of Extreme Optics
Department of Electronics
AuthorAffiliation_xml – name: East China Normal University
– name: State Key Laboratory of Superlattices and Microstructures
– name: Shanxi University
– name: Institute of Semiconductors
– name: State Key Laboratory of Precision Spectroscopy
– name: Chinese Academy of Sciences
– name: Department of Electronics
– name: Ministry of Education
– name: Collaborative Innovation Center of Extreme Optics
– name: Key Laboratory of Polar Materials and Devices
Author_xml – sequence: 1
  givenname: Jin-Jin
  surname: Wang
  fullname: Wang, Jin-Jin
– sequence: 2
  givenname: Yi-Feng
  surname: Zhao
  fullname: Zhao, Yi-Feng
– sequence: 3
  givenname: Jun-Ding
  surname: Zheng
  fullname: Zheng, Jun-Ding
– sequence: 4
  givenname: Xiao-Ting
  surname: Wang
  fullname: Wang, Xiao-Ting
– sequence: 5
  givenname: Xing
  surname: Deng
  fullname: Deng, Xing
– sequence: 6
  givenname: Zhao
  surname: Guan
  fullname: Guan, Zhao
– sequence: 7
  givenname: Ru-Ru
  surname: Ma
  fullname: Ma, Ru-Ru
– sequence: 8
  givenname: Ni
  surname: Zhong
  fullname: Zhong, Ni
– sequence: 9
  givenname: Fang-Yu
  surname: Yue
  fullname: Yue, Fang-Yu
– sequence: 10
  givenname: Zhong-Ming
  surname: Wei
  fullname: Wei, Zhong-Ming
– sequence: 11
  givenname: Ping-Hua
  surname: Xiang
  fullname: Xiang, Ping-Hua
– sequence: 12
  givenname: Chun-Gang
  surname: Duan
  fullname: Duan, Chun-Gang
BookMark eNptkc1Lw0AQxRepYFu9eBcCXkSI7ma_Em8StRUKitVz2GwnNSXdjbubQ_97UysViqeZw-89Zt4boYGxBhA6J_iGYJrdLohuMZUJ-TxCQ8IEjTOcssF-l-IEjbxfYYwJJ3SI2Dw4VZsYzLI2AK42y8iaaAJzuIve1FqZyLegg7Ne23YT-dAtNqfouFKNh7PfOUYfT4_v-TSevUye8_tZrClhIWYpTvmiZFlS6USWIECUWKZZUpZMKQZcVBkvJSUpyUBXjPNEEc2oogok5oyO0dXOt3X2qwMfinXtNTSNMmA7XyQCMyYkpbxHLw_Qle2c6a_bUlLQlKWkp653lO7_8Q6qonX1WrlNQXCxDbB4IPnrT4DTHsYHsK6DCrU128ia_yUXO4nzem_91wn9BsidfGc
CitedBy_id crossref_primary_10_1021_acsami_3c02522
crossref_primary_10_1021_acs_inorgchem_4c03454
crossref_primary_10_1002_adfm_202410783
crossref_primary_10_1002_smll_202400987
crossref_primary_10_7498_aps_73_20241155
crossref_primary_10_1038_s41467_025_57138_5
crossref_primary_10_1039_D4TC03921A
crossref_primary_10_1021_acsaelm_4c01791
crossref_primary_10_1088_2053_1583_ac6677
Cites_doi 10.1002/adom.201801311
10.7498/aps.68.20182266
10.1002/smtd.201700143
10.1038/nmat4299
10.1021/jacs.5b10144
10.1002/smtd.201700409
10.1021/acs.nanolett.6b02035
10.1039/C9QM00727J
10.1103/PhysRevB.98.184104
10.1021/acs.nanolett.6b00999
10.1002/adma.201201855
10.1103/PhysRevLett.116.246401
10.1021/acsnano.5b07388
10.1039/C9TA01219B
10.1002/adfm.201600986
10.1021/acsnano.8b06940
10.1039/C9CP05058B
10.1002/jcc.20495
10.1021/acs.nanolett.0c00581
10.1021/acs.nanolett.5b02861
10.1038/ncomms6246
10.1038/nnano.2014.35
10.1039/C7CP07993A
10.1021/nl502865s
10.1016/j.jallcom.2020.155989
10.1063/1.4926508
10.1021/am404847d
10.1021/nn501226z
10.1021/acs.nanolett.5b04540
10.1002/smtd.201700315
10.1039/D0NJ04273K
10.1039/C8TA00129D
10.1016/j.apsusc.2020.146256
10.1021/nl5032293
10.1002/adfm.201704855
10.1021/acsnano.7b02686
10.1007/s12274-017-1646-8
10.1002/advs.201800478
10.1103/PhysRevB.102.165307
10.1002/smll.201700823
10.1021/jacs.7b06314
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cp03721h
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 274
ExternalDocumentID 10_1039_D1CP03721H
d1cp03721h
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c314t-48085db492fc27be6e6b07892bb4aa4e56f95b731819ecf4552a1c43a3ae70543
ISSN 1463-9076
1463-9084
IngestDate Thu Jul 10 19:56:56 EDT 2025
Mon Jun 30 06:50:42 EDT 2025
Tue Jul 01 00:54:05 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Mon Apr 11 04:40:51 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-48085db492fc27be6e6b07892bb4aa4e56f95b731819ecf4552a1c43a3ae70543
Notes 10.1039/d1cp03721h
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6875-4007
0000-0002-5380-4980
0000-0002-6237-0993
0000-0003-2944-4986
PQID 2607638481
PQPubID 2047499
PageCount 8
ParticipantIDs crossref_primary_10_1039_D1CP03721H
crossref_citationtrail_10_1039_D1CP03721H
rsc_primary_d1cp03721h
proquest_journals_2607638481
proquest_miscellaneous_2604467335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-08
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mao (D1CP03721H/cit20) 2019; 7
Zhao (D1CP03721H/cit21) 2017; 28
Xue (D1CP03721H/cit19) 2012; 24
Mao (D1CP03721H/cit1) 2018; 2
Saito (D1CP03721H/cit11) 2016; 16
Debnath (D1CP03721H/cit12) 2018; 2
Li (D1CP03721H/cit4) 2014; 9
Liu (D1CP03721H/cit31) 2014; 5
Li (D1CP03721H/cit32) 2017; 27
Ling (D1CP03721H/cit30) 2016; 16
Zhao (D1CP03721H/cit43) 2021; 8
Favron (D1CP03721H/cit8) 2015; 14
Liu (D1CP03721H/cit17) 2020; 4
Parkin (D1CP03721H/cit41) 2016; 10
Liu (D1CP03721H/cit6) 2014; 8
Wang (D1CP03721H/cit22) 2017; 139
Lin (D1CP03721H/cit2) 2015; 137
Villegas (D1CP03721H/cit5) 2016; 16
Zhou (D1CP03721H/cit23) 2018; 5
Rudenko (D1CP03721H/cit7) 2016; 116
Wood (D1CP03721H/cit14) 2014; 14
Yap (D1CP03721H/cit25) 2017; 11
Grimme (D1CP03721H/cit38) 2006; 27
Usachov (D1CP03721H/cit29) 2017; 11
Wang (D1CP03721H/cit13) 2020; 20
Lv (D1CP03721H/cit18) 2018; 6
Li (D1CP03721H/cit35) 2020; 521
Kong (D1CP03721H/cit27) 2018; 98
Xu (D1CP03721H/cit42); 2103
Liu (D1CP03721H/cit3) 2017; 1
Yang (D1CP03721H/cit26) 2019; 7
Li (D1CP03721H/cit36) 2020; 22
Taube (D1CP03721H/cit39) 2015; 107
Huang (D1CP03721H/cit9) 2017; 13
Alencar (D1CP03721H/cit28) 2020; 102
Mao (D1CP03721H/cit34) 2018; 20
Fei (D1CP03721H/cit10) 2014; 14
Thripuranthaka (D1CP03721H/cit40) 2014; 6
Zhu (D1CP03721H/cit33) 2018; 12
Shi (D1CP03721H/cit24) 2015; 15
Bhat (D1CP03721H/cit16) 2020; 843
Zuo (D1CP03721H/cit37) 2019; 68
Bhat (D1CP03721H/cit15) 2020; 44
References_xml – issue: 2103
  doi: Xu Deng Ding Sun Liu
– volume: 7
  start-page: 1801311
  year: 2019
  ident: D1CP03721H/cit26
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801311
– volume: 68
  start-page: 113103
  year: 2019
  ident: D1CP03721H/cit37
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.68.20182266
– volume: 1
  start-page: 1700143
  year: 2017
  ident: D1CP03721H/cit3
  publication-title: Small Methods
  doi: 10.1002/smtd.201700143
– volume: 14
  start-page: 826
  year: 2015
  ident: D1CP03721H/cit8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4299
– volume: 137
  start-page: 15511
  year: 2015
  ident: D1CP03721H/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10144
– volume: 2
  start-page: 1700409
  year: 2018
  ident: D1CP03721H/cit1
  publication-title: Small Methods
  doi: 10.1002/smtd.201700409
– volume: 16
  start-page: 5095
  year: 2016
  ident: D1CP03721H/cit5
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02035
– volume: 4
  start-page: 775
  year: 2020
  ident: D1CP03721H/cit17
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00727J
– volume: 98
  start-page: 1804
  year: 2018
  ident: D1CP03721H/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.184104
– volume: 16
  start-page: 4819
  year: 2016
  ident: D1CP03721H/cit11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00999
– volume: 24
  start-page: 4528
  year: 2012
  ident: D1CP03721H/cit19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201855
– volume: 116
  start-page: 246401
  year: 2016
  ident: D1CP03721H/cit7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.246401
– volume: 10
  start-page: 4134
  year: 2016
  ident: D1CP03721H/cit41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07388
– volume: 7
  start-page: 11265
  year: 2019
  ident: D1CP03721H/cit20
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01219B
– volume: 27
  start-page: 1600986
  year: 2017
  ident: D1CP03721H/cit32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600986
– volume: 12
  start-page: 12512
  year: 2018
  ident: D1CP03721H/cit33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06940
– volume: 22
  start-page: 914
  year: 2020
  ident: D1CP03721H/cit36
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP05058B
– volume: 2103
  ident: D1CP03721H/cit42
– volume: 27
  start-page: 1787
  year: 2006
  ident: D1CP03721H/cit38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 20
  start-page: 3651
  year: 2020
  ident: D1CP03721H/cit13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00581
– volume: 15
  start-page: 6926
  year: 2015
  ident: D1CP03721H/cit24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02861
– volume: 5
  start-page: 5246
  year: 2014
  ident: D1CP03721H/cit31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6246
– volume: 9
  start-page: 372
  year: 2014
  ident: D1CP03721H/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 20
  start-page: 6929
  year: 2018
  ident: D1CP03721H/cit34
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07993A
– volume: 14
  start-page: 6393
  year: 2014
  ident: D1CP03721H/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl502865s
– volume: 843
  start-page: 155989
  year: 2020
  ident: D1CP03721H/cit16
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155989
– volume: 107
  start-page: 013105
  year: 2015
  ident: D1CP03721H/cit39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926508
– volume: 6
  start-page: 1158
  year: 2014
  ident: D1CP03721H/cit40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404847d
– volume: 8
  start-page: 377
  year: 2021
  ident: D1CP03721H/cit43
  publication-title: Front. Mater.
– volume: 8
  start-page: 4033
  year: 2014
  ident: D1CP03721H/cit6
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 16
  start-page: 2260
  year: 2016
  ident: D1CP03721H/cit30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04540
– volume: 2
  start-page: 1700315
  year: 2018
  ident: D1CP03721H/cit12
  publication-title: Small Methods
  doi: 10.1002/smtd.201700315
– volume: 44
  start-page: 17664
  year: 2020
  ident: D1CP03721H/cit15
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ04273K
– volume: 6
  start-page: 5032
  year: 2018
  ident: D1CP03721H/cit18
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00129D
– volume: 521
  start-page: 146256
  year: 2020
  ident: D1CP03721H/cit35
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146256
– volume: 14
  start-page: 6964
  year: 2014
  ident: D1CP03721H/cit14
  publication-title: Nano Lett.
  doi: 10.1021/nl5032293
– volume: 28
  start-page: 1704855
  year: 2017
  ident: D1CP03721H/cit21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704855
– volume: 11
  start-page: 6336
  year: 2017
  ident: D1CP03721H/cit29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02686
– volume: 11
  start-page: 420
  year: 2017
  ident: D1CP03721H/cit25
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1646-8
– volume: 5
  start-page: 1800478
  year: 2018
  ident: D1CP03721H/cit23
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800478
– volume: 102
  start-page: 165307
  year: 2020
  ident: D1CP03721H/cit28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.165307
– volume: 13
  start-page: 1700823
  year: 2017
  ident: D1CP03721H/cit9
  publication-title: Small
  doi: 10.1002/smll.201700823
– volume: 139
  start-page: 14976
  year: 2017
  ident: D1CP03721H/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06314
SSID ssj0001513
Score 2.4394398
Snippet Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though...
Among the IV–VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26997
SubjectTerms Anisotropy
Control methods
Energy gap
Nanoelectronics
Optical properties
Photoelectric effect
Photoelectricity
Physical properties
Raman spectroscopy
Strain analysis
Title Strain-engineering on GeSe: Raman spectroscopy study
URI https://www.proquest.com/docview/2607638481
https://www.proquest.com/docview/2604467335
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcJW2B7ggXhWBgozgwmEh9q5f3Ko0JUShRNQRERdrd71WIyE7apND-XpmnzYiQsDFstajtTMzmdfOA6HXVcWVkKM4lSOBqQhrzELweTivCGVpSCuhTnQ_XSTTJZ2t4tVgcNvLWtpt-VvxY29dyf9QFdaArqpK9h8o6zeFBbgH-sIVKAzXv6LxpR7wgGXXU1DF_j_IS11w_oWp-LwupVQtK9vNba-ZrLVHF45Mwg1-M3dqyQQ9bnTQYDEe-0KwGbxyZloPfGVW8Sm5scaAHC05vl2x1kPvGny2duuyg1-tWYsL-8RvZAMQUaiTOTLPMibM4XJMdQ6J_eCeWKUJweCG26bX_TUzIM7JYlN7bHnOtOJ0kjXJTSKvVdPqwJzu1QEjolqoVqHYjAj4t1edpnOn-xefy_PlfF4Wk1VxgI4i8DBARB6dToqPc6_GwRQipjTNfLrrbUvyd93ev1oznYtycO3mx2g7pbiP7lkHIzg13PIADWTzEN3x2HqE6O9cE7RNoLjmfaB5JujzTKB55jFank-K8RTb2RlYkJBuMc3Alq44zaNaRCmXiUy4miwQcU4ZozJO6jzmKUj0MJeipnEcsVBQwgiTKZjx5BgdNm0jn6AgSeI6I4QSCeZelmZZDFYsi4gktSBVJIbojcNBKWxjefVDvpc6wYHk5Vk4Xmh8TYfolYfdmHYqe6FOHCpL-3e7KcHxBl2opj8M0Uv_GHCnTrhYI9udhqGg-QmJh-gYSODf0VHs6Z_3fobudjx-gg631zv5HMzOLX9hGeQnN5iBCQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-engineering+on+GeSe%3A+Raman+spectroscopy+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Jin-Jin%2C+Wang&rft.au=Yi-Feng%2C+Zhao&rft.au=Jun-Ding%2C+Zheng&rft.au=Xiao-Ting%2C+Wang&rft.date=2021-12-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=47&rft.spage=26997&rft.epage=27004&rft_id=info:doi/10.1039%2Fd1cp03721h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon