A 50% increase in the terbium-based OLED luminance through reducing the excited-state lifetime due to the introduction of gold nanoparticles
An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanopart...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 51; no. 42; pp. 1665 - 1669 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb)
3
TDZP luminance, which reached 480 cd m
−2
and is the highest result for OLEDs based on aromatic carboxylates.
The first study of the gold nanoparticles introduction into the lanthanide-based OLED demonstrated a 50% increase in the luminance of terbium-based OLED. This effect was proved to be due to the decrease in the excited state lifetime. |
---|---|
AbstractList | An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb)
3
TDZP luminance, which reached 480 cd m
−2
and is the highest result for OLEDs based on aromatic carboxylates. An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb) 3 TDZP luminance, which reached 480 cd m −2 and is the highest result for OLEDs based on aromatic carboxylates. The first study of the gold nanoparticles introduction into the lanthanide-based OLED demonstrated a 50% increase in the luminance of terbium-based OLED. This effect was proved to be due to the decrease in the excited state lifetime. An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb)3TDZP luminance, which reached 480 cd m-2 and is the highest result for OLEDs based on aromatic carboxylates.An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb)3TDZP luminance, which reached 480 cd m-2 and is the highest result for OLEDs based on aromatic carboxylates. An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly due to the improvement in carrier injection and the reduction of the excited-state lifetime. The introduction of plasmon-resonant gold nanoparticles resulted in a 50% increase in the Tb(czb)3TDZP luminance, which reached 480 cd m−2 and is the highest result for OLEDs based on aromatic carboxylates. |
Author | Bolshakova, Anastasia V Kozlov, Makarii I Medved'ko, Aleksei V Goloveshkin, Alexander S Gladkikh, Arseny Yu Vashchenko, Andrey A Utochnikova, Valentina V Latipov, Egor V |
AuthorAffiliation | Leninsky prosp. 47 Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences A.N. Nesmeyanov Institute of Organoelement Compounds M.V. Lomonosov Moscow State University Leninskiy Prospekt P.N. Lebedev Physical Institute 32 A N.D. Zelinsky Institute of Organic Chemistry |
AuthorAffiliation_xml | – name: M.V. Lomonosov Moscow State University – name: Leninsky prosp. 47 – name: P.N. Lebedev Physical Institute – name: Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences – name: Leninskiy Prospekt – name: A.N. Nesmeyanov Institute of Organoelement Compounds – name: N.D. Zelinsky Institute of Organic Chemistry – name: 32 A |
Author_xml | – sequence: 1 givenname: Arseny Yu surname: Gladkikh fullname: Gladkikh, Arseny Yu – sequence: 2 givenname: Makarii I surname: Kozlov fullname: Kozlov, Makarii I – sequence: 3 givenname: Andrey A surname: Vashchenko fullname: Vashchenko, Andrey A – sequence: 4 givenname: Aleksei V surname: Medved'ko fullname: Medved'ko, Aleksei V – sequence: 5 givenname: Alexander S surname: Goloveshkin fullname: Goloveshkin, Alexander S – sequence: 6 givenname: Anastasia V surname: Bolshakova fullname: Bolshakova, Anastasia V – sequence: 7 givenname: Egor V surname: Latipov fullname: Latipov, Egor V – sequence: 8 givenname: Valentina V surname: Utochnikova fullname: Utochnikova, Valentina V |
BookMark | eNptkUtLAzEUhYMoaKsb90JABBFGM8k8l7WtDyi40fWQSW7ayExSkwzof_BHm7aiIC5CLsl3DpdzRmjfWAMInabkOiWsvpFUBkKzrGj30FGalWVSU5bt_8y0OEQj718JoZTk9Ah9TnBOLrA2wgH3EAccVoADuFYPfdLGN4mfFvMZ7oZeG25E_Fw5OyxX2IEchDbLrQLehQ4gEx94ANxpBUH3gOUQebsltAnORkXQ1mCr8NJ2EkdHu-YuaNGBP0YHinceTr7vMXq5mz9PH5LF0_3jdLJIBEuzkFBVlUCqjJZC8oLUMudFqgjNeVsWwJmgqiC8bmtWsrrKWl6xUkEmqkJVvI6BjNHlznft7NsAPjS99gK6jhuwg29oSfMiZ5szRud_0Fc7OBO3ixSLERKWbwyvdpRw1nsHqlk73XP30aSk2RTTzOjseVvMbYTJHzgmxzepBMd197_kbCdxXvxY_3bNvgAO0Jxb |
CitedBy_id | crossref_primary_10_1134_S1070428023120035 crossref_primary_10_31857_S0514749223120030 crossref_primary_10_1039_D2NA00753C |
Cites_doi | 10.1364/OL.37.002019 10.1002/9781119187493 10.1016/j.jlumin.2021.118400 10.1016/j.jlumin.2018.12.027 10.1002/9781119040477 10.1002/adom.202001710 10.1109/LPT.2013.2285257 10.1021/acsami.5b03496 10.1016/j.synthmet.2015.11.024 10.1002/adfm.201906744 10.1002/adom.201801536 10.1038/physci241020a0 10.3390/molecules24071412 10.1016/j.inoche.2012.02.020 10.1002/adfm.201603719 10.1016/j.dyepig.2019.107604 10.1002/adma.202004072 10.1002/ppsc.201800077 10.1016/j.jallcom.2021.161319 10.1002/adfm.201002585 10.1039/B514191E 10.1039/D1DT02269E 10.1063/1.4776664 10.1002/adma.200400271 10.1016/j.orgel.2015.03.053 10.1039/C8DT02911C 10.1039/D1DT01316E 10.1039/C9DT03823J 10.1021/acsami.5b04248 10.1146/annurev.biophys.093008.131321 10.1016/j.ccr.2015.02.018 10.1063/1.3675970 10.1088/1361-6528/ab7588 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2dt02446b |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 1669 |
ExternalDocumentID | 10_1039_D2DT02446B d2dt02446b |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70J 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAPBV AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GNO H13 HZ~ H~N IDZ J3G J3H J3I O9- R7B R7C RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP M4U R56 RAOCF 2WC 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c314t-2f87e08427cda609d5a61f025ab76ea3c2f60a9b9373984ba837fe4c86f8a9923 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Thu Jul 10 18:34:51 EDT 2025 Mon Jun 30 06:07:36 EDT 2025 Tue Jul 01 04:27:10 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Tue Nov 01 14:42:37 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-2f87e08427cda609d5a61f025ab76ea3c2f60a9b9373984ba837fe4c86f8a9923 |
Notes | https://doi.org/10.1039/d2dt02446b Electronic supplementary information (ESI) available. See ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0346-5837 0000-0003-1688-6953 0000-0002-0830-1268 0000-0001-8935-2034 0000-0002-6809-1952 0000-0002-8731-6934 |
PQID | 2730520352 |
PQPubID | 2047498 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1039_D2DT02446B proquest_miscellaneous_2725653565 proquest_journals_2730520352 crossref_primary_10_1039_D2DT02446B rsc_primary_d2dt02446b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Koshelev (D2DT02446B/cit12/1) 2019; 170 Shin (D2DT02446B/cit24/1) 2013; 25 Ji (D2DT02446B/cit25/1) 2012; 37 Kim (D2DT02446B/cit17/1) 2015; 7 Ji (D2DT02446B/cit26/1) 2015; 22 Song (D2DT02446B/cit34/1) 2011; 21 Ibrahim-Ouali (D2DT02446B/cit8/1) 2019; 24 Zhang (D2DT02446B/cit14/1) 2021; 9 Tsujimura (D2DT02446B/cit2/1) 2017 Kozlov (D2DT02446B/cit28/1) 2019; 48 Koden (D2DT02446B/cit1/1) 2016 Otting (D2DT02446B/cit30/1) 2010; 39 Zada (D2DT02446B/cit19/1) 2020; 30 Shuvaev (D2DT02446B/cit9/1) 2012; 20 Ikeda (D2DT02446B/cit5/1) 2020; 32 Eccher (D2DT02446B/cit3/1) 2015; 7 Jou (D2DT02446B/cit22/1) 2020; 31 Girotto (D2DT02446B/cit29/1) 2019; 208 Xu (D2DT02446B/cit6/1) 2015; 293–294 Clarke (D2DT02446B/cit32/1) 1973; 241 Eustis (D2DT02446B/cit20/1) 2006; 35 Zhuang (D2DT02446B/cit21/1) 2019; 36 Jesuraj (D2DT02446B/cit15/1) 2016; 211 Utochnikova (D2DT02446B/cit7/1) 2021 Xiao (D2DT02446B/cit23/1) 2012; 100 Yuan (D2DT02446B/cit4/1) 2019; 7 Vialtsev (D2DT02446B/cit31/1) 2021; 239 Kuznetsov (D2DT02446B/cit33/1) 2021; 50 Wang (D2DT02446B/cit16/1) 2013; 102 Utochnikova (D2DT02446B/cit13/1) 2021; 50 Hutter (D2DT02446B/cit18/1) 2004; 16 Zinna (D2DT02446B/cit11/1) 2017; 27 Aslandukov (D2DT02446B/cit10/1) 2018; 47 Kozlov (D2DT02446B/cit27/1) 2021 |
References_xml | – issn: 2021 publication-title: Handbook on the Physics and Chemistry of Rare Earths doi: Utochnikova – issn: 2017 publication-title: OLED Display Fundamentals and Applications doi: Tsujimura – issn: 2016 publication-title: OLED Displays and Lighting doi: Koden – volume-title: Handbook on the Physics and Chemistry of Rare Earths year: 2021 ident: D2DT02446B/cit7/1 – volume: 37 start-page: 2019 year: 2012 ident: D2DT02446B/cit25/1 publication-title: Opt. Lett. doi: 10.1364/OL.37.002019 – volume-title: OLED Display Fundamentals and Applications year: 2017 ident: D2DT02446B/cit2/1 doi: 10.1002/9781119187493 – volume: 239 start-page: 118400 year: 2021 ident: D2DT02446B/cit31/1 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2021.118400 – volume: 208 start-page: 57 year: 2019 ident: D2DT02446B/cit29/1 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.12.027 – volume-title: OLED Displays and Lighting year: 2016 ident: D2DT02446B/cit1/1 doi: 10.1002/9781119040477 – volume: 9 start-page: 2001710 year: 2021 ident: D2DT02446B/cit14/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001710 – volume: 25 start-page: 2342 year: 2013 ident: D2DT02446B/cit24/1 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2013.2285257 – volume: 7 start-page: 16374 year: 2015 ident: D2DT02446B/cit3/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03496 – volume: 211 start-page: 155 year: 2016 ident: D2DT02446B/cit15/1 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2015.11.024 – volume: 30 start-page: 1906744 year: 2020 ident: D2DT02446B/cit19/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906744 – volume: 7 start-page: 1801536 year: 2019 ident: D2DT02446B/cit4/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801536 – volume: 241 start-page: 20 year: 1973 ident: D2DT02446B/cit32/1 publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 – volume: 24 start-page: 1412 year: 2019 ident: D2DT02446B/cit8/1 publication-title: Molecules doi: 10.3390/molecules24071412 – volume: 20 start-page: 73 year: 2012 ident: D2DT02446B/cit9/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2012.02.020 – volume: 27 start-page: 1603719 year: 2017 ident: D2DT02446B/cit11/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603719 – volume: 170 start-page: 107604 year: 2019 ident: D2DT02446B/cit12/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2019.107604 – volume: 32 start-page: 2004072 year: 2020 ident: D2DT02446B/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004072 – volume: 36 start-page: 1800077 year: 2019 ident: D2DT02446B/cit21/1 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201800077 – start-page: 161319 year: 2021 ident: D2DT02446B/cit27/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.161319 – volume: 21 start-page: 2311 year: 2011 ident: D2DT02446B/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002585 – volume: 35 start-page: 209 year: 2006 ident: D2DT02446B/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B514191E – volume: 50 start-page: 12806 year: 2021 ident: D2DT02446B/cit13/1 publication-title: Dalton Trans. doi: 10.1039/D1DT02269E – volume: 102 start-page: 023302 year: 2013 ident: D2DT02446B/cit16/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4776664 – volume: 16 start-page: 1685 year: 2004 ident: D2DT02446B/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.200400271 – volume: 22 start-page: 154 year: 2015 ident: D2DT02446B/cit26/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.03.053 – volume: 47 start-page: 16350 year: 2018 ident: D2DT02446B/cit10/1 publication-title: Dalton Trans. doi: 10.1039/C8DT02911C – volume: 50 start-page: 9685 year: 2021 ident: D2DT02446B/cit33/1 publication-title: Dalton Trans. doi: 10.1039/D1DT01316E – volume: 48 start-page: 17298 year: 2019 ident: D2DT02446B/cit28/1 publication-title: Dalton Trans. doi: 10.1039/C9DT03823J – volume: 7 start-page: 15031 year: 2015 ident: D2DT02446B/cit17/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04248 – volume: 39 start-page: 387 year: 2010 ident: D2DT02446B/cit30/1 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131321 – volume: 293–294 start-page: 228 year: 2015 ident: D2DT02446B/cit6/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.018 – volume: 100 start-page: 013308 year: 2012 ident: D2DT02446B/cit23/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3675970 – volume: 31 start-page: 295204 year: 2020 ident: D2DT02446B/cit22/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab7588 |
SSID | ssj0022052 |
Score | 2.4050643 |
Snippet | An increase in the efficiency for a terbium-based OLED was achieved by introducing gold nanoparticles into the PEDOT:PSS hole injection layer and was mainly... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1665 |
SubjectTerms | Carboxylates Carrier injection Excitation Gold Nanoparticles Terbium |
Title | A 50% increase in the terbium-based OLED luminance through reducing the excited-state lifetime due to the introduction of gold nanoparticles |
URI | https://www.proquest.com/docview/2730520352 https://www.proquest.com/docview/2725653565 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QNcEK8VhQUZAQcUBVLnfSy0ywLd3UuLyilyYgeilAQ1yYrd38B_hnFi5yFVCDg0Sl3HjTxf7G8m80DouU-tMPSmtk5oTHXg_65Oicd06oNy4EcgdC5MA2fnzuna-rCxN6PRr57XUlWGr6LrvXEl_yNVaAO5iijZf5BsOyg0wDnIF44gYTj-lYxnmm28ILaWZIL7FVw5LYq5SqpvutiimHaxXMw1WIPq3Bq8rcyzE0lbVbAU_xEJ7qnX8UXaNom5KDqvsYorcpoIl3bW5JoVDPNLvmUajAhKt_St6_PcORXVqkUBClWNvKiNDzSrE1R0NshB5oqmxFSkRaoKXQfHgmdX2udKe7elLE3S1oj9Mb_e5pdN1FEKen_SmYE_0eIrjJSleeu5edWZbs84uxSGXjdVgT5pwRPp8yvNIKBBTwdmkMbYojxda0-W_p02i7slXlcTIlNv99ukQVXuCDIFboP8JvmXXN-noO_ZPbIgvvt7dyLDFIlcGWElsCDLCbv9VvkYnF8EJ-vlMlgtNqsDdEhAzyFjdDhbrN4vW5sBMeqiUe2tqwy7pv-6G3vIqTpF6WCnqtjUbGl1G92Sag6eNdC4g0Y8u4tutLN1D_2cYcAuVsiFEwwowwPkYoFc3CIXS-Rihdz6igFysUIuBuTiMq979JGL8xgL5OIBcu-j9cli9fZUl5VBdFg9rFInsedyw7OIGzHqGD6zqTONgb7T0HU4NSMSOwb1Q-Depu9ZIfVMN-ZW5DmxR30Q9xEaZ3nGHyAceoQbBvdCCzoAo6O-x_nUdsM4ZIYXuRP0Us1tEMm0-aJ6yzao3TdMP5iT-aqWw5sJetb2_d4ki9nb61iJKJAPWRGAFiE80kAdmqCn7c8gE_H-jmY8r0Qf0E9sEz4TdASibf-jQ8LDP4_9CN3snp1jNC53FX8MpLoMn0jg_Qa3ztUY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+50%25+increase+in+the+terbium-based+OLED+luminance+through+reducing+the+excited-state+lifetime+due+to+the+introduction+of+gold+nanoparticles&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Arseny+Yu+Gladkikh&rft.au=Kozlov%2C+Makarii+I&rft.au=Vashchenko%2C+Andrey+A&rft.au=Medved%27ko%2C+Aleksei+V&rft.date=2022-11-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=51&rft.issue=42&rft.spage=16065&rft.epage=16069&rft_id=info:doi/10.1039%2Fd2dt02446b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |