Compression of EEG signals with the LSTM-autoencoder via domain adaptation approach

The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 28; no. 12; pp. 1857 - 1870
Main Authors Liu, Yongfei, Yang, Fan, Wu, Binbin
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 10.09.2025
Subjects
Online AccessGet full text
ISSN1025-5842
1476-8259
1476-8259
DOI10.1080/10255842.2024.2346356

Cover

Loading…
Abstract The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement.
AbstractList The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement.The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement.
The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement.
Author Wu, Binbin
Liu, Yongfei
Yang, Fan
Author_xml – sequence: 1
  givenname: Yongfei
  surname: Liu
  fullname: Liu, Yongfei
  organization: Departments of Mathematics, Qinghai College of Architectural Technology
– sequence: 2
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: School of Computer, Qinghai Normal University
– sequence: 3
  givenname: Binbin
  surname: Wu
  fullname: Wu, Binbin
  organization: College of Civil and Hydraulic Engineering, Qinghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38686789$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtu2zAQRYkgRfNoPyEFl9nI5UsUuWthOEkBF13Ee2JEUjEDiVRJOYH_PjLsZJnVzOLcO4Nzhc5jih6hG0oWlCjykxJW10qwBSNMLBgXktfyDF1S0chKsVqfz_vMVAfoAl2V8kwIUVSJr-iCK6lko_QlelymYcy-lJAiTh1ere5xCU8R-oJfw7TF09bj9ePmbwW7Kflok_MZvwTALg0QIgYH4wTTIQ7jmBPY7Tf0pZvz_vtpXqPN3WqzfKjW_-7_LH-vK8upmCoKlLvG1aKVjW5dY6VuGWlrDtQDZaxTnCmrrFatlYoxbTX1baOla5XSll-j22PtfPX_zpfJDKFY3_cQfdoVw4nQDVVasBn9cUJ37eCdGXMYIO_Nu4cZqI-AzamU7LsPhBJz8G3efZuDb3PyPed-HXMhdikP8Jpy78wE-z7lLkO0Yf7j84o33HCFhg
Cites_doi 10.1109/ACCESS.2019.2939288
10.1162/089976600300015015
10.1097/WNP.0000000000000664
10.5220/0011990800003476
10.1109/MeMeA52024.2021.9478756
10.1109/TBME.2013.2253608
10.1088/0967-3334/29/11/R01
10.1007/978-3-030-90618-4_21
10.14257/ijhit.2015.8.9.12
10.1155/2011/860549
10.1016/j.bspc.2018.12.019
10.1109/IWCMC.2017.7986507
10.1093/europace/euac053.017
10.1109/IEMBS.2007.4353019
10.1155/2012/302581
10.1016/j.ijpsycho.2022.09.006
10.1142/S0219519404000928
10.1504/IJCAT.2023.10057965
10.1109/TCDS.2019.2949306
10.1109/JIOT.2022.3221080
10.1007/s11227-022-05027-9
10.1038/sdata.2014.47
10.1109/SMC53654.2022.9945517
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10255842.2024.2346356
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 1870
ExternalDocumentID 38686789
10_1080_10255842_2024_2346356
2346356
Genre Research Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ADYSH
DGEBU
NPM
7X8
AMPGV
ID FETCH-LOGICAL-c314t-1a13d7d54b679bd7c69b20b53a1ea122f8328c8c98bc68229c91eb796db889c3
ISSN 1025-5842
1476-8259
IngestDate Fri Jul 11 04:03:21 EDT 2025
Mon Jul 21 05:57:53 EDT 2025
Wed Aug 27 16:39:01 EDT 2025
Wed Aug 27 06:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords domain adaptation
LSTM-autoencoder
EEG compression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-1a13d7d54b679bd7c69b20b53a1ea122f8328c8c98bc68229c91eb796db889c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38686789
PQID 3049718942
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3049718942
informaworld_taylorfrancis_310_1080_10255842_2024_2346356
crossref_primary_10_1080_10255842_2024_2346356
pubmed_primary_38686789
PublicationCentury 2000
PublicationDate 9/10/2025
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 9/10/2025
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Hinton GE (e_1_3_2_10_1) 1994; 6
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_8_1
  doi: 10.1109/ACCESS.2019.2939288
– ident: e_1_3_2_7_1
  doi: 10.1162/089976600300015015
– ident: e_1_3_2_6_1
  doi: 10.1097/WNP.0000000000000664
– ident: e_1_3_2_26_1
  doi: 10.5220/0011990800003476
– ident: e_1_3_2_5_1
  doi: 10.1109/MeMeA52024.2021.9478756
– ident: e_1_3_2_19_1
  doi: 10.1109/TBME.2013.2253608
– ident: e_1_3_2_9_1
  doi: 10.1088/0967-3334/29/11/R01
– ident: e_1_3_2_2_1
  doi: 10.1007/978-3-030-90618-4_21
– ident: e_1_3_2_20_1
  doi: 10.14257/ijhit.2015.8.9.12
– ident: e_1_3_2_23_1
  doi: 10.1155/2011/860549
– ident: e_1_3_2_16_1
  doi: 10.1016/j.bspc.2018.12.019
– ident: e_1_3_2_3_1
  doi: 10.1109/IWCMC.2017.7986507
– ident: e_1_3_2_14_1
  doi: 10.1093/europace/euac053.017
– ident: e_1_3_2_22_1
  doi: 10.1109/IEMBS.2007.4353019
– ident: e_1_3_2_24_1
  doi: 10.1155/2012/302581
– volume: 6
  start-page: 3
  year: 1994
  ident: e_1_3_2_10_1
  article-title: Autoencoders, minimum description length and helmholtz free energy
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_3_2_18_1
  doi: 10.1016/j.ijpsycho.2022.09.006
– ident: e_1_3_2_21_1
  doi: 10.1142/S0219519404000928
– ident: e_1_3_2_13_1
  doi: 10.1504/IJCAT.2023.10057965
– ident: e_1_3_2_15_1
  doi: 10.1109/TCDS.2019.2949306
– ident: e_1_3_2_25_1
  doi: 10.1109/JIOT.2022.3221080
– ident: e_1_3_2_12_1
  doi: 10.1007/s11227-022-05027-9
– ident: e_1_3_2_17_1
  doi: 10.1038/sdata.2014.47
– ident: e_1_3_2_4_1
  doi: 10.1109/SMC53654.2022.9945517
– ident: e_1_3_2_11_1
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0008184
Score 2.3993523
Snippet The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1857
SubjectTerms domain adaptation
EEG compression
LSTM-autoencoder
Title Compression of EEG signals with the LSTM-autoencoder via domain adaptation approach
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2024.2346356
https://www.ncbi.nlm.nih.gov/pubmed/38686789
https://www.proquest.com/docview/3049718942
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZKV0hcEG_KS0biVqWsHSexjwt0qRDLZYt2xSWyHQf1QLJCKRJc-OvM2E6aZRfxukSVm9SW58t47H7zDSHPWKFdhowanbo6EZnDQu5VnrCsdhaWs0o5zHc-epev3os3p9npZPJ9xFradmZhv12aV_IvVoU2sCtmyf6FZYcfhQb4DPaFK1gYrn9kY3yZA4_VB33L5es58jFQETmcrwIG3h6vjxK97VpUrEThiC8bPa_aT3rTzHWlzyLbsNcWHwerfcWHWGbaM2d9uj5mC_fqziF_35va7bQNB57PZuudfNt8rN1mcDHxkPpwB80Tf9-LTWOiFHg8ieAZ0iYiJ9Xnsl0oCjLyq3g7xDrB8brQJoo8gQ2qGjtjLseg4yPXiqJVo2WayVBw5MISEDiT2CH2t4CBigVPBerw7da8gYkYv7lC9jjsM_iU7B2sXn04GRZziGc8MaEff58EJvefX9rFufDmnPjtr7cwPpRZ3yDX4x6EHgRA3SQT19wiV0NV0q-3yfEIVrStKcCKRlhRhBUFWNGfYUUBVjTAiu5gRXtY3SHrw-X65SqJtTcSmzLRJUyztCqqTJi8UKYqbK4M3zdZqpnTjPMaVgJppVXS2ByLBljFnClUXhkplU3vkmnTNu4-oRmXut63KjeWC8dSjXKYQuXCp2EzMyOLfsbKs6CwUrIoXNtPcYlTXMYpnhE1ntey87irA-TK9DfPPu2NUIIfxT_HdOPaLTwHW2WI05TgM3IvWGcYTipzCUGdevAfPT8k13bvzCMy7T5v3WOIZzvzJGLuByoJmZE
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21W1XlQgtt6dIWjNRrVuuPOPYRoaXbdncvLBK3yF-REGqCUBaJ_no88QaxSKgHTjk5ie3xzNh-8x7AD1qYkCOixvBQZSIPKOTuZUbzKrgYzrwOWO88X8jpufh9kV88qoVBWCXuoatEFNH5alzceBjdQ-LiMybCSmAdFRMjxgWSrL2GN7mWBaoY8PHiwRvHgNTdLKNsK7bpq3iee81GfNpgL30-B-1i0el7cH0vEgTlarRq7cj9e0Lw-LJufoDtdapKjpNt7cCrUO_C2yReefcRztCVJBRtTZqKTCY_CaJBoj0TPN0lMbUks7PlPDOrtkG-TB9uyO2lIb75ay5rYry5TkAA0jObf4Ll6WR5Ms3WEg2Z41S0GTWU-8LnwspCW184qS0b25wbGgxlrIoOQznltLJOIre80zTYQktvldKOf4ZB3dThC5CcKVONnZbWMREoN8iaKLQUXbUutUMY9fNSXicijpKu-U37gSpxoMr1QA1BP569su1OQKokV1Ly_7Q96qe6jMsN71BMHZpVbBd3VDGca8GGsJds4OF3uJIqxn69_4IvH8K76XI-K2e_Fn--whZDs0XBivE3GLQ3q_A9pkCtPehs_B6CufY9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7alJRc0mea7VOFXL2sHpalY2l3u22TpZAN5Gb0Miyh9pJ4A-2vj8ayl6YQesjJp7EtzWhmJH3zDcARLUzIEVFjeKgykQds5O5lRvMquBjOvA5Y73yykPMz8f08H9CEVz2sEvfQVSKK6Hw1Lu61rwZEXHzGPFgJLKNiYsy4QI61h_BIInk4VnFMFltnHONRd7GMXVtRZijiues1t8LTLfLSu1PQLhTNnoAdBpEQKBfjTWvH7s8__I73GuVT2O8TVfIpWdYzeBDq57CbWlf-fgGn6EgShrYmTUWm068EsSDRmgme7ZKYWJLj0-VJZjZtg2yZPlyS65UhvvllVjUx3qwTDIAMvOYvYTmbLj_Ps75BQ-Y4FW1GDeW-8LmwstDWF05qyyY254YGQxmrortQTjmtrJPILO80DbbQ0lultOMHsFM3dTgEkjNlqonT0jomAuUGOROFlqKr1aV2BONBLeU60XCUtGc3HSaqxIkq-4kagf5beWXbnX9UqVlJyf8j-3HQdBkXG96gmDo0mygX91MxmGvBRvAqmcD2d7iSKkZ-_foeX_4Aj39-mZXH3xY_3sAeQ6PFbhWTt7DTXm7Cu5j_tPZ9Z-E3dfb04Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+of+EEG+signals+with+the+LSTM-autoencoder+via+domain+adaptation+approach&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Liu%2C+Yongfei&rft.au=Yang%2C+Fan&rft.au=Wu%2C+Binbin&rft.date=2025-09-10&rft.pub=Taylor+%26+Francis&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=28&rft.issue=12&rft.spage=1857&rft.epage=1870&rft_id=info:doi/10.1080%2F10255842.2024.2346356&rft.externalDocID=2346356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon