Compression of EEG signals with the LSTM-autoencoder via domain adaptation approach
The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 28; no. 12; pp. 1857 - 1870 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
10.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1025-5842 1476-8259 1476-8259 |
DOI | 10.1080/10255842.2024.2346356 |
Cover
Loading…
Abstract | The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement. |
---|---|
AbstractList | The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement.The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement. The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performance when compressing EEG signals from multiple subjects. This challenge arises due to the notable feature shift of EEG signals between subjects, which poses an impediment to the neural network's efficient concurrent acquisition of information from multiple subjects. To address this limitation and enable more effective utilization of data for improving the performance on target domain, we propose a Domain Adaptation (DA) framework based on LSTM-autoencoder. Our experiments encompassed the following: (1) A comparison between LSTM-autoencoder, GRU-autoencoder, and the commonly used convolutional autoencoder (CAE) in EEG compression. (2) A comparison between our proposed DA method and the MMD-based DA method, as well as Fine-tuning transfer learning. The results demonstrate the following: (1) LSTM-autoencoder outperforms other models in both subject-specific and cross-subject scenarios. (2) Using transfer learning improves the performance of LSTM-autoencoder on the target subject. (3) Our proposed method outperforms maximum mean discrepancy (MMD)-based domain adaptation and fine-tuning approaches, resulting in a more significant enhancement. |
Author | Wu, Binbin Liu, Yongfei Yang, Fan |
Author_xml | – sequence: 1 givenname: Yongfei surname: Liu fullname: Liu, Yongfei organization: Departments of Mathematics, Qinghai College of Architectural Technology – sequence: 2 givenname: Fan surname: Yang fullname: Yang, Fan organization: School of Computer, Qinghai Normal University – sequence: 3 givenname: Binbin surname: Wu fullname: Wu, Binbin organization: College of Civil and Hydraulic Engineering, Qinghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38686789$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtu2zAQRYkgRfNoPyEFl9nI5UsUuWthOEkBF13Ee2JEUjEDiVRJOYH_PjLsZJnVzOLcO4Nzhc5jih6hG0oWlCjykxJW10qwBSNMLBgXktfyDF1S0chKsVqfz_vMVAfoAl2V8kwIUVSJr-iCK6lko_QlelymYcy-lJAiTh1ere5xCU8R-oJfw7TF09bj9ePmbwW7Kflok_MZvwTALg0QIgYH4wTTIQ7jmBPY7Tf0pZvz_vtpXqPN3WqzfKjW_-7_LH-vK8upmCoKlLvG1aKVjW5dY6VuGWlrDtQDZaxTnCmrrFatlYoxbTX1baOla5XSll-j22PtfPX_zpfJDKFY3_cQfdoVw4nQDVVasBn9cUJ37eCdGXMYIO_Nu4cZqI-AzamU7LsPhBJz8G3efZuDb3PyPed-HXMhdikP8Jpy78wE-z7lLkO0Yf7j84o33HCFhg |
Cites_doi | 10.1109/ACCESS.2019.2939288 10.1162/089976600300015015 10.1097/WNP.0000000000000664 10.5220/0011990800003476 10.1109/MeMeA52024.2021.9478756 10.1109/TBME.2013.2253608 10.1088/0967-3334/29/11/R01 10.1007/978-3-030-90618-4_21 10.14257/ijhit.2015.8.9.12 10.1155/2011/860549 10.1016/j.bspc.2018.12.019 10.1109/IWCMC.2017.7986507 10.1093/europace/euac053.017 10.1109/IEMBS.2007.4353019 10.1155/2012/302581 10.1016/j.ijpsycho.2022.09.006 10.1142/S0219519404000928 10.1504/IJCAT.2023.10057965 10.1109/TCDS.2019.2949306 10.1109/JIOT.2022.3221080 10.1007/s11227-022-05027-9 10.1038/sdata.2014.47 10.1109/SMC53654.2022.9945517 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1080/10255842.2024.2346356 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 1870 |
ExternalDocumentID | 38686789 10_1080_10255842_2024_2346356 2346356 |
Genre | Research Article Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION ADYSH DGEBU NPM 7X8 AMPGV |
ID | FETCH-LOGICAL-c314t-1a13d7d54b679bd7c69b20b53a1ea122f8328c8c98bc68229c91eb796db889c3 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Fri Jul 11 04:03:21 EDT 2025 Mon Jul 21 05:57:53 EDT 2025 Wed Aug 27 16:39:01 EDT 2025 Wed Aug 27 06:29:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | domain adaptation LSTM-autoencoder EEG compression |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314t-1a13d7d54b679bd7c69b20b53a1ea122f8328c8c98bc68229c91eb796db889c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38686789 |
PQID | 3049718942 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3049718942 informaworld_taylorfrancis_310_1080_10255842_2024_2346356 crossref_primary_10_1080_10255842_2024_2346356 pubmed_primary_38686789 |
PublicationCentury | 2000 |
PublicationDate | 9/10/2025 |
PublicationDateYYYYMMDD | 2025-09-10 |
PublicationDate_xml | – month: 09 year: 2025 text: 9/10/2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Hinton GE (e_1_3_2_10_1) 1994; 6 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 |
References_xml | – ident: e_1_3_2_8_1 doi: 10.1109/ACCESS.2019.2939288 – ident: e_1_3_2_7_1 doi: 10.1162/089976600300015015 – ident: e_1_3_2_6_1 doi: 10.1097/WNP.0000000000000664 – ident: e_1_3_2_26_1 doi: 10.5220/0011990800003476 – ident: e_1_3_2_5_1 doi: 10.1109/MeMeA52024.2021.9478756 – ident: e_1_3_2_19_1 doi: 10.1109/TBME.2013.2253608 – ident: e_1_3_2_9_1 doi: 10.1088/0967-3334/29/11/R01 – ident: e_1_3_2_2_1 doi: 10.1007/978-3-030-90618-4_21 – ident: e_1_3_2_20_1 doi: 10.14257/ijhit.2015.8.9.12 – ident: e_1_3_2_23_1 doi: 10.1155/2011/860549 – ident: e_1_3_2_16_1 doi: 10.1016/j.bspc.2018.12.019 – ident: e_1_3_2_3_1 doi: 10.1109/IWCMC.2017.7986507 – ident: e_1_3_2_14_1 doi: 10.1093/europace/euac053.017 – ident: e_1_3_2_22_1 doi: 10.1109/IEMBS.2007.4353019 – ident: e_1_3_2_24_1 doi: 10.1155/2012/302581 – volume: 6 start-page: 3 year: 1994 ident: e_1_3_2_10_1 article-title: Autoencoders, minimum description length and helmholtz free energy publication-title: Adv Neural Inf Process Syst – ident: e_1_3_2_18_1 doi: 10.1016/j.ijpsycho.2022.09.006 – ident: e_1_3_2_21_1 doi: 10.1142/S0219519404000928 – ident: e_1_3_2_13_1 doi: 10.1504/IJCAT.2023.10057965 – ident: e_1_3_2_15_1 doi: 10.1109/TCDS.2019.2949306 – ident: e_1_3_2_25_1 doi: 10.1109/JIOT.2022.3221080 – ident: e_1_3_2_12_1 doi: 10.1007/s11227-022-05027-9 – ident: e_1_3_2_17_1 doi: 10.1038/sdata.2014.47 – ident: e_1_3_2_4_1 doi: 10.1109/SMC53654.2022.9945517 – ident: e_1_3_2_11_1 doi: 10.1162/neco.1997.9.8.1735 |
SSID | ssj0008184 |
Score | 2.3993523 |
Snippet | The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1857 |
SubjectTerms | domain adaptation EEG compression LSTM-autoencoder |
Title | Compression of EEG signals with the LSTM-autoencoder via domain adaptation approach |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2024.2346356 https://www.ncbi.nlm.nih.gov/pubmed/38686789 https://www.proquest.com/docview/3049718942 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZKV0hcEG_KS0biVqWsHSexjwt0qRDLZYt2xSWyHQf1QLJCKRJc-OvM2E6aZRfxukSVm9SW58t47H7zDSHPWKFdhowanbo6EZnDQu5VnrCsdhaWs0o5zHc-epev3os3p9npZPJ9xFradmZhv12aV_IvVoU2sCtmyf6FZYcfhQb4DPaFK1gYrn9kY3yZA4_VB33L5es58jFQETmcrwIG3h6vjxK97VpUrEThiC8bPa_aT3rTzHWlzyLbsNcWHwerfcWHWGbaM2d9uj5mC_fqziF_35va7bQNB57PZuudfNt8rN1mcDHxkPpwB80Tf9-LTWOiFHg8ieAZ0iYiJ9Xnsl0oCjLyq3g7xDrB8brQJoo8gQ2qGjtjLseg4yPXiqJVo2WayVBw5MISEDiT2CH2t4CBigVPBerw7da8gYkYv7lC9jjsM_iU7B2sXn04GRZziGc8MaEff58EJvefX9rFufDmnPjtr7cwPpRZ3yDX4x6EHgRA3SQT19wiV0NV0q-3yfEIVrStKcCKRlhRhBUFWNGfYUUBVjTAiu5gRXtY3SHrw-X65SqJtTcSmzLRJUyztCqqTJi8UKYqbK4M3zdZqpnTjPMaVgJppVXS2ByLBljFnClUXhkplU3vkmnTNu4-oRmXut63KjeWC8dSjXKYQuXCp2EzMyOLfsbKs6CwUrIoXNtPcYlTXMYpnhE1ntey87irA-TK9DfPPu2NUIIfxT_HdOPaLTwHW2WI05TgM3IvWGcYTipzCUGdevAfPT8k13bvzCMy7T5v3WOIZzvzJGLuByoJmZE |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21W1XlQgtt6dIWjNRrVuuPOPYRoaXbdncvLBK3yF-REGqCUBaJ_no88QaxSKgHTjk5ie3xzNh-8x7AD1qYkCOixvBQZSIPKOTuZUbzKrgYzrwOWO88X8jpufh9kV88qoVBWCXuoatEFNH5alzceBjdQ-LiMybCSmAdFRMjxgWSrL2GN7mWBaoY8PHiwRvHgNTdLKNsK7bpq3iee81GfNpgL30-B-1i0el7cH0vEgTlarRq7cj9e0Lw-LJufoDtdapKjpNt7cCrUO_C2yReefcRztCVJBRtTZqKTCY_CaJBoj0TPN0lMbUks7PlPDOrtkG-TB9uyO2lIb75ay5rYry5TkAA0jObf4Ll6WR5Ms3WEg2Z41S0GTWU-8LnwspCW184qS0b25wbGgxlrIoOQznltLJOIre80zTYQktvldKOf4ZB3dThC5CcKVONnZbWMREoN8iaKLQUXbUutUMY9fNSXicijpKu-U37gSpxoMr1QA1BP569su1OQKokV1Ly_7Q96qe6jMsN71BMHZpVbBd3VDGca8GGsJds4OF3uJIqxn69_4IvH8K76XI-K2e_Fn--whZDs0XBivE3GLQ3q_A9pkCtPehs_B6CufY9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7alJRc0mea7VOFXL2sHpalY2l3u22TpZAN5Gb0Miyh9pJ4A-2vj8ayl6YQesjJp7EtzWhmJH3zDcARLUzIEVFjeKgykQds5O5lRvMquBjOvA5Y73yykPMz8f08H9CEVz2sEvfQVSKK6Hw1Lu61rwZEXHzGPFgJLKNiYsy4QI61h_BIInk4VnFMFltnHONRd7GMXVtRZijiues1t8LTLfLSu1PQLhTNnoAdBpEQKBfjTWvH7s8__I73GuVT2O8TVfIpWdYzeBDq57CbWlf-fgGn6EgShrYmTUWm068EsSDRmgme7ZKYWJLj0-VJZjZtg2yZPlyS65UhvvllVjUx3qwTDIAMvOYvYTmbLj_Ps75BQ-Y4FW1GDeW-8LmwstDWF05qyyY254YGQxmrortQTjmtrJPILO80DbbQ0lultOMHsFM3dTgEkjNlqonT0jomAuUGOROFlqKr1aV2BONBLeU60XCUtGc3HSaqxIkq-4kagf5beWXbnX9UqVlJyf8j-3HQdBkXG96gmDo0mygX91MxmGvBRvAqmcD2d7iSKkZ-_foeX_4Aj39-mZXH3xY_3sAeQ6PFbhWTt7DTXm7Cu5j_tPZ9Z-E3dfb04Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+of+EEG+signals+with+the+LSTM-autoencoder+via+domain+adaptation+approach&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Liu%2C+Yongfei&rft.au=Yang%2C+Fan&rft.au=Wu%2C+Binbin&rft.date=2025-09-10&rft.pub=Taylor+%26+Francis&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=28&rft.issue=12&rft.spage=1857&rft.epage=1870&rft_id=info:doi/10.1080%2F10255842.2024.2346356&rft.externalDocID=2346356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |