The impact of design and operational parameters on the optimal performance of direct air capture units using solid sorbents

Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the po...

Full description

Saved in:
Bibliographic Details
Published inAdsorption : journal of the International Adsorption Society Vol. 30; no. 7; pp. 1829 - 1848
Main Authors Ward, Adam, Papathanasiou, Maria M., Pini, Ronny
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO 2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO 2 product ( ≥ 95 %). For the base case scenario, we find a maximum productivity of Pr max = 6.20  kg/m 3 /day and a minimum specific equivalent work of W EQ , min = 1.66  MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO 2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30  ∘ C) can be accommodated via process optimization without a significant impact on performance.
AbstractList Direct capture of CO $$_2$$ 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO $$_2$$ 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO $$_2$$ 2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO $$_2$$ 2 product ( $$\ge 95$$ ≥ 95 %). For the base case scenario, we find a maximum productivity of Pr $$_{\max } = 6.20$$ max = 6.20  kg/m $$^3$$ 3 /day and a minimum specific equivalent work of W $$_{\text {EQ},\min } = 1.66$$ EQ , min = 1.66  MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO $$_2$$ 2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30  $$^\circ$$ ∘ C) can be accommodated via process optimization without a significant impact on performance.
Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO 2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO 2 product ( ≥ 95 %). For the base case scenario, we find a maximum productivity of Pr max = 6.20  kg/m 3 /day and a minimum specific equivalent work of W EQ , min = 1.66  MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO 2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30  ∘ C) can be accommodated via process optimization without a significant impact on performance.
Direct capture of CO2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO2 product (≥95%). For the base case scenario, we find a maximum productivity of Prmax=6.20 kg/m3/day and a minimum specific equivalent work of WEQ,min=1.66 MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30 ∘C) can be accommodated via process optimization without a significant impact on performance.
Author Ward, Adam
Papathanasiou, Maria M.
Pini, Ronny
Author_xml – sequence: 1
  givenname: Adam
  surname: Ward
  fullname: Ward, Adam
  organization: Department of Chemical Engineering, Imperial College London, Sargent Centre for Process Systems Engineering, Imperial College London
– sequence: 2
  givenname: Maria M.
  surname: Papathanasiou
  fullname: Papathanasiou, Maria M.
  organization: Department of Chemical Engineering, Imperial College London, Sargent Centre for Process Systems Engineering, Imperial College London
– sequence: 3
  givenname: Ronny
  surname: Pini
  fullname: Pini, Ronny
  email: r.pini@imperial.ac.uk
  organization: Department of Chemical Engineering, Imperial College London
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxBw4J3Ucj6jiS6rEUmbLcS7FVWsH2xkq_jxui8TGcjfc-7zSPTMycd4hIbcM7hmAeIgMFhwKKBcFAC_r4nBBpoyLsmgEFxMyBVnKgtcgrsgsxi0AyFpUU_K9_kRq94M2ifqedhjtxlHtOuoHDDpZ7_SODjroPSYMkXpHU0b8kOz-eMHQ-7DXzuCJtwFzk7aBGj2kMSAdnU2RjtG6DY1-Z7s8Q4suxWty2etdxJvfPScfz0_r5Wuxen95Wz6uClOxRSqYBi7LxtQ1NoCs6wUHo3kjhZa1bNuWCRTcMCw77DhIZpqqa0BWPTIGrKnm5O7cOwT_NWJMauvHkP-KqmIgFlmELHOqPKdM8DEG7NUQ8ovhoBioo2R1lqyyZHWSrA4Zqs5QzGG3wfBX_Q_1A9KUg3s
Cites_doi 10.1021/acs.iecr.5b04531
10.1021/ie302658y
10.2139/ssrn.4290070
10.1039/9781839165245-00115
10.1016/j.isci.2022.103990
10.1021/es404430g
10.1039/D1CS00970B
10.1038/s43017-022-00376-8
10.1016/j.cej.2015.08.035
10.1088/2516-1083/abf1ce
10.1038/s41560-020-00771-9
10.3390/app12052618
10.1016/j.ces.2021.117399
10.1021/acs.iecr.3c01265
10.1039/c9se00479c
10.1007/s10450-022-00361-z
10.1007/s10450-007-9100-y
10.3389/fceng.2020.602430
10.1002/aic.14435
10.1007/s10450-020-00249-w
10.1039/d1ee01272j
10.1021/acssuschemeng.9b04124
10.1016/j.rser.2020.110651
10.1039/D3EE01008B
10.1021/acs.chemrev.7b00435
10.1021/acs.iecr.6b03887
10.1039/D1EE03523A
10.1002/aic.16607
10.1002/cite.202000172
10.1021/es301953k
10.1016/j.cej.2022.141035
10.1016/j.joule.2019.08.010
10.1016/j.joule.2021.05.023
10.1016/j.cherd.2022.11.040
10.1016/j.ijggc.2018.09.002
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10450-024-00526-y
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (ODIN)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1572-8757
EndPage 1848
ExternalDocumentID 10_1007_s10450_024_00526_y
GrantInformation_xml – fundername: UK Research and Innovation
  grantid: EP/V027050/1; EP/V027050/1; EP/V027050/1
  funderid: http://dx.doi.org/10.13039/100014013
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z85
Z86
Z8M
Z8N
Z8P
Z8Q
Z8S
Z8Z
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c314t-1a05928c66e80e1df750ca5897a969bbb17e75c1e2ded5091c83d8093fe110183
IEDL.DBID U2A
ISSN 0929-5607
IngestDate Fri Jul 25 11:14:17 EDT 2025
Tue Jul 01 02:15:13 EDT 2025
Fri Feb 21 02:38:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Process modelling
capture
Process optimization
CO
Gas adsorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-1a05928c66e80e1df750ca5897a969bbb17e75c1e2ded5091c83d8093fe110183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10450-024-00526-y
PQID 3107467392
PQPubID 2043877
PageCount 20
ParticipantIDs proquest_journals_3107467392
crossref_primary_10_1007_s10450_024_00526_y
springer_journals_10_1007_s10450_024_00526_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle Journal of the International Adsorption Society
PublicationTitle Adsorption : journal of the International Adsorption Society
PublicationTitleAbbrev Adsorption
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiGXiaoPWebleyPZhangJCapture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from high humidity flue gas by vacuum swing adsorption with Zeolite 13xAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y
LiuCMSandhuNKMcCoySTBergersonJAA life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel productionSustain. Energy Fuels20204312931421:CAS:528:DC%2BB3cXntFyisrk%3D10.1039/c9se00479c
Stampi-BombelliVSpekMMazzottiMAnalysis of direct capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from ambient air via steam-assisted temperature-vacuum swing adsorptionAdsorption202026118311971:CAS:528:DC%2BB3cXhsF2qtrzE10.1007/s10450-020-00249-w
Climeworks: United States Patent Application (US 2017/1006330 A1) (2017)
GebaldCWurzbacherJABorgschulteAZimmermannTSteinfeldASingle-component and binary CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O adsorption on amine functionalized celluloseEnviron. Sci. Technol.201448249725041:CAS:528:DC%2BC2cXptlSjtA%3D%3D10.1021/es404430g24437467
Herzog, H.: In: Bui, M., Mac Dowell, N. (eds.) The Royal Society of Chemistry, vol. 6, pp. 115–137. Greenhouse Gas Removal Technologies (2022)
KrishnamurthySBoonJGrandeCLindABlomRBoerRWillemsenHScheemakerGScreening supported amine sorbents in the context of post-combustion carbon capture by vacuum swing adsorptionChemie Ingenieur Technik2021939299401:CAS:528:DC%2BB3MXls1OhtL0%3D10.1002/cite.202000172
IEA: Direct air capture: a key technology for net zero (2022)
GlobalThermostat: United States Patent Application (US 2017/0361271 A1) (2017)
SinhaADarunteLAJonesCWRealffMJKawajiriYSystems design and economic analysis of direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbentsInd. Ind. Eng. Chem. Res.2017567507641:CAS:528:DC%2BC28XitFSgu7vO10.1021/acs.iecr.6b03887
WurzbacherJAGebaldCPiatkowskiNSteinfeldAConcurrent separation of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O from air by a temperature-vacuum swing adsorption/desorption cycleEnviron. Sci. Technol.201246919191981:CAS:528:DC%2BC38XhtVKqurbI10.1021/es301953k22823525
BalashankarVSRajendranAProcess optimization-based screening of zeolites for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture by vacuum swing adsorptionSustain. Chem. Eng.2019717747177551:CAS:528:DC%2BC1MXhvFCjtbzE10.1021/acssuschemeng.9b04124
KrishnamurthySRaoVRGuntukaSSharrattPHaghpanahRRajendranAAmanullahMKarimiIAFarooqSCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from dry flue gas by vacuum swing adsorption: a pilot plant studyAIChE J.2014605183018421:CAS:528:DC%2BC2cXksFylu7Y%3D10.1002/aic.14435
IPCC: Climate change 2021: The physical science basis. Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change (2021)
SinhaARealffMJA parametric study of the techno-economics of direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} air capture systems using solid adsorbentsAIChE J.2019651:CAS:528:DC%2BC1MXnvFGlt7c%3D10.1002/aic.16607
McQueenNGomesKVMcCormickCBluemanthalKPisciottaMWilcoxJA review of direct air capture (DAC): scaling up commercial technologies and innovating for the futureProg. Energy2021310.1088/2516-1083/abf1ce
ZhuXXieWWuJMiaoYXiangCChenCGeBGanZYangFZhangMO’HareDLiJGeTWangRRecent advances in direct air capture by adsorptionChem. Soc. Rev.202251657466511:CAS:528:DC%2BB38XhslGnsr%2FK10.1039/D1CS00970B35815699
EransMSanz-PerezESHanakDPClulowZReinerDMMutchGADirect air capture: process technology, techno-economic and socio-polotical challengesEnergy Environ. Sci.202215136014051:CAS:528:DC%2BB38XltFGjsbk%3D10.1039/D1EE03523A
HaghpanahRMajumderANilamRRajendranAFarooqSKarimiIAAmanullahMMultiobjective optimization of a four-step adsorption process for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture via finite volume simulationInd. Eng. Chem. Res.201352422942651:CAS:528:DC%2BC3sXhsVKgtL8%3D10.1021/ie302658y
WardAPiniREfficient Bayesian optimization of industrial-scale pressure-vacuum swing adsorption processes for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInd. Eng. Chem. Res.20226113650136681:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z
ZhuXGeTYangFWangRDesign of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from ambient airRenew. Sustain. Energy Rev.20211371:CAS:528:DC%2BB3MXkt1Cnug%3D%3D10.1016/j.rser.2020.110651
BreyerCFasihiMBajamundiCCreutzigFDirect air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}: a key technology for ambitious climate change mitigationJoule201932053206510.1016/j.joule.2019.08.010
WardAPiniRIntegrated uncertainty quantification and sensitivity analysis of single-component dynamic column breakthrough experimentsAdsorption2022281611831:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z
RajagopalanAKRajendranAThe effect of nitrogen adsorption on vacuum swing adsorption based post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInt. J. Greenh. Gas Control2018784374471:CAS:528:DC%2BC1cXhvFKlt7bI10.1016/j.ijggc.2018.09.002
DanaciDWebleyPAPetitCGuidelines for techno-economic analysis of adsorption processesFront. Chem. Eng.2021210.3389/fceng.2020.602430
YoungJMcilwaineFSmitBGarciaSSpekMProcess-informed adsorbent design guidelines for direct air captureChem. Eng. J.20234561:CAS:528:DC%2BB38XjtFyjsbvE10.1016/j.cej.2022.141035
ArtzJMullerTEThenertKKleinekorteJMeysRSternbergABardowALeitnerWSustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessmentChem. Rev.20181184345041:CAS:528:DC%2BC2sXhvFemsrbL10.1021/acs.chemrev.7b0043529220170
KungLAeschlimannSCharalambousCMcIlwaineFYoungJShannonNStrasselKMaesanoCNKahsarRPikeDSpekMGarciaSA roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storageEnergy Environ. Sci.202316428043041:CAS:528:DC%2BB3sXhvVehu7vJ10.1039/D3EE01008B
SabatinoFGrimmAGallucciFSint AnnalandMKramerGJGazzaniMA comparative energy and costs assessment and optimization for direct air capture technologiesJoule20215204720761:CAS:528:DC%2BB3MXhsVymtbbO10.1016/j.joule.2021.05.023
DeutzSBardowALife-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorptionNat. Energy202162032131:CAS:528:DC%2BB3MXosFers78%3D10.1038/s41560-020-00771-9
OzkanMNayakSPRuizADJiangWCurrent status and pillar of direct air capture technologiesiScience2022251:CAS:528:DC%2BB38XhsVCmu7bM10.1016/j.isci.2022.103990353109378927912
KrevorSConinckHGasdaSEGhaleighNSGooyertVHajibeygiHJuanesRNeufeldJRobertsJJSwennenhuisFSubsurface carbon dioxide and hydrogen storage for a sustainable energy futureNat. Rev. Earth Environ.202341
526_CR31
J Artz (526_CR7) 2018; 118
526_CR18
C Gebald (526_CR23) 2014; 48
JA Wurzbacher (526_CR25) 2016; 283
A Sinha (526_CR13) 2019; 65
M Erans (526_CR4) 2022; 15
526_CR17
VS Balashankar (526_CR33) 2019; 7
X Zhu (526_CR15) 2021; 137
G Li (526_CR28) 2008; 14
R Haghpanah (526_CR19) 2013; 52
L Kung (526_CR39) 2023; 16
JA Wurzbacher (526_CR24) 2012; 46
AK Rajagopalan (526_CR32) 2018; 78
N McQueen (526_CR5) 2021; 3
X Zhu (526_CR10) 2022; 51
S Krevor (526_CR6) 2023; 4
A Ward (526_CR26) 2022; 28
526_CR21
D Danaci (526_CR29) 2021; 2
A Sinha (526_CR12) 2017; 56
SB Peh (526_CR35) 2022; 250
C Breyer (526_CR38) 2019; 3
M Khurana (526_CR37) 2016; 55
S Deutz (526_CR9) 2021; 6
J Young (526_CR16) 2023; 456
CM Liu (526_CR8) 2020; 4
M-YA Low (526_CR11) 2023; 189
G Leonzio (526_CR22) 2022; 12
J Young (526_CR30) 2021; 14
A Ward (526_CR27) 2022; 61
S Krishnamurthy (526_CR34) 2021; 93
F Sabatino (526_CR20) 2021; 5
S Krishnamurthy (526_CR40) 2014; 60
526_CR2
526_CR1
Q Grossmann (526_CR36) 2023; 62
V Stampi-Bombelli (526_CR14) 2020; 26
M Ozkan (526_CR3) 2022; 25
References_xml – reference: ArtzJMullerTEThenertKKleinekorteJMeysRSternbergABardowALeitnerWSustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessmentChem. Rev.20181184345041:CAS:528:DC%2BC2sXhvFemsrbL10.1021/acs.chemrev.7b0043529220170
– reference: Climeworks: United States Patent Application (US 2017/1006330 A1) (2017)
– reference: WurzbacherJAGebaldCPiatkowskiNSteinfeldAConcurrent separation of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O from air by a temperature-vacuum swing adsorption/desorption cycleEnviron. Sci. Technol.201246919191981:CAS:528:DC%2BC38XhtVKqurbI10.1021/es301953k22823525
– reference: KhuranaMFarooqSAdsorbent screening for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture: a method relating equilibrium isotherm characteristics to an optimum vacuum swing adsorption process performanceInd. Eng. Chem. Res.201655244724601:CAS:528:DC%2BC28XislCmsr8%3D10.1021/acs.iecr.5b04531
– reference: Stampi-BombelliVSpekMMazzottiMAnalysis of direct capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from ambient air via steam-assisted temperature-vacuum swing adsorptionAdsorption202026118311971:CAS:528:DC%2BB3cXhsF2qtrzE10.1007/s10450-020-00249-w
– reference: ZhuXGeTYangFWangRDesign of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from ambient airRenew. Sustain. Energy Rev.20211371:CAS:528:DC%2BB3MXkt1Cnug%3D%3D10.1016/j.rser.2020.110651
– reference: GebaldCWurzbacherJABorgschulteAZimmermannTSteinfeldASingle-component and binary CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O adsorption on amine functionalized celluloseEnviron. Sci. Technol.201448249725041:CAS:528:DC%2BC2cXptlSjtA%3D%3D10.1021/es404430g24437467
– reference: LowM-YABartonLVPiniRPetitCAnalytical review of the current state of knowledge of adsorption materials and processes for direct air captureChem. Eng. Res. Des.20231897457671:CAS:528:DC%2BB38XjtVWnur%2FN10.1016/j.cherd.2022.11.040
– reference: SinhaARealffMJA parametric study of the techno-economics of direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} air capture systems using solid adsorbentsAIChE J.2019651:CAS:528:DC%2BC1MXnvFGlt7c%3D10.1002/aic.16607
– reference: Schellevis, H.M., Combe, J.D., Brilman, D.W.F.: An optimization framework for a temperature-vacuum swing adsorption direct air capture process (November 30, 2022). In: Proceedings of the 16th International Conference on Greenhouse Gas Control Technologies Conference (GHGT-16) 23–24 Oct (2022). https://doi.org/10.2139/ssrn.4290070
– reference: EransMSanz-PerezESHanakDPClulowZReinerDMMutchGADirect air capture: process technology, techno-economic and socio-polotical challengesEnergy Environ. Sci.202215136014051:CAS:528:DC%2BB38XltFGjsbk%3D10.1039/D1EE03523A
– reference: McQueenNGomesKVMcCormickCBluemanthalKPisciottaMWilcoxJA review of direct air capture (DAC): scaling up commercial technologies and innovating for the futureProg. Energy2021310.1088/2516-1083/abf1ce
– reference: LeonzioGFennellPSShahNA comparative study of different sorbents in the context of direct air capture (DAC): evaluation of key performance indicators and comparisonsAppl. Sci.20221226181:CAS:528:DC%2BB38XmvFWqu7Y%3D10.3390/app12052618
– reference: KungLAeschlimannSCharalambousCMcIlwaineFYoungJShannonNStrasselKMaesanoCNKahsarRPikeDSpekMGarciaSA roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storageEnergy Environ. Sci.202316428043041:CAS:528:DC%2BB3sXhvVehu7vJ10.1039/D3EE01008B
– reference: HaghpanahRMajumderANilamRRajendranAFarooqSKarimiIAAmanullahMMultiobjective optimization of a four-step adsorption process for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture via finite volume simulationInd. Eng. Chem. Res.201352422942651:CAS:528:DC%2BC3sXhsVKgtL8%3D10.1021/ie302658y
– reference: YoungJGarcia-DiezEGarciaSSpekMThe impact of binary water-CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} isotherm models on the optimal performance of sorbent-based direct air capture processesEnergy Environ. Sci.202114537753941:CAS:528:DC%2BB3MXhs1yiurjJ10.1039/d1ee01272j
– reference: BreyerCFasihiMBajamundiCCreutzigFDirect air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}: a key technology for ambitious climate change mitigationJoule201932053206510.1016/j.joule.2019.08.010
– reference: DanaciDWebleyPAPetitCGuidelines for techno-economic analysis of adsorption processesFront. Chem. Eng.2021210.3389/fceng.2020.602430
– reference: WurzbacherJAGebaldCBrunnerSSteinfeldAHeat and mass transfer of temperature-vacuum swing desorption for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from airChem. Eng. J.2016283132913381:CAS:528:DC%2BC2MXhtlymurrM10.1016/j.cej.2015.08.035
– reference: PehSBFarooqSZhaoDA metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from wet flue gasChem. Eng. Sci.20222501:CAS:528:DC%2BB38XhslCjtLY%3D10.1016/j.ces.2021.117399
– reference: OzkanMNayakSPRuizADJiangWCurrent status and pillar of direct air capture technologiesiScience2022251:CAS:528:DC%2BB38XhsVCmu7bM10.1016/j.isci.2022.103990353109378927912
– reference: Herzog, H.: In: Bui, M., Mac Dowell, N. (eds.) The Royal Society of Chemistry, vol. 6, pp. 115–137. Greenhouse Gas Removal Technologies (2022)
– reference: DeutzSBardowALife-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorptionNat. Energy202162032131:CAS:528:DC%2BB3MXosFers78%3D10.1038/s41560-020-00771-9
– reference: GlobalThermostat: United States Patent Application (US 2017/0361271 A1) (2017)
– reference: KrishnamurthySBoonJGrandeCLindABlomRBoerRWillemsenHScheemakerGScreening supported amine sorbents in the context of post-combustion carbon capture by vacuum swing adsorptionChemie Ingenieur Technik2021939299401:CAS:528:DC%2BB3MXls1OhtL0%3D10.1002/cite.202000172
– reference: WardAPiniRIntegrated uncertainty quantification and sensitivity analysis of single-component dynamic column breakthrough experimentsAdsorption2022281611831:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z
– reference: BalashankarVSRajendranAProcess optimization-based screening of zeolites for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture by vacuum swing adsorptionSustain. Chem. Eng.2019717747177551:CAS:528:DC%2BC1MXhvFCjtbzE10.1021/acssuschemeng.9b04124
– reference: IEA: Direct air capture: a key technology for net zero (2022)
– reference: KrishnamurthySRaoVRGuntukaSSharrattPHaghpanahRRajendranAAmanullahMKarimiIAFarooqSCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from dry flue gas by vacuum swing adsorption: a pilot plant studyAIChE J.2014605183018421:CAS:528:DC%2BC2cXksFylu7Y%3D10.1002/aic.14435
– reference: SabatinoFGrimmAGallucciFSint AnnalandMKramerGJGazzaniMA comparative energy and costs assessment and optimization for direct air capture technologiesJoule20215204720761:CAS:528:DC%2BB3MXhsVymtbbO10.1016/j.joule.2021.05.023
– reference: LiGXiaoPWebleyPZhangJCapture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from high humidity flue gas by vacuum swing adsorption with Zeolite 13xAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y
– reference: SinhaADarunteLAJonesCWRealffMJKawajiriYSystems design and economic analysis of direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbentsInd. Ind. Eng. Chem. Res.2017567507641:CAS:528:DC%2BC28XitFSgu7vO10.1021/acs.iecr.6b03887
– reference: KrevorSConinckHGasdaSEGhaleighNSGooyertVHajibeygiHJuanesRNeufeldJRobertsJJSwennenhuisFSubsurface carbon dioxide and hydrogen storage for a sustainable energy futureNat. Rev. Earth Environ.202341021181:CAS:528:DC%2BB3sXhvVGiu7g%3D10.1038/s43017-022-00376-8
– reference: RajagopalanAKRajendranAThe effect of nitrogen adsorption on vacuum swing adsorption based post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInt. J. Greenh. Gas Control2018784374471:CAS:528:DC%2BC1cXhvFKlt7bI10.1016/j.ijggc.2018.09.002
– reference: ZhuXXieWWuJMiaoYXiangCChenCGeBGanZYangFZhangMO’HareDLiJGeTWangRRecent advances in direct air capture by adsorptionChem. Soc. Rev.202251657466511:CAS:528:DC%2BB38XhslGnsr%2FK10.1039/D1CS00970B35815699
– reference: WardAPiniREfficient Bayesian optimization of industrial-scale pressure-vacuum swing adsorption processes for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInd. Eng. Chem. Res.20226113650136681:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z
– reference: LiuCMSandhuNKMcCoySTBergersonJAA life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel productionSustain. Energy Fuels20204312931421:CAS:528:DC%2BB3cXntFyisrk%3D10.1039/c9se00479c
– reference: IPCC: Climate change 2021: The physical science basis. Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change (2021)
– reference: GrossmannQStampi-BombelliVYakimovADochertySCoperetCMazottiMDeveloping versatile contactors for direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through amine grafting onto alumina pellets and alumina wash-coated monolithsInd. Eng. Chem. Res.20236213594136111:CAS:528:DC%2BB3sXhs1KmsLvF10.1021/acs.iecr.3c012653766316910472440
– reference: YoungJMcilwaineFSmitBGarciaSSpekMProcess-informed adsorbent design guidelines for direct air captureChem. Eng. J.20234561:CAS:528:DC%2BB38XjtFyjsbvE10.1016/j.cej.2022.141035
– volume: 55
  start-page: 2447
  year: 2016
  ident: 526_CR37
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04531
– volume: 52
  start-page: 4229
  year: 2013
  ident: 526_CR19
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302658y
– ident: 526_CR17
– ident: 526_CR21
  doi: 10.2139/ssrn.4290070
– ident: 526_CR31
  doi: 10.1039/9781839165245-00115
– volume: 25
  year: 2022
  ident: 526_CR3
  publication-title: iScience
  doi: 10.1016/j.isci.2022.103990
– volume: 48
  start-page: 2497
  year: 2014
  ident: 526_CR23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404430g
– ident: 526_CR1
– volume: 51
  start-page: 6574
  year: 2022
  ident: 526_CR10
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00970B
– volume: 4
  start-page: 102
  year: 2023
  ident: 526_CR6
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-022-00376-8
– volume: 283
  start-page: 1329
  year: 2016
  ident: 526_CR25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.035
– volume: 3
  year: 2021
  ident: 526_CR5
  publication-title: Prog. Energy
  doi: 10.1088/2516-1083/abf1ce
– volume: 6
  start-page: 203
  year: 2021
  ident: 526_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00771-9
– volume: 12
  start-page: 2618
  year: 2022
  ident: 526_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app12052618
– volume: 250
  year: 2022
  ident: 526_CR35
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117399
– volume: 62
  start-page: 13594
  year: 2023
  ident: 526_CR36
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01265
– volume: 4
  start-page: 3129
  year: 2020
  ident: 526_CR8
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/c9se00479c
– volume: 28
  start-page: 161
  year: 2022
  ident: 526_CR26
  publication-title: Adsorption
  doi: 10.1007/s10450-022-00361-z
– volume: 14
  start-page: 415
  year: 2008
  ident: 526_CR28
  publication-title: Adsorption
  doi: 10.1007/s10450-007-9100-y
– volume: 2
  year: 2021
  ident: 526_CR29
  publication-title: Front. Chem. Eng.
  doi: 10.3389/fceng.2020.602430
– volume: 60
  start-page: 1830
  issue: 5
  year: 2014
  ident: 526_CR40
  publication-title: AIChE J.
  doi: 10.1002/aic.14435
– volume: 26
  start-page: 1183
  year: 2020
  ident: 526_CR14
  publication-title: Adsorption
  doi: 10.1007/s10450-020-00249-w
– volume: 14
  start-page: 5377
  year: 2021
  ident: 526_CR30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01272j
– volume: 7
  start-page: 17747
  year: 2019
  ident: 526_CR33
  publication-title: Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04124
– volume: 137
  year: 2021
  ident: 526_CR15
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110651
– volume: 16
  start-page: 4280
  year: 2023
  ident: 526_CR39
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01008B
– ident: 526_CR18
– volume: 118
  start-page: 434
  year: 2018
  ident: 526_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00435
– volume: 56
  start-page: 750
  year: 2017
  ident: 526_CR12
  publication-title: Ind. Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b03887
– volume: 15
  start-page: 1360
  year: 2022
  ident: 526_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03523A
– volume: 65
  year: 2019
  ident: 526_CR13
  publication-title: AIChE J.
  doi: 10.1002/aic.16607
– volume: 61
  start-page: 13650
  year: 2022
  ident: 526_CR27
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1007/s10450-022-00361-z
– volume: 93
  start-page: 929
  year: 2021
  ident: 526_CR34
  publication-title: Chemie Ingenieur Technik
  doi: 10.1002/cite.202000172
– ident: 526_CR2
– volume: 46
  start-page: 9191
  year: 2012
  ident: 526_CR24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301953k
– volume: 456
  year: 2023
  ident: 526_CR16
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.141035
– volume: 3
  start-page: 2053
  year: 2019
  ident: 526_CR38
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.010
– volume: 5
  start-page: 2047
  year: 2021
  ident: 526_CR20
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.023
– volume: 189
  start-page: 745
  year: 2023
  ident: 526_CR11
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.11.040
– volume: 78
  start-page: 437
  year: 2018
  ident: 526_CR32
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2018.09.002
SSID ssj0009673
Score 2.3832624
Snippet Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving...
Direct capture of CO $$_2$$ 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for...
Direct capture of CO2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1829
SubjectTerms Adsorption
Carbon dioxide
Chemical separation
Chemistry
Chemistry and Materials Science
Contactors
Design factors
Design optimization
Energy consumption
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Kinetics
Multiple objective analysis
Optimization techniques
Productivity
Relative humidity
Sorbents
Surfaces and Interfaces
Thin Films
Title The impact of design and operational parameters on the optimal performance of direct air capture units using solid sorbents
URI https://link.springer.com/article/10.1007/s10450-024-00526-y
https://www.proquest.com/docview/3107467392
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLZoKwQMCAqIQqluYIOT8n6MVdRSgWCiUpmi3COoA0mVtEPFn8d3SZSCYGDJ4uSGfI795fzZB3BrpAJ5eMhpmhqCOkx4lLHQp64KyNwxmM_VfsfzizebO48Ld1E3hZWN2r0pSepIvdPs5rgGxZxC9ZASuu1Az1X_7ujFc2vcjtr1qroyJn6K-dyvW2V-X-N7Omo55o-yqM420xM4rmkiGVe4nsKezPpwEDWns_XhaGeQYB_2tZCTl2fwibiTqvWR5CkRWqBBkkyQfCWLeuePqIHfH0oIU5I8I8gB0bpefihL20ign9cRkSTLgvBkpaoNZINBoCRKL_9O0HGXAq8FU3qMc5hPJ6_RjNYHLFBum86amgmSKyvgnicDQ5oiRfrAEzcI_ST0QsaY6Uvf5aa0hBSKWfDAFoER2qk01aQv-wK6WZ7JSyBpank-C11kj0yVBkME2kkczlxfGjYTA7hr3nO8quZoxO3EZIVKjKjEGpV4O4BhA0Vcf1NlbJv6bBQkdAO4b-BpzX-vdvW_26_h0FIeohV7Q-iui428QeaxZiPojR_eniYj6EReNNJu9wVeMdR0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BESoMCAqIQgEPbGAp3x8jiqgKtJ1aqVsUf6EOTas0HSr-PGc3VaCCgSWLYw95tu_F9-4Z4MFSAnl4zKlSlqAeEwFlLA6przdk7lks5Pq8YzAMemPvbeJPKpscXQuzk7_XJW6eb1GMJNRYk9D1Phx4-Kes5XtJkNQGu8Emm4zhnmIUD6sCmd_H-BmEama5kww1MaZ7CicVOSTPGzTPYE_mLWgm2zvZWnD8zT6wBYdGvsmX5_CJaJNNwSOZKyKMLINkuSDzhSyq8z6ibb5nWv6yJPOcIPPD1nI60y11-YDpb_ZBkk0LwrOFzjGQFS79JdEq-Q-C03Uq8FkwrcK4gHH3ZZT0aHWtAuWu7ZXUzpBSOREPAhlZ0hYKSQPP_CgOsziIGWN2KEOf29IRUmg-wSNXRFbsKmlrfy_3Ehr5PJdXQJRygpDFPnJGphOCMcLrZR5nfigtl4k2PG6_c7rYuGektU-yRiVFVFKDSrpuQ2cLRVqtpGXq2uZGFKRxbXjawlM3_z3a9f9ev4dmbzTop_3X4fsNHDl6thjNXgcaZbGSt8g9SnZnJt0XWjnQ1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsNAEB1BEFeBIIAIBNiCDlb4PkoUiMIVURApneW9UIo4UeIUET_P7NqWA4KCxs3aW_iNd5533rwFuLKUQB4ec6qUJajHREAZi0Pq6wWZexYLud7veO0HvYH3NPSHK138Ru1elSSLngbt0pTlt1Ohblca3zzfophfqDEsoct12MA_FVOo7QSd2nY3KGrMSAIo5vawbJv5fY7vqanmmz9KpCbzdPdhr6SM5K7A-ADWZNaE7U51UlsTdldMBZuwaUSdfH4InxgDpGiDJBNFhBFrkDQTZDKVs3IXkGjz77EWxczJJCPIB3E0H431SN1UYJ43qyNJRzPC06muPJAFLghzorXzHwSDeCTwOmNam3EEg-7De6dHy8MWKHdtL6d2ikTLiXgQyMiStlBIJXjqR3GYxkHMGLNDGfrclo6QQrMMHrkismJXSVu7frnH0MgmmTwBopQThCz2kUkyXSaMEXQv9TjzQ2m5TLTgunrPybTw1Ehq92SNSoKoJAaVZNmCdgVFUn5f88S1zTkpSO5acFPBUw__Pdvp_26_hK23-27y8th_PoMdRweLEfK1oZHPFvIcCUnOLkzMfQEjr9kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+design+and+operational+parameters+on+the+optimal+performance+of+direct+air+capture+units+using+solid+sorbents&rft.jtitle=Adsorption+%3A+journal+of+the+International+Adsorption+Society&rft.au=Ward%2C+Adam&rft.au=Papathanasiou%2C+Maria+M&rft.au=Pini+Ronny&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5607&rft.eissn=1572-8757&rft.volume=30&rft.issue=7&rft.spage=1829&rft.epage=1848&rft_id=info:doi/10.1007%2Fs10450-024-00526-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5607&client=summon