The impact of design and operational parameters on the optimal performance of direct air capture units using solid sorbents
Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the po...
Saved in:
Published in | Adsorption : journal of the International Adsorption Society Vol. 30; no. 7; pp. 1829 - 1848 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct capture of CO
2
from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO
2
in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO
2
from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO
2
product (
≥
95
%). For the base case scenario, we find a maximum productivity of Pr
max
=
6.20
kg/m
3
/day and a minimum specific equivalent work of W
EQ
,
min
=
1.66
MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO
2
sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30
∘
C) can be accommodated via process optimization without a significant impact on performance. |
---|---|
AbstractList | Direct capture of CO
$$_2$$
2
from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO
$$_2$$
2
in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO
$$_2$$
2
from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO
$$_2$$
2
product (
$$\ge 95$$
≥
95
%). For the base case scenario, we find a maximum productivity of Pr
$$_{\max } = 6.20$$
max
=
6.20
kg/m
$$^3$$
3
/day and a minimum specific equivalent work of W
$$_{\text {EQ},\min } = 1.66$$
EQ
,
min
=
1.66
MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO
$$_2$$
2
sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30
$$^\circ$$
∘
C) can be accommodated via process optimization without a significant impact on performance. Direct capture of CO 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO 2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO 2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO 2 product ( ≥ 95 %). For the base case scenario, we find a maximum productivity of Pr max = 6.20 kg/m 3 /day and a minimum specific equivalent work of W EQ , min = 1.66 MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO 2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30 ∘ C) can be accommodated via process optimization without a significant impact on performance. Direct capture of CO2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving direct air capture (DAC) is chemical separation of CO2 in a steam-assisted temperature-vacuum swing adsorption (S-TVSA) process. However, the potential to develop scalable solutions remains high, requiring a detailed understanding of the impact of both process design and operation on the performance of the DAC unit. Here, we address this knowledge gap by presenting a state-of-the-art process simulation tool for the purification of CO2 from ambient air by a 5-step S-TVSA process. By considering the benchmark adsorbent APDES-NFC, we conduct multi-objective productivity/energy usage optimization of the DAC unit, subject to the requirement of producing a high purity CO2 product (≥95%). For the base case scenario, we find a maximum productivity of Prmax=6.20 kg/m3/day and a minimum specific equivalent work of WEQ,min=1.66 MJ/kg. While in reasonable agreement with published data, our results indicate that the description of both competitive adsorption and adsorption kinetics are key factors in introducing uncertainty in process model predictions. We also demonstrate that the application of formal optimization techniques, rather than design heuristics, is central to reliably assess the process performance limits. We identity that system designs employing moderate CO2 sorption kinetics and contactors with low length-to-radius ratios yield the best performance in terms of system productivity. Finally, we find that moderate-high ambient relative humidities (50–75%) offer significantly favourable performance, and that a wide range of feed temperatures (5–30 ∘C) can be accommodated via process optimization without a significant impact on performance. |
Author | Ward, Adam Papathanasiou, Maria M. Pini, Ronny |
Author_xml | – sequence: 1 givenname: Adam surname: Ward fullname: Ward, Adam organization: Department of Chemical Engineering, Imperial College London, Sargent Centre for Process Systems Engineering, Imperial College London – sequence: 2 givenname: Maria M. surname: Papathanasiou fullname: Papathanasiou, Maria M. organization: Department of Chemical Engineering, Imperial College London, Sargent Centre for Process Systems Engineering, Imperial College London – sequence: 3 givenname: Ronny surname: Pini fullname: Pini, Ronny email: r.pini@imperial.ac.uk organization: Department of Chemical Engineering, Imperial College London |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxBw4J3Ucj6jiS6rEUmbLcS7FVWsH2xkq_jxui8TGcjfc-7zSPTMycd4hIbcM7hmAeIgMFhwKKBcFAC_r4nBBpoyLsmgEFxMyBVnKgtcgrsgsxi0AyFpUU_K9_kRq94M2ifqedhjtxlHtOuoHDDpZ7_SODjroPSYMkXpHU0b8kOz-eMHQ-7DXzuCJtwFzk7aBGj2kMSAdnU2RjtG6DY1-Z7s8Q4suxWty2etdxJvfPScfz0_r5Wuxen95Wz6uClOxRSqYBi7LxtQ1NoCs6wUHo3kjhZa1bNuWCRTcMCw77DhIZpqqa0BWPTIGrKnm5O7cOwT_NWJMauvHkP-KqmIgFlmELHOqPKdM8DEG7NUQ8ovhoBioo2R1lqyyZHWSrA4Zqs5QzGG3wfBX_Q_1A9KUg3s |
Cites_doi | 10.1021/acs.iecr.5b04531 10.1021/ie302658y 10.2139/ssrn.4290070 10.1039/9781839165245-00115 10.1016/j.isci.2022.103990 10.1021/es404430g 10.1039/D1CS00970B 10.1038/s43017-022-00376-8 10.1016/j.cej.2015.08.035 10.1088/2516-1083/abf1ce 10.1038/s41560-020-00771-9 10.3390/app12052618 10.1016/j.ces.2021.117399 10.1021/acs.iecr.3c01265 10.1039/c9se00479c 10.1007/s10450-022-00361-z 10.1007/s10450-007-9100-y 10.3389/fceng.2020.602430 10.1002/aic.14435 10.1007/s10450-020-00249-w 10.1039/d1ee01272j 10.1021/acssuschemeng.9b04124 10.1016/j.rser.2020.110651 10.1039/D3EE01008B 10.1021/acs.chemrev.7b00435 10.1021/acs.iecr.6b03887 10.1039/D1EE03523A 10.1002/aic.16607 10.1002/cite.202000172 10.1021/es301953k 10.1016/j.cej.2022.141035 10.1016/j.joule.2019.08.010 10.1016/j.joule.2021.05.023 10.1016/j.cherd.2022.11.040 10.1016/j.ijggc.2018.09.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10450-024-00526-y |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (ODIN) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1572-8757 |
EndPage | 1848 |
ExternalDocumentID | 10_1007_s10450_024_00526_y |
GrantInformation_xml | – fundername: UK Research and Innovation grantid: EP/V027050/1; EP/V027050/1; EP/V027050/1 funderid: http://dx.doi.org/10.13039/100014013 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z85 Z86 Z8M Z8N Z8P Z8Q Z8S Z8Z ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c314t-1a05928c66e80e1df750ca5897a969bbb17e75c1e2ded5091c83d8093fe110183 |
IEDL.DBID | U2A |
ISSN | 0929-5607 |
IngestDate | Fri Jul 25 11:14:17 EDT 2025 Tue Jul 01 02:15:13 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Process modelling capture Process optimization CO Gas adsorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-1a05928c66e80e1df750ca5897a969bbb17e75c1e2ded5091c83d8093fe110183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10450-024-00526-y |
PQID | 3107467392 |
PQPubID | 2043877 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3107467392 crossref_primary_10_1007_s10450_024_00526_y springer_journals_10_1007_s10450_024_00526_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | Journal of the International Adsorption Society |
PublicationTitle | Adsorption : journal of the International Adsorption Society |
PublicationTitleAbbrev | Adsorption |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | LiGXiaoPWebleyPZhangJCapture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from high humidity flue gas by vacuum swing adsorption with Zeolite 13xAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y LiuCMSandhuNKMcCoySTBergersonJAA life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel productionSustain. Energy Fuels20204312931421:CAS:528:DC%2BB3cXntFyisrk%3D10.1039/c9se00479c Stampi-BombelliVSpekMMazzottiMAnalysis of direct capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from ambient air via steam-assisted temperature-vacuum swing adsorptionAdsorption202026118311971:CAS:528:DC%2BB3cXhsF2qtrzE10.1007/s10450-020-00249-w Climeworks: United States Patent Application (US 2017/1006330 A1) (2017) GebaldCWurzbacherJABorgschulteAZimmermannTSteinfeldASingle-component and binary CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O adsorption on amine functionalized celluloseEnviron. Sci. Technol.201448249725041:CAS:528:DC%2BC2cXptlSjtA%3D%3D10.1021/es404430g24437467 Herzog, H.: In: Bui, M., Mac Dowell, N. (eds.) The Royal Society of Chemistry, vol. 6, pp. 115–137. Greenhouse Gas Removal Technologies (2022) KrishnamurthySBoonJGrandeCLindABlomRBoerRWillemsenHScheemakerGScreening supported amine sorbents in the context of post-combustion carbon capture by vacuum swing adsorptionChemie Ingenieur Technik2021939299401:CAS:528:DC%2BB3MXls1OhtL0%3D10.1002/cite.202000172 IEA: Direct air capture: a key technology for net zero (2022) GlobalThermostat: United States Patent Application (US 2017/0361271 A1) (2017) SinhaADarunteLAJonesCWRealffMJKawajiriYSystems design and economic analysis of direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbentsInd. Ind. Eng. Chem. Res.2017567507641:CAS:528:DC%2BC28XitFSgu7vO10.1021/acs.iecr.6b03887 WurzbacherJAGebaldCPiatkowskiNSteinfeldAConcurrent separation of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O from air by a temperature-vacuum swing adsorption/desorption cycleEnviron. Sci. Technol.201246919191981:CAS:528:DC%2BC38XhtVKqurbI10.1021/es301953k22823525 BalashankarVSRajendranAProcess optimization-based screening of zeolites for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture by vacuum swing adsorptionSustain. Chem. Eng.2019717747177551:CAS:528:DC%2BC1MXhvFCjtbzE10.1021/acssuschemeng.9b04124 KrishnamurthySRaoVRGuntukaSSharrattPHaghpanahRRajendranAAmanullahMKarimiIAFarooqSCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from dry flue gas by vacuum swing adsorption: a pilot plant studyAIChE J.2014605183018421:CAS:528:DC%2BC2cXksFylu7Y%3D10.1002/aic.14435 IPCC: Climate change 2021: The physical science basis. Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change (2021) SinhaARealffMJA parametric study of the techno-economics of direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} air capture systems using solid adsorbentsAIChE J.2019651:CAS:528:DC%2BC1MXnvFGlt7c%3D10.1002/aic.16607 McQueenNGomesKVMcCormickCBluemanthalKPisciottaMWilcoxJA review of direct air capture (DAC): scaling up commercial technologies and innovating for the futureProg. Energy2021310.1088/2516-1083/abf1ce ZhuXXieWWuJMiaoYXiangCChenCGeBGanZYangFZhangMO’HareDLiJGeTWangRRecent advances in direct air capture by adsorptionChem. Soc. Rev.202251657466511:CAS:528:DC%2BB38XhslGnsr%2FK10.1039/D1CS00970B35815699 EransMSanz-PerezESHanakDPClulowZReinerDMMutchGADirect air capture: process technology, techno-economic and socio-polotical challengesEnergy Environ. Sci.202215136014051:CAS:528:DC%2BB38XltFGjsbk%3D10.1039/D1EE03523A HaghpanahRMajumderANilamRRajendranAFarooqSKarimiIAAmanullahMMultiobjective optimization of a four-step adsorption process for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture via finite volume simulationInd. Eng. Chem. Res.201352422942651:CAS:528:DC%2BC3sXhsVKgtL8%3D10.1021/ie302658y WardAPiniREfficient Bayesian optimization of industrial-scale pressure-vacuum swing adsorption processes for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInd. Eng. Chem. Res.20226113650136681:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z ZhuXGeTYangFWangRDesign of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from ambient airRenew. Sustain. Energy Rev.20211371:CAS:528:DC%2BB3MXkt1Cnug%3D%3D10.1016/j.rser.2020.110651 BreyerCFasihiMBajamundiCCreutzigFDirect air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}: a key technology for ambitious climate change mitigationJoule201932053206510.1016/j.joule.2019.08.010 WardAPiniRIntegrated uncertainty quantification and sensitivity analysis of single-component dynamic column breakthrough experimentsAdsorption2022281611831:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z RajagopalanAKRajendranAThe effect of nitrogen adsorption on vacuum swing adsorption based post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInt. J. Greenh. Gas Control2018784374471:CAS:528:DC%2BC1cXhvFKlt7bI10.1016/j.ijggc.2018.09.002 DanaciDWebleyPAPetitCGuidelines for techno-economic analysis of adsorption processesFront. Chem. Eng.2021210.3389/fceng.2020.602430 YoungJMcilwaineFSmitBGarciaSSpekMProcess-informed adsorbent design guidelines for direct air captureChem. Eng. J.20234561:CAS:528:DC%2BB38XjtFyjsbvE10.1016/j.cej.2022.141035 ArtzJMullerTEThenertKKleinekorteJMeysRSternbergABardowALeitnerWSustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessmentChem. Rev.20181184345041:CAS:528:DC%2BC2sXhvFemsrbL10.1021/acs.chemrev.7b0043529220170 KungLAeschlimannSCharalambousCMcIlwaineFYoungJShannonNStrasselKMaesanoCNKahsarRPikeDSpekMGarciaSA roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storageEnergy Environ. Sci.202316428043041:CAS:528:DC%2BB3sXhvVehu7vJ10.1039/D3EE01008B SabatinoFGrimmAGallucciFSint AnnalandMKramerGJGazzaniMA comparative energy and costs assessment and optimization for direct air capture technologiesJoule20215204720761:CAS:528:DC%2BB3MXhsVymtbbO10.1016/j.joule.2021.05.023 DeutzSBardowALife-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorptionNat. Energy202162032131:CAS:528:DC%2BB3MXosFers78%3D10.1038/s41560-020-00771-9 OzkanMNayakSPRuizADJiangWCurrent status and pillar of direct air capture technologiesiScience2022251:CAS:528:DC%2BB38XhsVCmu7bM10.1016/j.isci.2022.103990353109378927912 KrevorSConinckHGasdaSEGhaleighNSGooyertVHajibeygiHJuanesRNeufeldJRobertsJJSwennenhuisFSubsurface carbon dioxide and hydrogen storage for a sustainable energy futureNat. Rev. Earth Environ.202341 526_CR31 J Artz (526_CR7) 2018; 118 526_CR18 C Gebald (526_CR23) 2014; 48 JA Wurzbacher (526_CR25) 2016; 283 A Sinha (526_CR13) 2019; 65 M Erans (526_CR4) 2022; 15 526_CR17 VS Balashankar (526_CR33) 2019; 7 X Zhu (526_CR15) 2021; 137 G Li (526_CR28) 2008; 14 R Haghpanah (526_CR19) 2013; 52 L Kung (526_CR39) 2023; 16 JA Wurzbacher (526_CR24) 2012; 46 AK Rajagopalan (526_CR32) 2018; 78 N McQueen (526_CR5) 2021; 3 X Zhu (526_CR10) 2022; 51 S Krevor (526_CR6) 2023; 4 A Ward (526_CR26) 2022; 28 526_CR21 D Danaci (526_CR29) 2021; 2 A Sinha (526_CR12) 2017; 56 SB Peh (526_CR35) 2022; 250 C Breyer (526_CR38) 2019; 3 M Khurana (526_CR37) 2016; 55 S Deutz (526_CR9) 2021; 6 J Young (526_CR16) 2023; 456 CM Liu (526_CR8) 2020; 4 M-YA Low (526_CR11) 2023; 189 G Leonzio (526_CR22) 2022; 12 J Young (526_CR30) 2021; 14 A Ward (526_CR27) 2022; 61 S Krishnamurthy (526_CR34) 2021; 93 F Sabatino (526_CR20) 2021; 5 S Krishnamurthy (526_CR40) 2014; 60 526_CR2 526_CR1 Q Grossmann (526_CR36) 2023; 62 V Stampi-Bombelli (526_CR14) 2020; 26 M Ozkan (526_CR3) 2022; 25 |
References_xml | – reference: ArtzJMullerTEThenertKKleinekorteJMeysRSternbergABardowALeitnerWSustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessmentChem. Rev.20181184345041:CAS:528:DC%2BC2sXhvFemsrbL10.1021/acs.chemrev.7b0043529220170 – reference: Climeworks: United States Patent Application (US 2017/1006330 A1) (2017) – reference: WurzbacherJAGebaldCPiatkowskiNSteinfeldAConcurrent separation of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O from air by a temperature-vacuum swing adsorption/desorption cycleEnviron. Sci. Technol.201246919191981:CAS:528:DC%2BC38XhtVKqurbI10.1021/es301953k22823525 – reference: KhuranaMFarooqSAdsorbent screening for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture: a method relating equilibrium isotherm characteristics to an optimum vacuum swing adsorption process performanceInd. Eng. Chem. Res.201655244724601:CAS:528:DC%2BC28XislCmsr8%3D10.1021/acs.iecr.5b04531 – reference: Stampi-BombelliVSpekMMazzottiMAnalysis of direct capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from ambient air via steam-assisted temperature-vacuum swing adsorptionAdsorption202026118311971:CAS:528:DC%2BB3cXhsF2qtrzE10.1007/s10450-020-00249-w – reference: ZhuXGeTYangFWangRDesign of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from ambient airRenew. Sustain. Energy Rev.20211371:CAS:528:DC%2BB3MXkt1Cnug%3D%3D10.1016/j.rser.2020.110651 – reference: GebaldCWurzbacherJABorgschulteAZimmermannTSteinfeldASingle-component and binary CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O adsorption on amine functionalized celluloseEnviron. Sci. Technol.201448249725041:CAS:528:DC%2BC2cXptlSjtA%3D%3D10.1021/es404430g24437467 – reference: LowM-YABartonLVPiniRPetitCAnalytical review of the current state of knowledge of adsorption materials and processes for direct air captureChem. Eng. Res. Des.20231897457671:CAS:528:DC%2BB38XjtVWnur%2FN10.1016/j.cherd.2022.11.040 – reference: SinhaARealffMJA parametric study of the techno-economics of direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} air capture systems using solid adsorbentsAIChE J.2019651:CAS:528:DC%2BC1MXnvFGlt7c%3D10.1002/aic.16607 – reference: Schellevis, H.M., Combe, J.D., Brilman, D.W.F.: An optimization framework for a temperature-vacuum swing adsorption direct air capture process (November 30, 2022). In: Proceedings of the 16th International Conference on Greenhouse Gas Control Technologies Conference (GHGT-16) 23–24 Oct (2022). https://doi.org/10.2139/ssrn.4290070 – reference: EransMSanz-PerezESHanakDPClulowZReinerDMMutchGADirect air capture: process technology, techno-economic and socio-polotical challengesEnergy Environ. Sci.202215136014051:CAS:528:DC%2BB38XltFGjsbk%3D10.1039/D1EE03523A – reference: McQueenNGomesKVMcCormickCBluemanthalKPisciottaMWilcoxJA review of direct air capture (DAC): scaling up commercial technologies and innovating for the futureProg. Energy2021310.1088/2516-1083/abf1ce – reference: LeonzioGFennellPSShahNA comparative study of different sorbents in the context of direct air capture (DAC): evaluation of key performance indicators and comparisonsAppl. Sci.20221226181:CAS:528:DC%2BB38XmvFWqu7Y%3D10.3390/app12052618 – reference: KungLAeschlimannSCharalambousCMcIlwaineFYoungJShannonNStrasselKMaesanoCNKahsarRPikeDSpekMGarciaSA roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storageEnergy Environ. Sci.202316428043041:CAS:528:DC%2BB3sXhvVehu7vJ10.1039/D3EE01008B – reference: HaghpanahRMajumderANilamRRajendranAFarooqSKarimiIAAmanullahMMultiobjective optimization of a four-step adsorption process for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture via finite volume simulationInd. Eng. Chem. Res.201352422942651:CAS:528:DC%2BC3sXhsVKgtL8%3D10.1021/ie302658y – reference: YoungJGarcia-DiezEGarciaSSpekMThe impact of binary water-CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} isotherm models on the optimal performance of sorbent-based direct air capture processesEnergy Environ. Sci.202114537753941:CAS:528:DC%2BB3MXhs1yiurjJ10.1039/d1ee01272j – reference: BreyerCFasihiMBajamundiCCreutzigFDirect air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}: a key technology for ambitious climate change mitigationJoule201932053206510.1016/j.joule.2019.08.010 – reference: DanaciDWebleyPAPetitCGuidelines for techno-economic analysis of adsorption processesFront. Chem. Eng.2021210.3389/fceng.2020.602430 – reference: WurzbacherJAGebaldCBrunnerSSteinfeldAHeat and mass transfer of temperature-vacuum swing desorption for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from airChem. Eng. J.2016283132913381:CAS:528:DC%2BC2MXhtlymurrM10.1016/j.cej.2015.08.035 – reference: PehSBFarooqSZhaoDA metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from wet flue gasChem. Eng. Sci.20222501:CAS:528:DC%2BB38XhslCjtLY%3D10.1016/j.ces.2021.117399 – reference: OzkanMNayakSPRuizADJiangWCurrent status and pillar of direct air capture technologiesiScience2022251:CAS:528:DC%2BB38XhsVCmu7bM10.1016/j.isci.2022.103990353109378927912 – reference: Herzog, H.: In: Bui, M., Mac Dowell, N. (eds.) The Royal Society of Chemistry, vol. 6, pp. 115–137. Greenhouse Gas Removal Technologies (2022) – reference: DeutzSBardowALife-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorptionNat. Energy202162032131:CAS:528:DC%2BB3MXosFers78%3D10.1038/s41560-020-00771-9 – reference: GlobalThermostat: United States Patent Application (US 2017/0361271 A1) (2017) – reference: KrishnamurthySBoonJGrandeCLindABlomRBoerRWillemsenHScheemakerGScreening supported amine sorbents in the context of post-combustion carbon capture by vacuum swing adsorptionChemie Ingenieur Technik2021939299401:CAS:528:DC%2BB3MXls1OhtL0%3D10.1002/cite.202000172 – reference: WardAPiniRIntegrated uncertainty quantification and sensitivity analysis of single-component dynamic column breakthrough experimentsAdsorption2022281611831:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z – reference: BalashankarVSRajendranAProcess optimization-based screening of zeolites for post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture by vacuum swing adsorptionSustain. Chem. Eng.2019717747177551:CAS:528:DC%2BC1MXhvFCjtbzE10.1021/acssuschemeng.9b04124 – reference: IEA: Direct air capture: a key technology for net zero (2022) – reference: KrishnamurthySRaoVRGuntukaSSharrattPHaghpanahRRajendranAAmanullahMKarimiIAFarooqSCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} capture from dry flue gas by vacuum swing adsorption: a pilot plant studyAIChE J.2014605183018421:CAS:528:DC%2BC2cXksFylu7Y%3D10.1002/aic.14435 – reference: SabatinoFGrimmAGallucciFSint AnnalandMKramerGJGazzaniMA comparative energy and costs assessment and optimization for direct air capture technologiesJoule20215204720761:CAS:528:DC%2BB3MXhsVymtbbO10.1016/j.joule.2021.05.023 – reference: LiGXiaoPWebleyPZhangJCapture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} from high humidity flue gas by vacuum swing adsorption with Zeolite 13xAdsorption2008144154221:CAS:528:DC%2BD1cXjsFajs7s%3D10.1007/s10450-007-9100-y – reference: SinhaADarunteLAJonesCWRealffMJKawajiriYSystems design and economic analysis of direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbentsInd. Ind. Eng. Chem. Res.2017567507641:CAS:528:DC%2BC28XitFSgu7vO10.1021/acs.iecr.6b03887 – reference: KrevorSConinckHGasdaSEGhaleighNSGooyertVHajibeygiHJuanesRNeufeldJRobertsJJSwennenhuisFSubsurface carbon dioxide and hydrogen storage for a sustainable energy futureNat. Rev. Earth Environ.202341021181:CAS:528:DC%2BB3sXhvVGiu7g%3D10.1038/s43017-022-00376-8 – reference: RajagopalanAKRajendranAThe effect of nitrogen adsorption on vacuum swing adsorption based post-combustion CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInt. J. Greenh. Gas Control2018784374471:CAS:528:DC%2BC1cXhvFKlt7bI10.1016/j.ijggc.2018.09.002 – reference: ZhuXXieWWuJMiaoYXiangCChenCGeBGanZYangFZhangMO’HareDLiJGeTWangRRecent advances in direct air capture by adsorptionChem. Soc. Rev.202251657466511:CAS:528:DC%2BB38XhslGnsr%2FK10.1039/D1CS00970B35815699 – reference: WardAPiniREfficient Bayesian optimization of industrial-scale pressure-vacuum swing adsorption processes for CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} captureInd. Eng. Chem. Res.20226113650136681:CAS:528:DC%2BB38Xht12gtr%2FO10.1007/s10450-022-00361-z – reference: LiuCMSandhuNKMcCoySTBergersonJAA life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel productionSustain. Energy Fuels20204312931421:CAS:528:DC%2BB3cXntFyisrk%3D10.1039/c9se00479c – reference: IPCC: Climate change 2021: The physical science basis. Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change (2021) – reference: GrossmannQStampi-BombelliVYakimovADochertySCoperetCMazottiMDeveloping versatile contactors for direct air capture of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} through amine grafting onto alumina pellets and alumina wash-coated monolithsInd. Eng. Chem. Res.20236213594136111:CAS:528:DC%2BB3sXhs1KmsLvF10.1021/acs.iecr.3c012653766316910472440 – reference: YoungJMcilwaineFSmitBGarciaSSpekMProcess-informed adsorbent design guidelines for direct air captureChem. Eng. J.20234561:CAS:528:DC%2BB38XjtFyjsbvE10.1016/j.cej.2022.141035 – volume: 55 start-page: 2447 year: 2016 ident: 526_CR37 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04531 – volume: 52 start-page: 4229 year: 2013 ident: 526_CR19 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302658y – ident: 526_CR17 – ident: 526_CR21 doi: 10.2139/ssrn.4290070 – ident: 526_CR31 doi: 10.1039/9781839165245-00115 – volume: 25 year: 2022 ident: 526_CR3 publication-title: iScience doi: 10.1016/j.isci.2022.103990 – volume: 48 start-page: 2497 year: 2014 ident: 526_CR23 publication-title: Environ. Sci. Technol. doi: 10.1021/es404430g – ident: 526_CR1 – volume: 51 start-page: 6574 year: 2022 ident: 526_CR10 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00970B – volume: 4 start-page: 102 year: 2023 ident: 526_CR6 publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-022-00376-8 – volume: 283 start-page: 1329 year: 2016 ident: 526_CR25 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.035 – volume: 3 year: 2021 ident: 526_CR5 publication-title: Prog. Energy doi: 10.1088/2516-1083/abf1ce – volume: 6 start-page: 203 year: 2021 ident: 526_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-020-00771-9 – volume: 12 start-page: 2618 year: 2022 ident: 526_CR22 publication-title: Appl. Sci. doi: 10.3390/app12052618 – volume: 250 year: 2022 ident: 526_CR35 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117399 – volume: 62 start-page: 13594 year: 2023 ident: 526_CR36 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c01265 – volume: 4 start-page: 3129 year: 2020 ident: 526_CR8 publication-title: Sustain. Energy Fuels doi: 10.1039/c9se00479c – volume: 28 start-page: 161 year: 2022 ident: 526_CR26 publication-title: Adsorption doi: 10.1007/s10450-022-00361-z – volume: 14 start-page: 415 year: 2008 ident: 526_CR28 publication-title: Adsorption doi: 10.1007/s10450-007-9100-y – volume: 2 year: 2021 ident: 526_CR29 publication-title: Front. Chem. Eng. doi: 10.3389/fceng.2020.602430 – volume: 60 start-page: 1830 issue: 5 year: 2014 ident: 526_CR40 publication-title: AIChE J. doi: 10.1002/aic.14435 – volume: 26 start-page: 1183 year: 2020 ident: 526_CR14 publication-title: Adsorption doi: 10.1007/s10450-020-00249-w – volume: 14 start-page: 5377 year: 2021 ident: 526_CR30 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01272j – volume: 7 start-page: 17747 year: 2019 ident: 526_CR33 publication-title: Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04124 – volume: 137 year: 2021 ident: 526_CR15 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110651 – volume: 16 start-page: 4280 year: 2023 ident: 526_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01008B – ident: 526_CR18 – volume: 118 start-page: 434 year: 2018 ident: 526_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00435 – volume: 56 start-page: 750 year: 2017 ident: 526_CR12 publication-title: Ind. Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b03887 – volume: 15 start-page: 1360 year: 2022 ident: 526_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03523A – volume: 65 year: 2019 ident: 526_CR13 publication-title: AIChE J. doi: 10.1002/aic.16607 – volume: 61 start-page: 13650 year: 2022 ident: 526_CR27 publication-title: Ind. Eng. Chem. Res. doi: 10.1007/s10450-022-00361-z – volume: 93 start-page: 929 year: 2021 ident: 526_CR34 publication-title: Chemie Ingenieur Technik doi: 10.1002/cite.202000172 – ident: 526_CR2 – volume: 46 start-page: 9191 year: 2012 ident: 526_CR24 publication-title: Environ. Sci. Technol. doi: 10.1021/es301953k – volume: 456 year: 2023 ident: 526_CR16 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.141035 – volume: 3 start-page: 2053 year: 2019 ident: 526_CR38 publication-title: Joule doi: 10.1016/j.joule.2019.08.010 – volume: 5 start-page: 2047 year: 2021 ident: 526_CR20 publication-title: Joule doi: 10.1016/j.joule.2021.05.023 – volume: 189 start-page: 745 year: 2023 ident: 526_CR11 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.11.040 – volume: 78 start-page: 437 year: 2018 ident: 526_CR32 publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2018.09.002 |
SSID | ssj0009673 |
Score | 2.3832624 |
Snippet | Direct capture of CO
2
from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving... Direct capture of CO $$_2$$ 2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for... Direct capture of CO2 from ambient air is technically feasible today, with commercial units already in operation. A demonstrated technology for achieving... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1829 |
SubjectTerms | Adsorption Carbon dioxide Chemical separation Chemistry Chemistry and Materials Science Contactors Design factors Design optimization Energy consumption Engineering Thermodynamics Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Kinetics Multiple objective analysis Optimization techniques Productivity Relative humidity Sorbents Surfaces and Interfaces Thin Films |
Title | The impact of design and operational parameters on the optimal performance of direct air capture units using solid sorbents |
URI | https://link.springer.com/article/10.1007/s10450-024-00526-y https://www.proquest.com/docview/3107467392 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLZoKwQMCAqIQqluYIOT8n6MVdRSgWCiUpmi3COoA0mVtEPFn8d3SZSCYGDJ4uSGfI795fzZB3BrpAJ5eMhpmhqCOkx4lLHQp64KyNwxmM_VfsfzizebO48Ld1E3hZWN2r0pSepIvdPs5rgGxZxC9ZASuu1Az1X_7ujFc2vcjtr1qroyJn6K-dyvW2V-X-N7Omo55o-yqM420xM4rmkiGVe4nsKezPpwEDWns_XhaGeQYB_2tZCTl2fwibiTqvWR5CkRWqBBkkyQfCWLeuePqIHfH0oIU5I8I8gB0bpefihL20ign9cRkSTLgvBkpaoNZINBoCRKL_9O0HGXAq8FU3qMc5hPJ6_RjNYHLFBum86amgmSKyvgnicDQ5oiRfrAEzcI_ST0QsaY6Uvf5aa0hBSKWfDAFoER2qk01aQv-wK6WZ7JSyBpank-C11kj0yVBkME2kkczlxfGjYTA7hr3nO8quZoxO3EZIVKjKjEGpV4O4BhA0Vcf1NlbJv6bBQkdAO4b-BpzX-vdvW_26_h0FIeohV7Q-iui428QeaxZiPojR_eniYj6EReNNJu9wVeMdR0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BESoMCAqIQgEPbGAp3x8jiqgKtJ1aqVsUf6EOTas0HSr-PGc3VaCCgSWLYw95tu_F9-4Z4MFSAnl4zKlSlqAeEwFlLA6przdk7lks5Pq8YzAMemPvbeJPKpscXQuzk7_XJW6eb1GMJNRYk9D1Phx4-Kes5XtJkNQGu8Emm4zhnmIUD6sCmd_H-BmEama5kww1MaZ7CicVOSTPGzTPYE_mLWgm2zvZWnD8zT6wBYdGvsmX5_CJaJNNwSOZKyKMLINkuSDzhSyq8z6ibb5nWv6yJPOcIPPD1nI60y11-YDpb_ZBkk0LwrOFzjGQFS79JdEq-Q-C03Uq8FkwrcK4gHH3ZZT0aHWtAuWu7ZXUzpBSOREPAhlZ0hYKSQPP_CgOsziIGWN2KEOf29IRUmg-wSNXRFbsKmlrfy_3Ehr5PJdXQJRygpDFPnJGphOCMcLrZR5nfigtl4k2PG6_c7rYuGektU-yRiVFVFKDSrpuQ2cLRVqtpGXq2uZGFKRxbXjawlM3_z3a9f9ev4dmbzTop_3X4fsNHDl6thjNXgcaZbGSt8g9SnZnJt0XWjnQ1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsNAEB1BEFeBIIAIBNiCDlb4PkoUiMIVURApneW9UIo4UeIUET_P7NqWA4KCxs3aW_iNd5533rwFuLKUQB4ec6qUJajHREAZi0Pq6wWZexYLud7veO0HvYH3NPSHK138Ru1elSSLngbt0pTlt1Ohblca3zzfophfqDEsoct12MA_FVOo7QSd2nY3KGrMSAIo5vawbJv5fY7vqanmmz9KpCbzdPdhr6SM5K7A-ADWZNaE7U51UlsTdldMBZuwaUSdfH4InxgDpGiDJBNFhBFrkDQTZDKVs3IXkGjz77EWxczJJCPIB3E0H431SN1UYJ43qyNJRzPC06muPJAFLghzorXzHwSDeCTwOmNam3EEg-7De6dHy8MWKHdtL6d2ikTLiXgQyMiStlBIJXjqR3GYxkHMGLNDGfrclo6QQrMMHrkismJXSVu7frnH0MgmmTwBopQThCz2kUkyXSaMEXQv9TjzQ2m5TLTgunrPybTw1Ehq92SNSoKoJAaVZNmCdgVFUn5f88S1zTkpSO5acFPBUw__Pdvp_26_hK23-27y8th_PoMdRweLEfK1oZHPFvIcCUnOLkzMfQEjr9kc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+design+and+operational+parameters+on+the+optimal+performance+of+direct+air+capture+units+using+solid+sorbents&rft.jtitle=Adsorption+%3A+journal+of+the+International+Adsorption+Society&rft.au=Ward%2C+Adam&rft.au=Papathanasiou%2C+Maria+M&rft.au=Pini+Ronny&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5607&rft.eissn=1572-8757&rft.volume=30&rft.issue=7&rft.spage=1829&rft.epage=1848&rft_id=info:doi/10.1007%2Fs10450-024-00526-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5607&client=summon |