Uncertainty quantification for random domains using periodic random variables

We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random var...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 156; no. 1; pp. 273 - 317
Main Authors Hakula, Harri, Harbrecht, Helmut, Kaarnioja, Vesa, Kuo, Frances Y., Sloan, Ian H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01392-6