INVESTIGATION OF VASCULAR FLOW IN A THORACIC AORTA IN TERMS OF FLOW MODELS AND BLOOD RHEOLOGY VIA COMPUTATIONAL FLUID DYNAMICS (CFD)

The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanics in medicine and biology Vol. 24; no. 4
Main Authors CANBOLAT, GOKHAN, ETLI, MUSTAFA, KARAHAN, OGUZ, KORU, MURAT, KORKMAZ, ERGUN
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.05.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-5194
1793-6810
DOI10.1142/S021951942350094X

Cover

Loading…
Abstract The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k- ε , Standard k- ε , SST k- ω , Standard k- ω , Transition k-kl- ω , Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc.
AbstractList The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k-ε, Standard k-ε, SST k-ω, Standard k-ω, Transition k-kl-ω, Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc.
The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k-[Formula: see text], Standard k-[Formula: see text], SST k-[Formula: see text], Standard k-[Formula: see text], Transition k-kl-[Formula: see text], Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc.
The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k- ε , Standard k- ε , SST k- ω , Standard k- ω , Transition k-kl- ω , Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc.
Author KORU, MURAT
KARAHAN, OGUZ
ETLI, MUSTAFA
CANBOLAT, GOKHAN
KORKMAZ, ERGUN
Author_xml – sequence: 1
  givenname: GOKHAN
  surname: CANBOLAT
  fullname: CANBOLAT, GOKHAN
– sequence: 2
  givenname: MUSTAFA
  surname: ETLI
  fullname: ETLI, MUSTAFA
– sequence: 3
  givenname: OGUZ
  surname: KARAHAN
  fullname: KARAHAN, OGUZ
– sequence: 4
  givenname: MURAT
  surname: KORU
  fullname: KORU, MURAT
– sequence: 5
  givenname: ERGUN
  surname: KORKMAZ
  fullname: KORKMAZ, ERGUN
BookMark eNp9kE9PhDAQxRujievqB_DWxIse0BYK3R4rsLtNWGr4s64ngqUkmBUUMMa7H1zYNR408TSZee_3JjMn4LBuag3AOUbXGBPzJkYmZjZmxLRshBjZHIAJpswynBlGh2AyysaoH4OTrntCQ0_QbAI-Rbj240QseCJkCOUcrnnspgGP4DyQ91CEkMNkKSPuChdyGSV8nCV-tIpH9860kp4fxJCHHrwNpPRgtPRlIBcPcC04dOXqLk12-TwYgFR40HsI-Uq4Mbx0597VKTgq822nz77rFKRzP3GXxpAhXB4YysJkY-jhnpygkhaaopnJmNJ2gViOTIJVrqhpPTLqUPSIcEmoxjPLUazQFi4wVSR3rCm42Oe-tM3rm-767Kl5a-thZWZhx3ao4xA2uOjepdqm61pdZqrq875q6r7Nq22GUTa-PPvz8oHEv8iXtnrO249_GbRn3pt2W3Sq0nVflZX6Qf8iXyK1h_8
CitedBy_id crossref_primary_10_1007_s13369_024_08810_3
crossref_primary_10_46740_alku_1368103
crossref_primary_10_21605_cukurovaumfd_1410647
Cites_doi 10.1016/j.jbiomech.2011.11.041
10.1016/j.compbiomed.2020.104025
10.1186/s12938-018-0497-1
10.1007/s10409-009-0227-9
10.1093/ejcts/ezs388
10.1016/j.jbiomech.2011.01.024
10.1016/S0010-4825(01)00033-6
10.1115/1.4006681
10.3389/fphy.2020.00138
10.1016/j.jnnfm.2016.03.008
10.1007/s10439-013-0879-2
10.1007/s10439-014-1116-3
10.1155/2018/7126532
10.1152/ajpheart.01301.2005
10.1016/j.medengphy.2014.07.006
10.1007/s11517-008-0361-8
10.1016/j.medengphy.2006.12.004
10.1080/10255842.2011.625358
10.1080/10255840903091551
10.1136/hrt.2004.055111
10.1016/j.ijheatmasstransfer.2015.12.073
10.1186/s12938-015-0032-6
10.1007/978-1-4757-2257-4
10.1115/1.2907765
10.1016/j.jbiomech.2015.06.022
10.1016/j.ejmp.2009.03.004
10.1007/s10439-010-9978-5
10.1016/j.jvs.2012.07.061
10.1016/j.medengphy.2011.05.008
10.3233/BIR-1991-283-415
10.1007/s11517-020-02287-6
10.1016/j.jbiomech.2005.01.034
10.2174/1875399X01710010279
10.1115/1.1992521
10.1080/10255842.2020.1729755
10.1007/s13239-011-0059-1
10.1016/j.mvr.2021.104221
10.1016/j.jnnfm.2014.03.007
10.1016/j.mvr.2021.104241
10.1016/j.jbiomech.2008.04.009
10.1177/09544119211026095
10.1016/j.apm.2006.06.009
10.1080/10255842.2014.887698
10.1080/10255840903097814
10.1016/j.compbiomed.2021.104213
10.1053/ejvs.1999.0872
10.1016/j.compbiomed.2021.105009
10.1016/j.jbiomech.2003.09.016
ContentType Journal Article
Copyright 2024, World Scientific Publishing Company
2024. World Scientific Publishing Company
Copyright_xml – notice: 2024, World Scientific Publishing Company
– notice: 2024. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S021951942350094X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1793-6810
ExternalDocumentID 10_1142_S021951942350094X
S021951942350094X
GroupedDBID 0R~
4.4
53G
5GY
ABDBF
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EAD
EAP
EBD
EBS
EJD
EMK
EOJEC
EPL
ESX
F5P
HZ~
I-F
MK~
ML~
O9-
OBODZ
P2P
P71
RWJ
TUS
AAYXX
ACUHS
CITATION
ID FETCH-LOGICAL-c314X-e793a40f7de708299ce5d09a0241cac723b97670b01f47e1836c9de31d17c4a63
ISSN 0219-5194
IngestDate Mon Jun 30 12:59:07 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 04:02:21 EDT 2025
Fri Aug 23 08:19:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords blood rheology
computed tomography angiography (CTA)
thoracic aorta
flow characteristics
vascular flow
Computational fluid dynamics (CFD)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314X-e793a40f7de708299ce5d09a0241cac723b97670b01f47e1836c9de31d17c4a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9320-3971
0000-0002-6949-645X
0000-0003-0044-9476
0000-0003-1014-6460
0000-0001-6491-095X
PQID 3165676649
PQPubID 2049871
ParticipantIDs crossref_citationtrail_10_1142_S021951942350094X
crossref_primary_10_1142_S021951942350094X
proquest_journals_3165676649
worldscientific_primary_S021951942350094X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of mechanics in medicine and biology
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S021951942350094XBIB041
S021951942350094XBIB040
S021951942350094XBIB009
S021951942350094XBIB007
S021951942350094XBIB006
S021951942350094XBIB005
S021951942350094XBIB004
S021951942350094XBIB003
S021951942350094XBIB002
S021951942350094XBIB046
S021951942350094XBIB001
S021951942350094XBIB045
S021951942350094XBIB044
S021951942350094XBIB043
S021951942350094XBIB042
S021951942350094XBIB030
S021951942350094XBIB039
S021951942350094XBIB038
S021951942350094XBIB037
S021951942350094XBIB036
S021951942350094XBIB035
S021951942350094XBIB034
S021951942350094XBIB033
S021951942350094XBIB031
S021951942350094XBIB029
S021951942350094XBIB028
S021951942350094XBIB027
S021951942350094XBIB026
Chandran KB (S021951942350094XBIB048) 2015
S021951942350094XBIB025
S021951942350094XBIB024
S021951942350094XBIB023
S021951942350094XBIB022
S021951942350094XBIB021
S021951942350094XBIB052
S021951942350094XBIB051
S021951942350094XBIB050
Liu JL (S021951942350094XBIB008); 1
Zaotis LB (S021951942350094XBIB047) 2007
S021951942350094XBIB019
S021951942350094XBIB018
S021951942350094XBIB017
S021951942350094XBIB016
S021951942350094XBIB015
S021951942350094XBIB014
S021951942350094XBIB013
S021951942350094XBIB012
Kumar D (S021951942350094XBIB032) 2017; 28
S021951942350094XBIB011
S021951942350094XBIB010
S021951942350094XBIB054
S021951942350094XBIB053
References_xml – ident: S021951942350094XBIB009
  doi: 10.1016/j.jbiomech.2011.11.041
– ident: S021951942350094XBIB038
  doi: 10.1016/j.compbiomed.2020.104025
– ident: S021951942350094XBIB014
  doi: 10.1186/s12938-018-0497-1
– ident: S021951942350094XBIB050
  doi: 10.1007/s10409-009-0227-9
– ident: S021951942350094XBIB024
  doi: 10.1093/ejcts/ezs388
– ident: S021951942350094XBIB040
  doi: 10.1016/j.jbiomech.2011.01.024
– ident: S021951942350094XBIB031
  doi: 10.1016/S0010-4825(01)00033-6
– ident: S021951942350094XBIB016
  doi: 10.1115/1.4006681
– volume: 28
  start-page: 3194
  issue: 7
  year: 2017
  ident: S021951942350094XBIB032
  publication-title: Biomed Res
– ident: S021951942350094XBIB025
  doi: 10.3389/fphy.2020.00138
– ident: S021951942350094XBIB002
  doi: 10.1016/j.jnnfm.2016.03.008
– volume-title: Comprehensive Pediatric Hospital Medicine
  year: 2007
  ident: S021951942350094XBIB047
– ident: S021951942350094XBIB003
  doi: 10.1007/s10439-013-0879-2
– ident: S021951942350094XBIB017
  doi: 10.1007/s10439-014-1116-3
– ident: S021951942350094XBIB013
  doi: 10.1155/2018/7126532
– volume: 1
  start-page: 1449
  volume-title: ASME-JSME-KSME 2011 Joint Fluids Eng Conf AJK 2011
  ident: S021951942350094XBIB008
– ident: S021951942350094XBIB010
  doi: 10.1152/ajpheart.01301.2005
– ident: S021951942350094XBIB023
  doi: 10.1016/j.medengphy.2014.07.006
– ident: S021951942350094XBIB036
  doi: 10.1007/s11517-008-0361-8
– ident: S021951942350094XBIB037
  doi: 10.1016/j.medengphy.2006.12.004
– ident: S021951942350094XBIB004
  doi: 10.1080/10255842.2011.625358
– ident: S021951942350094XBIB007
  doi: 10.1080/10255840903091551
– ident: S021951942350094XBIB046
  doi: 10.1136/hrt.2004.055111
– ident: S021951942350094XBIB045
  doi: 10.1016/j.ijheatmasstransfer.2015.12.073
– ident: S021951942350094XBIB021
  doi: 10.1186/s12938-015-0032-6
– ident: S021951942350094XBIB052
  doi: 10.1007/978-1-4757-2257-4
– ident: S021951942350094XBIB026
  doi: 10.1115/1.2907765
– ident: S021951942350094XBIB034
  doi: 10.1016/j.jbiomech.2015.06.022
– ident: S021951942350094XBIB041
  doi: 10.1016/j.ejmp.2009.03.004
– ident: S021951942350094XBIB019
  doi: 10.1007/s10439-010-9978-5
– ident: S021951942350094XBIB033
  doi: 10.1016/j.jvs.2012.07.061
– ident: S021951942350094XBIB015
  doi: 10.1016/j.medengphy.2011.05.008
– ident: S021951942350094XBIB006
  doi: 10.3233/BIR-1991-283-415
– ident: S021951942350094XBIB001
  doi: 10.1007/s11517-020-02287-6
– ident: S021951942350094XBIB051
  doi: 10.1016/j.jbiomech.2005.01.034
– ident: S021951942350094XBIB029
  doi: 10.2174/1875399X01710010279
– ident: S021951942350094XBIB027
  doi: 10.1115/1.1992521
– ident: S021951942350094XBIB042
  doi: 10.1080/10255842.2020.1729755
– ident: S021951942350094XBIB018
  doi: 10.1007/s13239-011-0059-1
– ident: S021951942350094XBIB039
  doi: 10.1016/j.mvr.2021.104221
– ident: S021951942350094XBIB054
  doi: 10.1016/j.jnnfm.2014.03.007
– ident: S021951942350094XBIB030
  doi: 10.1016/j.mvr.2021.104241
– ident: S021951942350094XBIB043
  doi: 10.1016/j.jbiomech.2008.04.009
– ident: S021951942350094XBIB022
  doi: 10.1177/09544119211026095
– ident: S021951942350094XBIB044
  doi: 10.1016/j.apm.2006.06.009
– ident: S021951942350094XBIB005
  doi: 10.1080/10255842.2014.887698
– ident: S021951942350094XBIB012
  doi: 10.1080/10255840903097814
– volume-title: Biofluid Mechanics
  year: 2015
  ident: S021951942350094XBIB048
– ident: S021951942350094XBIB028
  doi: 10.1016/j.compbiomed.2021.104213
– ident: S021951942350094XBIB011
  doi: 10.1053/ejvs.1999.0872
– ident: S021951942350094XBIB035
  doi: 10.1016/j.compbiomed.2021.105009
– ident: S021951942350094XBIB053
  doi: 10.1016/j.jbiomech.2003.09.016
SSID ssj0021408
Score 2.302978
Snippet The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aorta
Blood
Boundary conditions
Computational fluid dynamics
Computed tomography
Computing costs
Fluid flow
Hemodynamics
In vivo methods and tests
Investigations
Laminar flow
Research Article
Rheological properties
Rheology
Turbulent flow
Wall shear stresses
Title INVESTIGATION OF VASCULAR FLOW IN A THORACIC AORTA IN TERMS OF FLOW MODELS AND BLOOD RHEOLOGY VIA COMPUTATIONAL FLUID DYNAMICS (CFD)
URI http://www.worldscientific.com/doi/abs/10.1142/S021951942350094X
https://www.proquest.com/docview/3165676649
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcVjxFYUE-cGCJsiSxk2yPbtNsw6YxSpOlnKrUSSUkKAi6Bzjzg_iJjO0kbbcLYrlElTudqJkvM2PPC6EXRVG6ol8Sc0E8y5QIMfslCMS1iSfcUsgGIjLbIvHGOX0zc2edzq-trKXL9eJE_Li2ruR_pAprIFdZJXsDybZMYQE-g3zhChKG6z_JOEouRtMsOtOjc3hoXLDpMI9ZaoQxf2dECbz22ZinbAjPmvE0Y3INHNiJmliuiCY8GMVT1WVqEHMeGOl4pIJLxkXEjCGfvM2zpmNuGOdRYATvEyZHH6oAcBg0Zwn7Hu6nSpYVyzbQH1ZtEF9FK-rWT20AhCUDHrNMHdLz8zFr40OjLI7UmW0-zVi4MQ8sZUAlv-FneRtcOedprqlTlm2fZzh0kz1Yqz3QoQAVPfr4pNJqGbSIKTunbettXXtd45Nebw6oowLSwFJydIgrMylnG9vXxPuvmMQ2UVGXbTvzPRa30IEDGxOniw7YIBiE7SYfNqzK-jf_oo6kA5PXe0x2faHNBudQdcvVFbEyYWzL48nuosNakJhp3N1DnWp1H93Ww0u_P0A_d9CHeYgb9GEJLBwlmOEGfVihT64p9ElqRaTRhwF9WKEPN-jDgD68gz6s0Icb9OGXgL3jhygPR9lwbNYzPUxBbDozK5BkQa2lX1a-LOvui8otrX4BQLBFIXyHLMBB9uXx_JL6FRgcD1RJRezS9gUtPPIIdVefV9VjhC2rcCuyOPVEuaSnwi88sXSEQ8Ci2NS2SQ9ZzdOdi7rhvZy78nH-R6n20Kv2J190t5e_ER81IpvXSuHbnMhuVr7n0X4PHV8RY8tyj9WTm9z3KbqzeW-OUHf99bJ6Bp7xevG8BuNvu6OWIw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INVESTIGATION+OF+VASCULAR+FLOW+IN+A+THORACIC+AORTA+IN+TERMS+OF+FLOW+MODELS+AND+BLOOD+RHEOLOGY+VIA+COMPUTATIONAL+FLUID+DYNAMICS+%28CFD%29&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=CANBOLAT%2C+GOKHAN&rft.au=ETLI%2C+MUSTAFA&rft.au=KARAHAN%2C+OGUZ&rft.au=KORU%2C+MURAT&rft.date=2024-05-01&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1142%2FS021951942350094X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S021951942350094X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon