INVESTIGATION OF VASCULAR FLOW IN A THORACIC AORTA IN TERMS OF FLOW MODELS AND BLOOD RHEOLOGY VIA COMPUTATIONAL FLUID DYNAMICS (CFD)
The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian...
Saved in:
Published in | Journal of mechanics in medicine and biology Vol. 24; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.05.2024
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0219-5194 1793-6810 |
DOI | 10.1142/S021951942350094X |
Cover
Loading…
Abstract | The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k-
ε
, Standard k-
ε
, SST k-
ω
, Standard k-
ω
, Transition k-kl-
ω
, Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc. |
---|---|
AbstractList | The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k-ε, Standard k-ε, SST k-ω, Standard k-ω, Transition k-kl-ω, Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc. The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k-[Formula: see text], Standard k-[Formula: see text], SST k-[Formula: see text], Standard k-[Formula: see text], Transition k-kl-[Formula: see text], Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc. The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics for a real-subject scan using Computed Tomography Angiography (CTA) during numerical solutions. Various vascular flow studies using Newtonian or non-Newtonian blood models were presented in the literature with laminar or turbulent flow assumptions. In this study; six different turbulent models (Realizable k- ε , Standard k- ε , SST k- ω , Standard k- ω , Transition k-kl- ω , Transition SST) were compared to laminar flow to show whether turbulent flow solution is necessary. Blood rheology was investigated by using five different non-Newtonian models (Carreau, Herschel–Bulkley, Carreau–Yasuda, Casson, Power-Law) in addition to Newtonian model to indicate whether non-Newtonian blood assumptions is necessary. The In vivo boundary conditions were utilized by the UDF code which defines the real-patient cardiac cycle obtained by Echocardiography (ECHO) to present hemodynamics in the study. The results show that laminar flow well matched with the four turbulent models and two models shows by 4.8% and 19.5% differences in Wall Shear Stress (WSS) according to laminar flow. When the blood rheology was investigated, results revealed significant differences in WSS by 25.7%, 8.7%, 22.4%, 12.3%, and 32.5% for the non-Newtonian models in the given order, respectively, compared to Newtonian assumption. It concluded that laminar flow solution could be effective instead of solving turbulent flows in terms of computational cost, however, non-Newtonian blood effects could be considered to determine critical hemodynamics levels in a normal aortic arc. |
Author | KORU, MURAT KARAHAN, OGUZ ETLI, MUSTAFA CANBOLAT, GOKHAN KORKMAZ, ERGUN |
Author_xml | – sequence: 1 givenname: GOKHAN surname: CANBOLAT fullname: CANBOLAT, GOKHAN – sequence: 2 givenname: MUSTAFA surname: ETLI fullname: ETLI, MUSTAFA – sequence: 3 givenname: OGUZ surname: KARAHAN fullname: KARAHAN, OGUZ – sequence: 4 givenname: MURAT surname: KORU fullname: KORU, MURAT – sequence: 5 givenname: ERGUN surname: KORKMAZ fullname: KORKMAZ, ERGUN |
BookMark | eNp9kE9PhDAQxRujievqB_DWxIse0BYK3R4rsLtNWGr4s64ngqUkmBUUMMa7H1zYNR408TSZee_3JjMn4LBuag3AOUbXGBPzJkYmZjZmxLRshBjZHIAJpswynBlGh2AyysaoH4OTrntCQ0_QbAI-Rbj240QseCJkCOUcrnnspgGP4DyQ91CEkMNkKSPuChdyGSV8nCV-tIpH9860kp4fxJCHHrwNpPRgtPRlIBcPcC04dOXqLk12-TwYgFR40HsI-Uq4Mbx0597VKTgq822nz77rFKRzP3GXxpAhXB4YysJkY-jhnpygkhaaopnJmNJ2gViOTIJVrqhpPTLqUPSIcEmoxjPLUazQFi4wVSR3rCm42Oe-tM3rm-767Kl5a-thZWZhx3ao4xA2uOjepdqm61pdZqrq875q6r7Nq22GUTa-PPvz8oHEv8iXtnrO249_GbRn3pt2W3Sq0nVflZX6Qf8iXyK1h_8 |
CitedBy_id | crossref_primary_10_1007_s13369_024_08810_3 crossref_primary_10_46740_alku_1368103 crossref_primary_10_21605_cukurovaumfd_1410647 |
Cites_doi | 10.1016/j.jbiomech.2011.11.041 10.1016/j.compbiomed.2020.104025 10.1186/s12938-018-0497-1 10.1007/s10409-009-0227-9 10.1093/ejcts/ezs388 10.1016/j.jbiomech.2011.01.024 10.1016/S0010-4825(01)00033-6 10.1115/1.4006681 10.3389/fphy.2020.00138 10.1016/j.jnnfm.2016.03.008 10.1007/s10439-013-0879-2 10.1007/s10439-014-1116-3 10.1155/2018/7126532 10.1152/ajpheart.01301.2005 10.1016/j.medengphy.2014.07.006 10.1007/s11517-008-0361-8 10.1016/j.medengphy.2006.12.004 10.1080/10255842.2011.625358 10.1080/10255840903091551 10.1136/hrt.2004.055111 10.1016/j.ijheatmasstransfer.2015.12.073 10.1186/s12938-015-0032-6 10.1007/978-1-4757-2257-4 10.1115/1.2907765 10.1016/j.jbiomech.2015.06.022 10.1016/j.ejmp.2009.03.004 10.1007/s10439-010-9978-5 10.1016/j.jvs.2012.07.061 10.1016/j.medengphy.2011.05.008 10.3233/BIR-1991-283-415 10.1007/s11517-020-02287-6 10.1016/j.jbiomech.2005.01.034 10.2174/1875399X01710010279 10.1115/1.1992521 10.1080/10255842.2020.1729755 10.1007/s13239-011-0059-1 10.1016/j.mvr.2021.104221 10.1016/j.jnnfm.2014.03.007 10.1016/j.mvr.2021.104241 10.1016/j.jbiomech.2008.04.009 10.1177/09544119211026095 10.1016/j.apm.2006.06.009 10.1080/10255842.2014.887698 10.1080/10255840903097814 10.1016/j.compbiomed.2021.104213 10.1053/ejvs.1999.0872 10.1016/j.compbiomed.2021.105009 10.1016/j.jbiomech.2003.09.016 |
ContentType | Journal Article |
Copyright | 2024, World Scientific Publishing Company 2024. World Scientific Publishing Company |
Copyright_xml | – notice: 2024, World Scientific Publishing Company – notice: 2024. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S021951942350094X |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1793-6810 |
ExternalDocumentID | 10_1142_S021951942350094X S021951942350094X |
GroupedDBID | 0R~ 4.4 53G 5GY ABDBF ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EAD EAP EBD EBS EJD EMK EOJEC EPL ESX F5P HZ~ I-F MK~ ML~ O9- OBODZ P2P P71 RWJ TUS AAYXX ACUHS CITATION |
ID | FETCH-LOGICAL-c314X-e793a40f7de708299ce5d09a0241cac723b97670b01f47e1836c9de31d17c4a63 |
ISSN | 0219-5194 |
IngestDate | Mon Jun 30 12:59:07 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 04:02:21 EDT 2025 Fri Aug 23 08:19:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | blood rheology computed tomography angiography (CTA) thoracic aorta flow characteristics vascular flow Computational fluid dynamics (CFD) |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314X-e793a40f7de708299ce5d09a0241cac723b97670b01f47e1836c9de31d17c4a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9320-3971 0000-0002-6949-645X 0000-0003-0044-9476 0000-0003-1014-6460 0000-0001-6491-095X |
PQID | 3165676649 |
PQPubID | 2049871 |
ParticipantIDs | crossref_citationtrail_10_1142_S021951942350094X crossref_primary_10_1142_S021951942350094X proquest_journals_3165676649 worldscientific_primary_S021951942350094X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240500 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240500 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of mechanics in medicine and biology |
PublicationYear | 2024 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S021951942350094XBIB041 S021951942350094XBIB040 S021951942350094XBIB009 S021951942350094XBIB007 S021951942350094XBIB006 S021951942350094XBIB005 S021951942350094XBIB004 S021951942350094XBIB003 S021951942350094XBIB002 S021951942350094XBIB046 S021951942350094XBIB001 S021951942350094XBIB045 S021951942350094XBIB044 S021951942350094XBIB043 S021951942350094XBIB042 S021951942350094XBIB030 S021951942350094XBIB039 S021951942350094XBIB038 S021951942350094XBIB037 S021951942350094XBIB036 S021951942350094XBIB035 S021951942350094XBIB034 S021951942350094XBIB033 S021951942350094XBIB031 S021951942350094XBIB029 S021951942350094XBIB028 S021951942350094XBIB027 S021951942350094XBIB026 Chandran KB (S021951942350094XBIB048) 2015 S021951942350094XBIB025 S021951942350094XBIB024 S021951942350094XBIB023 S021951942350094XBIB022 S021951942350094XBIB021 S021951942350094XBIB052 S021951942350094XBIB051 S021951942350094XBIB050 Liu JL (S021951942350094XBIB008); 1 Zaotis LB (S021951942350094XBIB047) 2007 S021951942350094XBIB019 S021951942350094XBIB018 S021951942350094XBIB017 S021951942350094XBIB016 S021951942350094XBIB015 S021951942350094XBIB014 S021951942350094XBIB013 S021951942350094XBIB012 Kumar D (S021951942350094XBIB032) 2017; 28 S021951942350094XBIB011 S021951942350094XBIB010 S021951942350094XBIB054 S021951942350094XBIB053 |
References_xml | – ident: S021951942350094XBIB009 doi: 10.1016/j.jbiomech.2011.11.041 – ident: S021951942350094XBIB038 doi: 10.1016/j.compbiomed.2020.104025 – ident: S021951942350094XBIB014 doi: 10.1186/s12938-018-0497-1 – ident: S021951942350094XBIB050 doi: 10.1007/s10409-009-0227-9 – ident: S021951942350094XBIB024 doi: 10.1093/ejcts/ezs388 – ident: S021951942350094XBIB040 doi: 10.1016/j.jbiomech.2011.01.024 – ident: S021951942350094XBIB031 doi: 10.1016/S0010-4825(01)00033-6 – ident: S021951942350094XBIB016 doi: 10.1115/1.4006681 – volume: 28 start-page: 3194 issue: 7 year: 2017 ident: S021951942350094XBIB032 publication-title: Biomed Res – ident: S021951942350094XBIB025 doi: 10.3389/fphy.2020.00138 – ident: S021951942350094XBIB002 doi: 10.1016/j.jnnfm.2016.03.008 – volume-title: Comprehensive Pediatric Hospital Medicine year: 2007 ident: S021951942350094XBIB047 – ident: S021951942350094XBIB003 doi: 10.1007/s10439-013-0879-2 – ident: S021951942350094XBIB017 doi: 10.1007/s10439-014-1116-3 – ident: S021951942350094XBIB013 doi: 10.1155/2018/7126532 – volume: 1 start-page: 1449 volume-title: ASME-JSME-KSME 2011 Joint Fluids Eng Conf AJK 2011 ident: S021951942350094XBIB008 – ident: S021951942350094XBIB010 doi: 10.1152/ajpheart.01301.2005 – ident: S021951942350094XBIB023 doi: 10.1016/j.medengphy.2014.07.006 – ident: S021951942350094XBIB036 doi: 10.1007/s11517-008-0361-8 – ident: S021951942350094XBIB037 doi: 10.1016/j.medengphy.2006.12.004 – ident: S021951942350094XBIB004 doi: 10.1080/10255842.2011.625358 – ident: S021951942350094XBIB007 doi: 10.1080/10255840903091551 – ident: S021951942350094XBIB046 doi: 10.1136/hrt.2004.055111 – ident: S021951942350094XBIB045 doi: 10.1016/j.ijheatmasstransfer.2015.12.073 – ident: S021951942350094XBIB021 doi: 10.1186/s12938-015-0032-6 – ident: S021951942350094XBIB052 doi: 10.1007/978-1-4757-2257-4 – ident: S021951942350094XBIB026 doi: 10.1115/1.2907765 – ident: S021951942350094XBIB034 doi: 10.1016/j.jbiomech.2015.06.022 – ident: S021951942350094XBIB041 doi: 10.1016/j.ejmp.2009.03.004 – ident: S021951942350094XBIB019 doi: 10.1007/s10439-010-9978-5 – ident: S021951942350094XBIB033 doi: 10.1016/j.jvs.2012.07.061 – ident: S021951942350094XBIB015 doi: 10.1016/j.medengphy.2011.05.008 – ident: S021951942350094XBIB006 doi: 10.3233/BIR-1991-283-415 – ident: S021951942350094XBIB001 doi: 10.1007/s11517-020-02287-6 – ident: S021951942350094XBIB051 doi: 10.1016/j.jbiomech.2005.01.034 – ident: S021951942350094XBIB029 doi: 10.2174/1875399X01710010279 – ident: S021951942350094XBIB027 doi: 10.1115/1.1992521 – ident: S021951942350094XBIB042 doi: 10.1080/10255842.2020.1729755 – ident: S021951942350094XBIB018 doi: 10.1007/s13239-011-0059-1 – ident: S021951942350094XBIB039 doi: 10.1016/j.mvr.2021.104221 – ident: S021951942350094XBIB054 doi: 10.1016/j.jnnfm.2014.03.007 – ident: S021951942350094XBIB030 doi: 10.1016/j.mvr.2021.104241 – ident: S021951942350094XBIB043 doi: 10.1016/j.jbiomech.2008.04.009 – ident: S021951942350094XBIB022 doi: 10.1177/09544119211026095 – ident: S021951942350094XBIB044 doi: 10.1016/j.apm.2006.06.009 – ident: S021951942350094XBIB005 doi: 10.1080/10255842.2014.887698 – ident: S021951942350094XBIB012 doi: 10.1080/10255840903097814 – volume-title: Biofluid Mechanics year: 2015 ident: S021951942350094XBIB048 – ident: S021951942350094XBIB028 doi: 10.1016/j.compbiomed.2021.104213 – ident: S021951942350094XBIB011 doi: 10.1053/ejvs.1999.0872 – ident: S021951942350094XBIB035 doi: 10.1016/j.compbiomed.2021.105009 – ident: S021951942350094XBIB053 doi: 10.1016/j.jbiomech.2003.09.016 |
SSID | ssj0021408 |
Score | 2.302978 |
Snippet | The studies on vascular flows have increased in the last decade. In this work; we have focused on the effects of flow model and blood rheology on hemodynamics... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aorta Blood Boundary conditions Computational fluid dynamics Computed tomography Computing costs Fluid flow Hemodynamics In vivo methods and tests Investigations Laminar flow Research Article Rheological properties Rheology Turbulent flow Wall shear stresses |
Title | INVESTIGATION OF VASCULAR FLOW IN A THORACIC AORTA IN TERMS OF FLOW MODELS AND BLOOD RHEOLOGY VIA COMPUTATIONAL FLUID DYNAMICS (CFD) |
URI | http://www.worldscientific.com/doi/abs/10.1142/S021951942350094X https://www.proquest.com/docview/3165676649 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcVjxFYUE-cGCJsiSxk2yPbtNsw6YxSpOlnKrUSSUkKAi6Bzjzg_iJjO0kbbcLYrlElTudqJkvM2PPC6EXRVG6ol8Sc0E8y5QIMfslCMS1iSfcUsgGIjLbIvHGOX0zc2edzq-trKXL9eJE_Li2ruR_pAprIFdZJXsDybZMYQE-g3zhChKG6z_JOEouRtMsOtOjc3hoXLDpMI9ZaoQxf2dECbz22ZinbAjPmvE0Y3INHNiJmliuiCY8GMVT1WVqEHMeGOl4pIJLxkXEjCGfvM2zpmNuGOdRYATvEyZHH6oAcBg0Zwn7Hu6nSpYVyzbQH1ZtEF9FK-rWT20AhCUDHrNMHdLz8zFr40OjLI7UmW0-zVi4MQ8sZUAlv-FneRtcOedprqlTlm2fZzh0kz1Yqz3QoQAVPfr4pNJqGbSIKTunbettXXtd45Nebw6oowLSwFJydIgrMylnG9vXxPuvmMQ2UVGXbTvzPRa30IEDGxOniw7YIBiE7SYfNqzK-jf_oo6kA5PXe0x2faHNBudQdcvVFbEyYWzL48nuosNakJhp3N1DnWp1H93Ww0u_P0A_d9CHeYgb9GEJLBwlmOEGfVihT64p9ElqRaTRhwF9WKEPN-jDgD68gz6s0Icb9OGXgL3jhygPR9lwbNYzPUxBbDozK5BkQa2lX1a-LOvui8otrX4BQLBFIXyHLMBB9uXx_JL6FRgcD1RJRezS9gUtPPIIdVefV9VjhC2rcCuyOPVEuaSnwi88sXSEQ8Ci2NS2SQ9ZzdOdi7rhvZy78nH-R6n20Kv2J190t5e_ER81IpvXSuHbnMhuVr7n0X4PHV8RY8tyj9WTm9z3KbqzeW-OUHf99bJ6Bp7xevG8BuNvu6OWIw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INVESTIGATION+OF+VASCULAR+FLOW+IN+A+THORACIC+AORTA+IN+TERMS+OF+FLOW+MODELS+AND+BLOOD+RHEOLOGY+VIA+COMPUTATIONAL+FLUID+DYNAMICS+%28CFD%29&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=CANBOLAT%2C+GOKHAN&rft.au=ETLI%2C+MUSTAFA&rft.au=KARAHAN%2C+OGUZ&rft.au=KORU%2C+MURAT&rft.date=2024-05-01&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1142%2FS021951942350094X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S021951942350094X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon |