Integrability aspects and some abundant solutions for a new (4 + 1)-dimensional KdV-like equation
In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on th...
Saved in:
Published in | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 35; no. 6; p. 2150079 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
10.03.2021
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type
N
-soliton solutions, high-order lump-
cosh
-
N
-
cos
-
M
type soliton solutions,
exp
-
cosh
-
N
-
cos
-
M
type soliton solutions and
exp
-
tanh
-
N
-
sin
-
M
type soliton solutions
(
N
,
M
→
∞
)
for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models. |
---|---|
AbstractList | In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type
N
-soliton solutions, high-order lump-
cosh
-
N
-
cos
-
M
type soliton solutions,
exp
-
cosh
-
N
-
cos
-
M
type soliton solutions and
exp
-
tanh
-
N
-
sin
-
M
type soliton solutions
(
N
,
M
→
∞
)
for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models. In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type [Formula: see text]-soliton solutions, high-order lump-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions, [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions and [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions [Formula: see text] for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models. In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type N-soliton solutions, high-order lump-cosh-N-cos-M type soliton solutions, exp-cosh-N-cos-M type soliton solutions and exp-tanh-N-sin-M type soliton solutions (N,M →∞) for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models. |
Author | Bao, Taogetusang Han, Peng-Fei |
Author_xml | – sequence: 1 givenname: Peng-Fei surname: Han fullname: Han, Peng-Fei – sequence: 2 givenname: Taogetusang surname: Bao fullname: Bao, Taogetusang |
BookMark | eNp9kEtLw0AQxxepYFv9AN4WvCgS3d1kN81Rio-i4MEHvYVJMitb0027u6H025tY8WDBwzDM_Oc3rxEZ2MYiIaecXXGeiOsXJniapZkQXDKWZvMDMuwScaRkOhmQYS9HvX5ERt4vGGNKpGxIYGYDfjgoTG3CloJfYRk8BVtR3yyRQtHaCmzooroNprGe6sZRoBY39Dyhl5RfRJVZovWdCDV9rN6j2nwixXULPXBMDjXUHk9-_Ji83d2-Th-ip-f72fTmKSpjnswj0LooUCtVIGgoqpilXIsiRiZBdYYSEqmzWOlUVnKCvNJCKSVYlqCeSIjH5GzXd-WadYs-5Iumdd1KPheSMyn4RGZdFd9Vla7x3qHOV84swW1zzvL-k_neJzsm_cOUJnzfFhyY-l-S7chN4-rKlwZtMNqUv0P3kS-n-Ikg |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_021_01925_8 crossref_primary_10_1140_epjp_s13360_024_05266_0 crossref_primary_10_1007_s11071_021_07019_5 crossref_primary_10_1140_epjp_s13360_022_02413_3 crossref_primary_10_1007_s11071_022_07327_4 crossref_primary_10_3390_fractalfract6060338 crossref_primary_10_1002_mma_7490 crossref_primary_10_1142_S0217979221502337 crossref_primary_10_1016_j_wavemoti_2024_103271 crossref_primary_10_1007_s11071_021_06603_z crossref_primary_10_1088_1402_4896_acbcfc crossref_primary_10_1007_s11071_021_06895_1 |
Cites_doi | 10.1016/j.amc.2019.03.016 10.1016/j.amc.2020.125469 10.1142/S021797921950019X 10.1088/0253-6102/71/8/927 10.1140/epjp/i2018-12025-y 10.1140/epjp/s13360-020-00405-9 10.1142/S0217979220502215 10.1007/s11071-015-2427-0 10.1016/S0375-9601(00)00172-9 10.7566/JPSJ.88.074004 10.1016/j.oceaneng.2014.12.017 10.1007/s11071-019-05110-6 10.1016/j.camwa.2018.04.013 10.1142/S0217984920503297 10.1016/j.camwa.2019.03.034 10.1007/s12043-019-1875-3 10.1007/s11071-018-4182-5 10.1088/0253-6102/51/5/24 10.1142/S0217979216400282 10.1016/j.cnsns.2018.04.005 10.1016/j.camwa.2018.12.011 10.1142/S021797921640018X 10.1016/j.wavemoti.2018.08.008 10.1007/s11071-018-4111-7 10.1088/0031-8949/82/06/065003 10.1016/j.physleta.2018.03.016 10.1088/1572-9494/ab7709 10.1007/s11071-016-2905-z 10.1016/j.camwa.2019.01.027 10.1142/S0217979219503193 10.1140/epjp/i2019-12799-2 10.1016/j.aml.2019.106056 10.1016/j.camwa.2017.09.013 10.1007/s11071-018-4612-4 10.1016/j.cnsns.2018.07.037 10.1016/j.amc.2011.01.115 10.1016/j.jmaa.2012.11.028 10.1007/s11071-019-05269-y 10.1016/j.aml.2019.106063 10.1016/j.camwa.2018.09.054 10.1016/j.amc.2016.02.028 10.1016/j.physleta.2007.07.051 10.1016/j.physleta.2019.125907 10.1016/j.aml.2014.02.002 10.1016/j.aml.2015.05.015 10.1002/mma.3723 10.1007/s11071-017-3429-x 10.1016/j.amc.2012.05.049 10.1515/zna-2015-0131 10.1016/j.physleta.2013.09.023 10.1016/j.physleta.2015.06.061 10.1140/epjp/i2016-16128-1 10.1016/j.jde.2017.10.033 10.1016/j.chaos.2015.03.018 10.1016/j.camwa.2017.12.022 10.1016/j.amc.2008.05.126 10.1016/j.cnsns.2018.07.038 10.1017/CBO9780511543043 |
ContentType | Journal Article |
Copyright | 2021, World Scientific Publishing Company 2021. World Scientific Publishing Company |
Copyright_xml | – notice: 2021, World Scientific Publishing Company – notice: 2021. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S021797922150079X |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6578 |
ExternalDocumentID | 10_1142_S021797922150079X S021797922150079X |
GroupedDBID | -~X 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c314X-affbbef66beafabd3071f2b3e05a605ae5a45f936f75d58e1df26662094ef85a3 |
ISSN | 0217-9792 |
IngestDate | Mon Jun 30 04:11:46 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Tue Jul 01 01:39:40 EDT 2025 Fri Aug 23 08:19:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | (4 + 1)-Dimensional KdV-like equation infinite conservation laws high-order lump solutions and their interaction solutions different types of Bäcklund transformation soliton solutions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c314X-affbbef66beafabd3071f2b3e05a605ae5a45f936f75d58e1df26662094ef85a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1164-5819 |
PQID | 2510521859 |
PQPubID | 2049856 |
ParticipantIDs | crossref_primary_10_1142_S021797922150079X crossref_citationtrail_10_1142_S021797922150079X proquest_journals_2510521859 worldscientific_primary_S021797922150079X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210310 2021-03-10 |
PublicationDateYYYYMMDD | 2021-03-10 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210310 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics |
PublicationYear | 2021 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S021797922150079XBIB017 S021797922150079XBIB016 S021797922150079XBIB019 S021797922150079XBIB018 S021797922150079XBIB013 S021797922150079XBIB057 S021797922150079XBIB015 S021797922150079XBIB059 S021797922150079XBIB014 S021797922150079XBIB058 S021797922150079XBIB053 S021797922150079XBIB052 S021797922150079XBIB011 S021797922150079XBIB055 S021797922150079XBIB010 S021797922150079XBIB054 S021797922150079XBIB051 S021797922150079XBIB050 Li B. Q. (S021797922150079XBIB012) 2020; 386 Lü X. (S021797922150079XBIB027) 2018; 91 S021797922150079XBIB009 S021797922150079XBIB006 S021797922150079XBIB005 S021797922150079XBIB049 S021797922150079XBIB008 S021797922150079XBIB007 S021797922150079XBIB002 S021797922150079XBIB046 S021797922150079XBIB001 S021797922150079XBIB045 S021797922150079XBIB004 S021797922150079XBIB048 S021797922150079XBIB003 S021797922150079XBIB047 S021797922150079XBIB042 S021797922150079XBIB041 S021797922150079XBIB044 S021797922150079XBIB043 Wang X. B. (S021797922150079XBIB056) 2016; 286 S021797922150079XBIB040 S021797922150079XBIB039 S021797922150079XBIB038 S021797922150079XBIB035 S021797922150079XBIB034 S021797922150079XBIB037 S021797922150079XBIB036 S021797922150079XBIB031 S021797922150079XBIB030 S021797922150079XBIB033 S021797922150079XBIB032 S021797922150079XBIB028 S021797922150079XBIB029 S021797922150079XBIB024 S021797922150079XBIB023 S021797922150079XBIB026 S021797922150079XBIB025 S021797922150079XBIB020 S021797922150079XBIB022 S021797922150079XBIB021 S021797922150079XBIB060 S021797922150079XBIB061 |
References_xml | – ident: S021797922150079XBIB040 doi: 10.1016/j.amc.2019.03.016 – volume: 386 start-page: 125469 year: 2020 ident: S021797922150079XBIB012 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2020.125469 – ident: S021797922150079XBIB046 doi: 10.1142/S021797921950019X – ident: S021797922150079XBIB061 doi: 10.1088/0253-6102/71/8/927 – ident: S021797922150079XBIB016 doi: 10.1140/epjp/i2018-12025-y – ident: S021797922150079XBIB034 doi: 10.1140/epjp/s13360-020-00405-9 – ident: S021797922150079XBIB020 doi: 10.1142/S0217979220502215 – ident: S021797922150079XBIB052 doi: 10.1007/s11071-015-2427-0 – ident: S021797922150079XBIB009 doi: 10.1016/S0375-9601(00)00172-9 – ident: S021797922150079XBIB043 doi: 10.7566/JPSJ.88.074004 – ident: S021797922150079XBIB007 doi: 10.1016/j.oceaneng.2014.12.017 – ident: S021797922150079XBIB047 doi: 10.1007/s11071-019-05110-6 – ident: S021797922150079XBIB051 doi: 10.1016/j.camwa.2018.04.013 – ident: S021797922150079XBIB023 doi: 10.1142/S0217984920503297 – ident: S021797922150079XBIB029 doi: 10.1016/j.camwa.2019.03.034 – ident: S021797922150079XBIB015 doi: 10.1007/s12043-019-1875-3 – ident: S021797922150079XBIB039 doi: 10.1007/s11071-018-4182-5 – ident: S021797922150079XBIB025 doi: 10.1088/0253-6102/51/5/24 – ident: S021797922150079XBIB030 doi: 10.1142/S0217979216400282 – ident: S021797922150079XBIB045 doi: 10.1016/j.cnsns.2018.04.005 – ident: S021797922150079XBIB037 doi: 10.1016/j.camwa.2018.12.011 – ident: S021797922150079XBIB031 doi: 10.1142/S021797921640018X – ident: S021797922150079XBIB010 doi: 10.1016/j.wavemoti.2018.08.008 – ident: S021797922150079XBIB036 doi: 10.1007/s11071-018-4111-7 – ident: S021797922150079XBIB017 doi: 10.1088/0031-8949/82/06/065003 – ident: S021797922150079XBIB050 doi: 10.1016/j.physleta.2018.03.016 – ident: S021797922150079XBIB032 doi: 10.1088/1572-9494/ab7709 – ident: S021797922150079XBIB028 doi: 10.1007/s11071-016-2905-z – ident: S021797922150079XBIB021 doi: 10.1016/j.camwa.2019.01.027 – ident: S021797922150079XBIB038 doi: 10.1142/S0217979219503193 – ident: S021797922150079XBIB053 doi: 10.1016/j.amc.2019.03.016 – ident: S021797922150079XBIB033 doi: 10.1140/epjp/i2019-12799-2 – ident: S021797922150079XBIB019 doi: 10.1016/j.aml.2019.106056 – ident: S021797922150079XBIB022 doi: 10.1016/j.camwa.2017.09.013 – ident: S021797922150079XBIB035 doi: 10.1007/s11071-018-4612-4 – ident: S021797922150079XBIB011 doi: 10.1016/j.cnsns.2018.07.037 – ident: S021797922150079XBIB008 doi: 10.1016/j.amc.2011.01.115 – ident: S021797922150079XBIB057 doi: 10.1016/j.jmaa.2012.11.028 – ident: S021797922150079XBIB026 doi: 10.1007/s11071-019-05269-y – ident: S021797922150079XBIB044 doi: 10.1016/j.camwa.2018.04.013 – ident: S021797922150079XBIB042 doi: 10.1016/j.aml.2019.106063 – ident: S021797922150079XBIB013 doi: 10.1016/j.camwa.2018.09.054 – volume: 286 start-page: 216 year: 2016 ident: S021797922150079XBIB056 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2016.02.028 – ident: S021797922150079XBIB014 doi: 10.1016/j.physleta.2007.07.051 – ident: S021797922150079XBIB041 doi: 10.1016/j.physleta.2019.125907 – ident: S021797922150079XBIB001 doi: 10.1016/j.aml.2014.02.002 – ident: S021797922150079XBIB054 doi: 10.1016/j.aml.2015.05.015 – ident: S021797922150079XBIB058 doi: 10.1002/mma.3723 – ident: S021797922150079XBIB004 doi: 10.1007/s11071-017-3429-x – ident: S021797922150079XBIB018 doi: 10.1016/j.amc.2012.05.049 – ident: S021797922150079XBIB048 doi: 10.1515/zna-2015-0131 – ident: S021797922150079XBIB024 doi: 10.1016/j.physleta.2013.09.023 – ident: S021797922150079XBIB060 doi: 10.1016/j.physleta.2015.06.061 – ident: S021797922150079XBIB055 doi: 10.1140/epjp/i2016-16128-1 – ident: S021797922150079XBIB005 doi: 10.1016/j.jde.2017.10.033 – ident: S021797922150079XBIB006 doi: 10.1016/j.chaos.2015.03.018 – ident: S021797922150079XBIB003 doi: 10.1016/j.camwa.2017.12.022 – ident: S021797922150079XBIB049 doi: 10.1016/j.amc.2008.05.126 – ident: S021797922150079XBIB002 doi: 10.1016/j.cnsns.2018.07.038 – ident: S021797922150079XBIB059 doi: 10.1017/CBO9780511543043 – volume: 91 start-page: 1249 year: 2018 ident: S021797922150079XBIB027 publication-title: J. Appl. Math. Phys. |
SSID | ssj0006270 |
Score | 2.3518357 |
Snippet | In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2150079 |
SubjectTerms | Combinatorial analysis Conservation laws Dynamic models Integral calculus Korteweg-Devries equation Nonlinear evolution equations Polynomials Solitary waves |
Title | Integrability aspects and some abundant solutions for a new (4 + 1)-dimensional KdV-like equation |
URI | http://www.worldscientific.com/doi/abs/10.1142/S021797922150079X https://www.proquest.com/docview/2510521859 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGqZC4VKxioCAfOFAiD4njbMcWqMpShMQUzW1kJ_aopZOhTeYAv4sfyPOSpU2FKBdr5GScyO_Ly_de3oLQC8E483kckTwVOWGBSglnLCMs9XOZ-JQXpsfS0ef48Jh9mEfz0eh3L2ppU4tp_uvavJL_kSrMgVx1luwNJNsuChPwG-QLI0gYxn-S8Xtb68HEt_70uMmatDWXq_VKelzoNI-y9tq7sDGTuo24ZpYMhn0PVFlGCl3k3xbo8D4W38jZyXfpyfNNJ7fT7pKdB7FXd2Jlm6pZT0k19faNC3atG-xWQGpXpo5nc1gf06lMpkq0zgXrprmjxW6q05ClDScul-RAnnQOWOPqnfH1UtY6wGjZd2NQE8flAlqNsjShQ0afmRipvhduqBnBjiJZYpvoTaXV3KBodBxP2lftthKKg3B8_RuDUfPNGpbUKwIDAtZkuvteLcQ9OOcW2qJgnNAx2tp7e_Tpa8sAYppY3567Tfc1HS71erDIZT7UGTnbpmJu1W5Ij_XM7qJtZ67gPYu9e2gky_vo9hcrmweIX0IgdgjEgECsEYgbBOIWgRgQiDkGBOKXDHs42O1jDzfYww32HqLjg3ezN4fENe0geRiwOeFKCSFVHAvJFRcFvEMCRUUo_YiD6cxlxFmksjBWSVREqQwKBRwxpn7GpEojHj5C43JdyscIhzkvQtAWggpQKQkMSRCmQvmJTHPg8RPkN1u3yF1Fe91Y5Wxhs-3pYrDbE_Sq_csPW87lbyfvNPJYuOepWlBtkQAvjrIJ2r0io3bJwVJPbnDuU3Sne0B20Li-2MhnwHxr8dwB7Q8Wv660 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrability+aspects+and+some+abundant+solutions+for+a+new+%284+%2B+1%29-dimensional+KdV-like+equation&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Han%2C+Peng-Fei&rft.au=Bao%2C+Taogetusang&rft.date=2021-03-10&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1142%2FS021797922150079X&rft.externalDocID=S021797922150079X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon |