Integrability aspects and some abundant solutions for a new (4 + 1)-dimensional KdV-like equation

In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 35; no. 6; p. 2150079
Main Authors Han, Peng-Fei, Bao, Taogetusang
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 10.03.2021
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type N -soliton solutions, high-order lump- cosh - N - cos - M type soliton solutions, exp - cosh - N - cos - M type soliton solutions and exp - tanh - N - sin - M type soliton solutions ( N , M → ∞ ) for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models.
AbstractList In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type N -soliton solutions, high-order lump- cosh - N - cos - M type soliton solutions, exp - cosh - N - cos - M type soliton solutions and exp - tanh - N - sin - M type soliton solutions ( N , M → ∞ ) for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models.
In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type [Formula: see text]-soliton solutions, high-order lump-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions, [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions and [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] type soliton solutions [Formula: see text] for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models.
In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund transformation, Lax pair and infinite conservation laws. It is proved that the equation is completely integrable in Lax pair sense. Based on the Hirota bilinear method and the test function method, high-order lump solutions, high-order lump-kink type N-soliton solutions, high-order lump-cosh-N-cos-M type soliton solutions, exp-cosh-N-cos-M type soliton solutions and exp-tanh-N-sin-M type soliton solutions (N,M →∞) for this equation are obtained with the help of symbolic computation. Via three-dimensional plots and contour plots with the help of Mathematics, analyses for the obtained solutions are presented, and their dynamic properties are discussed. Many dynamic models can be simulated by nonlinear evolution equations, and these graphical analyses are helpful to understand these models.
Author Bao, Taogetusang
Han, Peng-Fei
Author_xml – sequence: 1
  givenname: Peng-Fei
  surname: Han
  fullname: Han, Peng-Fei
– sequence: 2
  givenname: Taogetusang
  surname: Bao
  fullname: Bao, Taogetusang
BookMark eNp9kEtLw0AQxxepYFv9AN4WvCgS3d1kN81Rio-i4MEHvYVJMitb0027u6H025tY8WDBwzDM_Oc3rxEZ2MYiIaecXXGeiOsXJniapZkQXDKWZvMDMuwScaRkOhmQYS9HvX5ERt4vGGNKpGxIYGYDfjgoTG3CloJfYRk8BVtR3yyRQtHaCmzooroNprGe6sZRoBY39Dyhl5RfRJVZovWdCDV9rN6j2nwixXULPXBMDjXUHk9-_Ji83d2-Th-ip-f72fTmKSpjnswj0LooUCtVIGgoqpilXIsiRiZBdYYSEqmzWOlUVnKCvNJCKSVYlqCeSIjH5GzXd-WadYs-5Iumdd1KPheSMyn4RGZdFd9Vla7x3qHOV84swW1zzvL-k_neJzsm_cOUJnzfFhyY-l-S7chN4-rKlwZtMNqUv0P3kS-n-Ikg
CitedBy_id crossref_primary_10_1140_epjp_s13360_021_01925_8
crossref_primary_10_1140_epjp_s13360_024_05266_0
crossref_primary_10_1007_s11071_021_07019_5
crossref_primary_10_1140_epjp_s13360_022_02413_3
crossref_primary_10_1007_s11071_022_07327_4
crossref_primary_10_3390_fractalfract6060338
crossref_primary_10_1002_mma_7490
crossref_primary_10_1142_S0217979221502337
crossref_primary_10_1016_j_wavemoti_2024_103271
crossref_primary_10_1007_s11071_021_06603_z
crossref_primary_10_1088_1402_4896_acbcfc
crossref_primary_10_1007_s11071_021_06895_1
Cites_doi 10.1016/j.amc.2019.03.016
10.1016/j.amc.2020.125469
10.1142/S021797921950019X
10.1088/0253-6102/71/8/927
10.1140/epjp/i2018-12025-y
10.1140/epjp/s13360-020-00405-9
10.1142/S0217979220502215
10.1007/s11071-015-2427-0
10.1016/S0375-9601(00)00172-9
10.7566/JPSJ.88.074004
10.1016/j.oceaneng.2014.12.017
10.1007/s11071-019-05110-6
10.1016/j.camwa.2018.04.013
10.1142/S0217984920503297
10.1016/j.camwa.2019.03.034
10.1007/s12043-019-1875-3
10.1007/s11071-018-4182-5
10.1088/0253-6102/51/5/24
10.1142/S0217979216400282
10.1016/j.cnsns.2018.04.005
10.1016/j.camwa.2018.12.011
10.1142/S021797921640018X
10.1016/j.wavemoti.2018.08.008
10.1007/s11071-018-4111-7
10.1088/0031-8949/82/06/065003
10.1016/j.physleta.2018.03.016
10.1088/1572-9494/ab7709
10.1007/s11071-016-2905-z
10.1016/j.camwa.2019.01.027
10.1142/S0217979219503193
10.1140/epjp/i2019-12799-2
10.1016/j.aml.2019.106056
10.1016/j.camwa.2017.09.013
10.1007/s11071-018-4612-4
10.1016/j.cnsns.2018.07.037
10.1016/j.amc.2011.01.115
10.1016/j.jmaa.2012.11.028
10.1007/s11071-019-05269-y
10.1016/j.aml.2019.106063
10.1016/j.camwa.2018.09.054
10.1016/j.amc.2016.02.028
10.1016/j.physleta.2007.07.051
10.1016/j.physleta.2019.125907
10.1016/j.aml.2014.02.002
10.1016/j.aml.2015.05.015
10.1002/mma.3723
10.1007/s11071-017-3429-x
10.1016/j.amc.2012.05.049
10.1515/zna-2015-0131
10.1016/j.physleta.2013.09.023
10.1016/j.physleta.2015.06.061
10.1140/epjp/i2016-16128-1
10.1016/j.jde.2017.10.033
10.1016/j.chaos.2015.03.018
10.1016/j.camwa.2017.12.022
10.1016/j.amc.2008.05.126
10.1016/j.cnsns.2018.07.038
10.1017/CBO9780511543043
ContentType Journal Article
Copyright 2021, World Scientific Publishing Company
2021. World Scientific Publishing Company
Copyright_xml – notice: 2021, World Scientific Publishing Company
– notice: 2021. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S021797922150079X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6578
ExternalDocumentID 10_1142_S021797922150079X
S021797922150079X
GroupedDBID -~X
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RNS
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c314X-affbbef66beafabd3071f2b3e05a605ae5a45f936f75d58e1df26662094ef85a3
ISSN 0217-9792
IngestDate Mon Jun 30 04:11:46 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Tue Jul 01 01:39:40 EDT 2025
Fri Aug 23 08:19:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords (4 + 1)-Dimensional KdV-like equation
infinite conservation laws
high-order lump solutions and their interaction solutions
different types of
Bäcklund transformation
soliton solutions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314X-affbbef66beafabd3071f2b3e05a605ae5a45f936f75d58e1df26662094ef85a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1164-5819
PQID 2510521859
PQPubID 2049856
ParticipantIDs crossref_primary_10_1142_S021797922150079X
crossref_citationtrail_10_1142_S021797922150079X
proquest_journals_2510521859
worldscientific_primary_S021797922150079X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210310
2021-03-10
PublicationDateYYYYMMDD 2021-03-10
PublicationDate_xml – month: 03
  year: 2021
  text: 20210310
  day: 10
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics
PublicationYear 2021
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S021797922150079XBIB017
S021797922150079XBIB016
S021797922150079XBIB019
S021797922150079XBIB018
S021797922150079XBIB013
S021797922150079XBIB057
S021797922150079XBIB015
S021797922150079XBIB059
S021797922150079XBIB014
S021797922150079XBIB058
S021797922150079XBIB053
S021797922150079XBIB052
S021797922150079XBIB011
S021797922150079XBIB055
S021797922150079XBIB010
S021797922150079XBIB054
S021797922150079XBIB051
S021797922150079XBIB050
Li B. Q. (S021797922150079XBIB012) 2020; 386
Lü X. (S021797922150079XBIB027) 2018; 91
S021797922150079XBIB009
S021797922150079XBIB006
S021797922150079XBIB005
S021797922150079XBIB049
S021797922150079XBIB008
S021797922150079XBIB007
S021797922150079XBIB002
S021797922150079XBIB046
S021797922150079XBIB001
S021797922150079XBIB045
S021797922150079XBIB004
S021797922150079XBIB048
S021797922150079XBIB003
S021797922150079XBIB047
S021797922150079XBIB042
S021797922150079XBIB041
S021797922150079XBIB044
S021797922150079XBIB043
Wang X. B. (S021797922150079XBIB056) 2016; 286
S021797922150079XBIB040
S021797922150079XBIB039
S021797922150079XBIB038
S021797922150079XBIB035
S021797922150079XBIB034
S021797922150079XBIB037
S021797922150079XBIB036
S021797922150079XBIB031
S021797922150079XBIB030
S021797922150079XBIB033
S021797922150079XBIB032
S021797922150079XBIB028
S021797922150079XBIB029
S021797922150079XBIB024
S021797922150079XBIB023
S021797922150079XBIB026
S021797922150079XBIB025
S021797922150079XBIB020
S021797922150079XBIB022
S021797922150079XBIB021
S021797922150079XBIB060
S021797922150079XBIB061
References_xml – ident: S021797922150079XBIB040
  doi: 10.1016/j.amc.2019.03.016
– volume: 386
  start-page: 125469
  year: 2020
  ident: S021797922150079XBIB012
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2020.125469
– ident: S021797922150079XBIB046
  doi: 10.1142/S021797921950019X
– ident: S021797922150079XBIB061
  doi: 10.1088/0253-6102/71/8/927
– ident: S021797922150079XBIB016
  doi: 10.1140/epjp/i2018-12025-y
– ident: S021797922150079XBIB034
  doi: 10.1140/epjp/s13360-020-00405-9
– ident: S021797922150079XBIB020
  doi: 10.1142/S0217979220502215
– ident: S021797922150079XBIB052
  doi: 10.1007/s11071-015-2427-0
– ident: S021797922150079XBIB009
  doi: 10.1016/S0375-9601(00)00172-9
– ident: S021797922150079XBIB043
  doi: 10.7566/JPSJ.88.074004
– ident: S021797922150079XBIB007
  doi: 10.1016/j.oceaneng.2014.12.017
– ident: S021797922150079XBIB047
  doi: 10.1007/s11071-019-05110-6
– ident: S021797922150079XBIB051
  doi: 10.1016/j.camwa.2018.04.013
– ident: S021797922150079XBIB023
  doi: 10.1142/S0217984920503297
– ident: S021797922150079XBIB029
  doi: 10.1016/j.camwa.2019.03.034
– ident: S021797922150079XBIB015
  doi: 10.1007/s12043-019-1875-3
– ident: S021797922150079XBIB039
  doi: 10.1007/s11071-018-4182-5
– ident: S021797922150079XBIB025
  doi: 10.1088/0253-6102/51/5/24
– ident: S021797922150079XBIB030
  doi: 10.1142/S0217979216400282
– ident: S021797922150079XBIB045
  doi: 10.1016/j.cnsns.2018.04.005
– ident: S021797922150079XBIB037
  doi: 10.1016/j.camwa.2018.12.011
– ident: S021797922150079XBIB031
  doi: 10.1142/S021797921640018X
– ident: S021797922150079XBIB010
  doi: 10.1016/j.wavemoti.2018.08.008
– ident: S021797922150079XBIB036
  doi: 10.1007/s11071-018-4111-7
– ident: S021797922150079XBIB017
  doi: 10.1088/0031-8949/82/06/065003
– ident: S021797922150079XBIB050
  doi: 10.1016/j.physleta.2018.03.016
– ident: S021797922150079XBIB032
  doi: 10.1088/1572-9494/ab7709
– ident: S021797922150079XBIB028
  doi: 10.1007/s11071-016-2905-z
– ident: S021797922150079XBIB021
  doi: 10.1016/j.camwa.2019.01.027
– ident: S021797922150079XBIB038
  doi: 10.1142/S0217979219503193
– ident: S021797922150079XBIB053
  doi: 10.1016/j.amc.2019.03.016
– ident: S021797922150079XBIB033
  doi: 10.1140/epjp/i2019-12799-2
– ident: S021797922150079XBIB019
  doi: 10.1016/j.aml.2019.106056
– ident: S021797922150079XBIB022
  doi: 10.1016/j.camwa.2017.09.013
– ident: S021797922150079XBIB035
  doi: 10.1007/s11071-018-4612-4
– ident: S021797922150079XBIB011
  doi: 10.1016/j.cnsns.2018.07.037
– ident: S021797922150079XBIB008
  doi: 10.1016/j.amc.2011.01.115
– ident: S021797922150079XBIB057
  doi: 10.1016/j.jmaa.2012.11.028
– ident: S021797922150079XBIB026
  doi: 10.1007/s11071-019-05269-y
– ident: S021797922150079XBIB044
  doi: 10.1016/j.camwa.2018.04.013
– ident: S021797922150079XBIB042
  doi: 10.1016/j.aml.2019.106063
– ident: S021797922150079XBIB013
  doi: 10.1016/j.camwa.2018.09.054
– volume: 286
  start-page: 216
  year: 2016
  ident: S021797922150079XBIB056
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.02.028
– ident: S021797922150079XBIB014
  doi: 10.1016/j.physleta.2007.07.051
– ident: S021797922150079XBIB041
  doi: 10.1016/j.physleta.2019.125907
– ident: S021797922150079XBIB001
  doi: 10.1016/j.aml.2014.02.002
– ident: S021797922150079XBIB054
  doi: 10.1016/j.aml.2015.05.015
– ident: S021797922150079XBIB058
  doi: 10.1002/mma.3723
– ident: S021797922150079XBIB004
  doi: 10.1007/s11071-017-3429-x
– ident: S021797922150079XBIB018
  doi: 10.1016/j.amc.2012.05.049
– ident: S021797922150079XBIB048
  doi: 10.1515/zna-2015-0131
– ident: S021797922150079XBIB024
  doi: 10.1016/j.physleta.2013.09.023
– ident: S021797922150079XBIB060
  doi: 10.1016/j.physleta.2015.06.061
– ident: S021797922150079XBIB055
  doi: 10.1140/epjp/i2016-16128-1
– ident: S021797922150079XBIB005
  doi: 10.1016/j.jde.2017.10.033
– ident: S021797922150079XBIB006
  doi: 10.1016/j.chaos.2015.03.018
– ident: S021797922150079XBIB003
  doi: 10.1016/j.camwa.2017.12.022
– ident: S021797922150079XBIB049
  doi: 10.1016/j.amc.2008.05.126
– ident: S021797922150079XBIB002
  doi: 10.1016/j.cnsns.2018.07.038
– ident: S021797922150079XBIB059
  doi: 10.1017/CBO9780511543043
– volume: 91
  start-page: 1249
  year: 2018
  ident: S021797922150079XBIB027
  publication-title: J. Appl. Math. Phys.
SSID ssj0006270
Score 2.3518357
Snippet In this paper, we introduce a new (4 + 1)-dimensional KdV-like equation. By using the Bell Polynomial method, we obtain the bilinear form, bilinear Bäcklund...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2150079
SubjectTerms Combinatorial analysis
Conservation laws
Dynamic models
Integral calculus
Korteweg-Devries equation
Nonlinear evolution equations
Polynomials
Solitary waves
Title Integrability aspects and some abundant solutions for a new (4 + 1)-dimensional KdV-like equation
URI http://www.worldscientific.com/doi/abs/10.1142/S021797922150079X
https://www.proquest.com/docview/2510521859
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGqZC4VKxioCAfOFAiD4njbMcWqMpShMQUzW1kJ_aopZOhTeYAv4sfyPOSpU2FKBdr5GScyO_Ly_de3oLQC8E483kckTwVOWGBSglnLCMs9XOZ-JQXpsfS0ef48Jh9mEfz0eh3L2ppU4tp_uvavJL_kSrMgVx1luwNJNsuChPwG-QLI0gYxn-S8Xtb68HEt_70uMmatDWXq_VKelzoNI-y9tq7sDGTuo24ZpYMhn0PVFlGCl3k3xbo8D4W38jZyXfpyfNNJ7fT7pKdB7FXd2Jlm6pZT0k19faNC3atG-xWQGpXpo5nc1gf06lMpkq0zgXrprmjxW6q05ClDScul-RAnnQOWOPqnfH1UtY6wGjZd2NQE8flAlqNsjShQ0afmRipvhduqBnBjiJZYpvoTaXV3KBodBxP2lftthKKg3B8_RuDUfPNGpbUKwIDAtZkuvteLcQ9OOcW2qJgnNAx2tp7e_Tpa8sAYppY3567Tfc1HS71erDIZT7UGTnbpmJu1W5Ij_XM7qJtZ67gPYu9e2gky_vo9hcrmweIX0IgdgjEgECsEYgbBOIWgRgQiDkGBOKXDHs42O1jDzfYww32HqLjg3ezN4fENe0geRiwOeFKCSFVHAvJFRcFvEMCRUUo_YiD6cxlxFmksjBWSVREqQwKBRwxpn7GpEojHj5C43JdyscIhzkvQtAWggpQKQkMSRCmQvmJTHPg8RPkN1u3yF1Fe91Y5Wxhs-3pYrDbE_Sq_csPW87lbyfvNPJYuOepWlBtkQAvjrIJ2r0io3bJwVJPbnDuU3Sne0B20Li-2MhnwHxr8dwB7Q8Wv660
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrability+aspects+and+some+abundant+solutions+for+a+new+%284+%2B+1%29-dimensional+KdV-like+equation&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Han%2C+Peng-Fei&rft.au=Bao%2C+Taogetusang&rft.date=2021-03-10&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1142%2FS021797922150079X&rft.externalDocID=S021797922150079X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon