How electromagnetic induction and coupled delay affect stochastic resonance in a modified neuronal network subject to phase noise

Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 33; no. 26; p. 1950302
Main Authors Yang, Xiao Li, Liu, Xiao Qiang
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 20.10.2019
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise.
AbstractList Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise.
Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise.
Author Liu, Xiao Qiang
Yang, Xiao Li
Author_xml – sequence: 1
  givenname: Xiao Li
  surname: Yang
  fullname: Yang, Xiao Li
– sequence: 2
  givenname: Xiao Qiang
  surname: Liu
  fullname: Liu, Xiao Qiang
BookMark eNp9kEtL9DAUhoMoOF5-gLuA62ounbRdfog3EFyo63KanGjGTjImKeLSf27KfLhQcJWQ933OCc8B2fXBIyEnnJ1xXovzByZ40zWd4N2SSSbaHbIoD7JSy6bdJYs5ruZ8nxyktGKMKdGwBfm8Ce8UR9Q5hjU8e8xOU-fNpLMLnoI3VIdpM6KhBkf4oGBtKdOUg36BNLcjpuDBaywcBboOxllX-h6nWIKxXPJ7iK80TcNqZnOgm8Ii9cElPCJ7FsaEx__PQ_J0dfl4cVPd3V_fXvy7q7TkdVuZTjEpwQA0g14qMLZm0NWqbWUruRZS1WAUt4NGrYApqAcrxWA5gtRNu5SH5HQ7dxPD24Qp96swxfK_1AspRBne1Ly0-LalY0gpou030a0hfvSc9bPp_pfpwjQ_GO0yzP5yBDf-SbItWfyMJmmHPhd5-nvpb-QLmSGV9g
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_108575
crossref_primary_10_1007_s11071_022_07292_y
crossref_primary_10_1016_j_bspc_2024_107192
crossref_primary_10_1088_1402_4896_acd9fa
Cites_doi 10.1088/0256-307X/30/1/018701
10.1142/S0217979215501428
10.1063/1.3562547
10.1016/j.physrep.2003.10.015
10.1063/1.4772999
10.1142/S0218127418500487
10.1371/journal.pone.0177918
10.1016/j.cnsns.2012.02.019
10.1103/PhysRevA.44.8032
10.1142/S0217979218503320
10.1063/1.4904101
10.1016/j.amc.2017.03.002
10.1109/TNNLS.2012.2216545
10.1088/1674-1056/19/4/040508
10.1103/PhysRevLett.92.074104
10.1063/1.4938733
10.1103/PhysRevE.58.2952
10.1063/1.4983838
10.1088/0305-4470/14/11/006
10.1063/1.3133126
10.1038/s41598-016-0031-2
10.1103/PhysRevLett.78.775
10.1007/s11071-018-4260-8
10.1063/1.4999100
10.1142/S0217979216502519
10.1103/PhysRevE.60.7332
10.1103/PhysRevE.84.031916
10.1038/srep43452
10.1007/s11071-016-2773-6
10.1016/j.neucom.2011.02.005
10.1016/j.physa.2016.11.056
10.1016/j.physleta.2017.05.020
10.1142/S0218127417500304
ContentType Journal Article
Copyright 2019, World Scientific Publishing Company
2019. World Scientific Publishing Company
Copyright_xml – notice: 2019, World Scientific Publishing Company
– notice: 2019. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0217979219503028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6578
ExternalDocumentID 10_1142_S0217979219503028
S0217979219503028
GroupedDBID -~X
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RNS
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3148-d96033adaa7bc56adf40a946883831c2364ad61fbcec6a06a4bf32bf1ea3c7853
ISSN 0217-9792
IngestDate Sun Jun 29 16:48:26 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Tue Jul 01 01:39:37 EDT 2025
Fri Aug 23 08:19:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords electromagnetic induction
Stochastic resonance
neuronal network
phase noise
coupled time delay
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3148-d96033adaa7bc56adf40a946883831c2364ad61fbcec6a06a4bf32bf1ea3c7853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2322033741
PQPubID 2049856
ParticipantIDs crossref_primary_10_1142_S0217979219503028
crossref_citationtrail_10_1142_S0217979219503028
proquest_journals_2322033741
worldscientific_primary_S0217979219503028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191020
2019-10-20
PublicationDateYYYYMMDD 2019-10-20
PublicationDate_xml – month: 10
  year: 2019
  text: 20191020
  day: 20
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics
PublicationYear 2019
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0217979219503028BIB001
S0217979219503028BIB023
S0217979219503028BIB002
S0217979219503028BIB024
S0217979219503028BIB021
S0217979219503028BIB022
S0217979219503028BIB020
S0217979219503028BIB029
S0217979219503028BIB005
S0217979219503028BIB027
S0217979219503028BIB006
S0217979219503028BIB028
S0217979219503028BIB003
S0217979219503028BIB025
S0217979219503028BIB004
S0217979219503028BIB026
Liang X. (S0217979219503028BIB009) 2010; 82
S0217979219503028BIB012
S0217979219503028BIB034
S0217979219503028BIB013
S0217979219503028BIB035
S0217979219503028BIB010
S0217979219503028BIB032
S0217979219503028BIB011
S0217979219503028BIB033
S0217979219503028BIB030
S0217979219503028BIB031
McDonnell M. D. (S0217979219503028BIB008) 2011; 12
S0217979219503028BIB018
S0217979219503028BIB019
S0217979219503028BIB016
S0217979219503028BIB017
S0217979219503028BIB014
S0217979219503028BIB036
S0217979219503028BIB015
Tessone C. J. (S0217979219503028BIB007) 2006; 97
References_xml – ident: S0217979219503028BIB014
  doi: 10.1088/0256-307X/30/1/018701
– ident: S0217979219503028BIB010
  doi: 10.1142/S0217979215501428
– volume: 97
  start-page: 19
  year: 2006
  ident: S0217979219503028BIB007
  publication-title: Phys. Rev. Lett.
– ident: S0217979219503028BIB021
  doi: 10.1063/1.3562547
– ident: S0217979219503028BIB002
  doi: 10.1016/j.physrep.2003.10.015
– ident: S0217979219503028BIB006
  doi: 10.1063/1.4772999
– ident: S0217979219503028BIB003
  doi: 10.1142/S0218127418500487
– ident: S0217979219503028BIB025
  doi: 10.1371/journal.pone.0177918
– ident: S0217979219503028BIB005
  doi: 10.1016/j.cnsns.2012.02.019
– ident: S0217979219503028BIB036
  doi: 10.1103/PhysRevA.44.8032
– ident: S0217979219503028BIB016
  doi: 10.1142/S0217979218503320
– ident: S0217979219503028BIB019
  doi: 10.1063/1.4904101
– ident: S0217979219503028BIB031
  doi: 10.1016/j.amc.2017.03.002
– ident: S0217979219503028BIB012
  doi: 10.1109/TNNLS.2012.2216545
– ident: S0217979219503028BIB018
  doi: 10.1088/1674-1056/19/4/040508
– ident: S0217979219503028BIB020
  doi: 10.1103/PhysRevLett.92.074104
– ident: S0217979219503028BIB011
  doi: 10.1063/1.4938733
– ident: S0217979219503028BIB035
  doi: 10.1103/PhysRevE.58.2952
– ident: S0217979219503028BIB023
  doi: 10.1063/1.4983838
– ident: S0217979219503028BIB001
  doi: 10.1088/0305-4470/14/11/006
– ident: S0217979219503028BIB017
  doi: 10.1063/1.3133126
– ident: S0217979219503028BIB032
  doi: 10.1038/s41598-016-0031-2
– ident: S0217979219503028BIB004
  doi: 10.1103/PhysRevLett.78.775
– ident: S0217979219503028BIB033
  doi: 10.1007/s11071-018-4260-8
– ident: S0217979219503028BIB024
  doi: 10.1063/1.4999100
– volume: 82
  start-page: 1
  year: 2010
  ident: S0217979219503028BIB009
  publication-title: Phys. Rev. E
– ident: S0217979219503028BIB030
  doi: 10.1142/S0217979216502519
– ident: S0217979219503028BIB034
  doi: 10.1103/PhysRevE.60.7332
– ident: S0217979219503028BIB013
  doi: 10.1103/PhysRevE.84.031916
– volume: 12
  start-page: 7
  year: 2011
  ident: S0217979219503028BIB008
  publication-title: Nature Rev. Neurosci.
– ident: S0217979219503028BIB029
  doi: 10.1038/srep43452
– ident: S0217979219503028BIB026
  doi: 10.1007/s11071-016-2773-6
– ident: S0217979219503028BIB022
  doi: 10.1016/j.neucom.2011.02.005
– ident: S0217979219503028BIB015
  doi: 10.1016/j.physa.2016.11.056
– ident: S0217979219503028BIB027
  doi: 10.1016/j.physleta.2017.05.020
– ident: S0217979219503028BIB028
  doi: 10.1142/S0218127417500304
SSID ssj0006270
Score 2.2461367
Snippet Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1950302
SubjectTerms Computer simulation
Electromagnetic induction
Feedback
Mathematical models
Noise
Noise intensity
Phase noise
Robustness (mathematics)
Stochastic resonance
Time lag
Title How electromagnetic induction and coupled delay affect stochastic resonance in a modified neuronal network subject to phase noise
URI http://www.worldscientific.com/doi/abs/10.1142/S0217979219503028
https://www.proquest.com/docview/2322033741
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhcKp5ioSAfuECUJZt4neRYXqpQi0C00t5WthO3kbrJimwOcOMP8puYsZ3HNghRLlHkxM5u5vP482QehLxIsI52ljEfltbQZ1mifJkoOONMi0AmWpi4tdNP_PicfVwulpPJr4HXUrOVM_Xjj3El_yNVaAO5YpTsDSTbDQoNcA7yhSNIGI7_JGOsB-fq2KzFRYnxiB7ssRtX_ttErDWbK-CUmAvyuydsqmLge-pS1DZ7M1JxnNwFdMC6OIVGUmrSXCJRLa2buFc3Ei02SFU30Df3yqqod9yIdm2Lg4wUa1tuzdpQ6pn3xhhnKyy9W8Oj1ibDZ3sZr2GQk8kfjVFifbNwhNk1dfrKWbyXhai8k6LzMCqarvULzIGLoX1jnuLCEAa9FjU-RUbRGeepoXlurDJhg-Wnsa2uN8utSgcNhA4-yVDn2-QbDts2ZH-8lrDQfM2GMXFIrJcbBS6SfTdF9-ieW2Q_hG0L6N39o3enJ187bsDD2Fr93O9039nhUa9Hg-wypX77c2By6dbdGxnwobO75MBtZOiRReU9MsnL--T2ZyubB-QnYJNewybtsEkBm9RhkxpsUotN2mOTdtiEflTQFpu0xSZ12KQOm3RbUYNNarD5kJx_eH_29th35T58FaFZO4PNdBSJTIhYqgUXmWaBSBlPkiiJ5gorHYiMz7VUueIi4IJJHYVSz3MRqRho5yOyV1Zl_phQoKWSM65ZzEKWpEzkWmdpxKVMcpFGiykJ2le7Ui4XPpZkuVrZOP1wNZLGlLzqumxsIpi_3XzYymvl5lu9AmUYwh8ECj8lL6_JsBtyNNSTG9z7lNzpZ9Ah2dt-a_JnwJm38rkD4m_hDMbm
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+electromagnetic+induction+and+coupled+delay+affect+stochastic+resonance+in+a+modified+neuronal+network+subject+to+phase+noise&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Yang%2C+Xiao+Li&rft.au=Liu%2C+Xiao+Qiang&rft.date=2019-10-20&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=33&rft.issue=26&rft_id=info:doi/10.1142%2FS0217979219503028&rft.externalDocID=S0217979219503028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon