How electromagnetic induction and coupled delay affect stochastic resonance in a modified neuronal network subject to phase noise
Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in...
Saved in:
Published in | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 33; no. 26; p. 1950302 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
20.10.2019
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise. |
---|---|
AbstractList | Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise. Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise. |
Author | Liu, Xiao Qiang Yang, Xiao Li |
Author_xml | – sequence: 1 givenname: Xiao Li surname: Yang fullname: Yang, Xiao Li – sequence: 2 givenname: Xiao Qiang surname: Liu fullname: Liu, Xiao Qiang |
BookMark | eNp9kEtL9DAUhoMoOF5-gLuA62ounbRdfog3EFyo63KanGjGTjImKeLSf27KfLhQcJWQ933OCc8B2fXBIyEnnJ1xXovzByZ40zWd4N2SSSbaHbIoD7JSy6bdJYs5ruZ8nxyktGKMKdGwBfm8Ce8UR9Q5hjU8e8xOU-fNpLMLnoI3VIdpM6KhBkf4oGBtKdOUg36BNLcjpuDBaywcBboOxllX-h6nWIKxXPJ7iK80TcNqZnOgm8Ii9cElPCJ7FsaEx__PQ_J0dfl4cVPd3V_fXvy7q7TkdVuZTjEpwQA0g14qMLZm0NWqbWUruRZS1WAUt4NGrYApqAcrxWA5gtRNu5SH5HQ7dxPD24Qp96swxfK_1AspRBne1Ly0-LalY0gpou030a0hfvSc9bPp_pfpwjQ_GO0yzP5yBDf-SbItWfyMJmmHPhd5-nvpb-QLmSGV9g |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2024_108575 crossref_primary_10_1007_s11071_022_07292_y crossref_primary_10_1016_j_bspc_2024_107192 crossref_primary_10_1088_1402_4896_acd9fa |
Cites_doi | 10.1088/0256-307X/30/1/018701 10.1142/S0217979215501428 10.1063/1.3562547 10.1016/j.physrep.2003.10.015 10.1063/1.4772999 10.1142/S0218127418500487 10.1371/journal.pone.0177918 10.1016/j.cnsns.2012.02.019 10.1103/PhysRevA.44.8032 10.1142/S0217979218503320 10.1063/1.4904101 10.1016/j.amc.2017.03.002 10.1109/TNNLS.2012.2216545 10.1088/1674-1056/19/4/040508 10.1103/PhysRevLett.92.074104 10.1063/1.4938733 10.1103/PhysRevE.58.2952 10.1063/1.4983838 10.1088/0305-4470/14/11/006 10.1063/1.3133126 10.1038/s41598-016-0031-2 10.1103/PhysRevLett.78.775 10.1007/s11071-018-4260-8 10.1063/1.4999100 10.1142/S0217979216502519 10.1103/PhysRevE.60.7332 10.1103/PhysRevE.84.031916 10.1038/srep43452 10.1007/s11071-016-2773-6 10.1016/j.neucom.2011.02.005 10.1016/j.physa.2016.11.056 10.1016/j.physleta.2017.05.020 10.1142/S0218127417500304 |
ContentType | Journal Article |
Copyright | 2019, World Scientific Publishing Company 2019. World Scientific Publishing Company |
Copyright_xml | – notice: 2019, World Scientific Publishing Company – notice: 2019. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0217979219503028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6578 |
ExternalDocumentID | 10_1142_S0217979219503028 S0217979219503028 |
GroupedDBID | -~X 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3148-d96033adaa7bc56adf40a946883831c2364ad61fbcec6a06a4bf32bf1ea3c7853 |
ISSN | 0217-9792 |
IngestDate | Sun Jun 29 16:48:26 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Tue Jul 01 01:39:37 EDT 2025 Fri Aug 23 08:19:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | electromagnetic induction Stochastic resonance neuronal network phase noise coupled time delay |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3148-d96033adaa7bc56adf40a946883831c2364ad61fbcec6a06a4bf32bf1ea3c7853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2322033741 |
PQPubID | 2049856 |
ParticipantIDs | crossref_primary_10_1142_S0217979219503028 crossref_citationtrail_10_1142_S0217979219503028 proquest_journals_2322033741 worldscientific_primary_S0217979219503028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191020 2019-10-20 |
PublicationDateYYYYMMDD | 2019-10-20 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191020 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics |
PublicationYear | 2019 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0217979219503028BIB001 S0217979219503028BIB023 S0217979219503028BIB002 S0217979219503028BIB024 S0217979219503028BIB021 S0217979219503028BIB022 S0217979219503028BIB020 S0217979219503028BIB029 S0217979219503028BIB005 S0217979219503028BIB027 S0217979219503028BIB006 S0217979219503028BIB028 S0217979219503028BIB003 S0217979219503028BIB025 S0217979219503028BIB004 S0217979219503028BIB026 Liang X. (S0217979219503028BIB009) 2010; 82 S0217979219503028BIB012 S0217979219503028BIB034 S0217979219503028BIB013 S0217979219503028BIB035 S0217979219503028BIB010 S0217979219503028BIB032 S0217979219503028BIB011 S0217979219503028BIB033 S0217979219503028BIB030 S0217979219503028BIB031 McDonnell M. D. (S0217979219503028BIB008) 2011; 12 S0217979219503028BIB018 S0217979219503028BIB019 S0217979219503028BIB016 S0217979219503028BIB017 S0217979219503028BIB014 S0217979219503028BIB036 S0217979219503028BIB015 Tessone C. J. (S0217979219503028BIB007) 2006; 97 |
References_xml | – ident: S0217979219503028BIB014 doi: 10.1088/0256-307X/30/1/018701 – ident: S0217979219503028BIB010 doi: 10.1142/S0217979215501428 – volume: 97 start-page: 19 year: 2006 ident: S0217979219503028BIB007 publication-title: Phys. Rev. Lett. – ident: S0217979219503028BIB021 doi: 10.1063/1.3562547 – ident: S0217979219503028BIB002 doi: 10.1016/j.physrep.2003.10.015 – ident: S0217979219503028BIB006 doi: 10.1063/1.4772999 – ident: S0217979219503028BIB003 doi: 10.1142/S0218127418500487 – ident: S0217979219503028BIB025 doi: 10.1371/journal.pone.0177918 – ident: S0217979219503028BIB005 doi: 10.1016/j.cnsns.2012.02.019 – ident: S0217979219503028BIB036 doi: 10.1103/PhysRevA.44.8032 – ident: S0217979219503028BIB016 doi: 10.1142/S0217979218503320 – ident: S0217979219503028BIB019 doi: 10.1063/1.4904101 – ident: S0217979219503028BIB031 doi: 10.1016/j.amc.2017.03.002 – ident: S0217979219503028BIB012 doi: 10.1109/TNNLS.2012.2216545 – ident: S0217979219503028BIB018 doi: 10.1088/1674-1056/19/4/040508 – ident: S0217979219503028BIB020 doi: 10.1103/PhysRevLett.92.074104 – ident: S0217979219503028BIB011 doi: 10.1063/1.4938733 – ident: S0217979219503028BIB035 doi: 10.1103/PhysRevE.58.2952 – ident: S0217979219503028BIB023 doi: 10.1063/1.4983838 – ident: S0217979219503028BIB001 doi: 10.1088/0305-4470/14/11/006 – ident: S0217979219503028BIB017 doi: 10.1063/1.3133126 – ident: S0217979219503028BIB032 doi: 10.1038/s41598-016-0031-2 – ident: S0217979219503028BIB004 doi: 10.1103/PhysRevLett.78.775 – ident: S0217979219503028BIB033 doi: 10.1007/s11071-018-4260-8 – ident: S0217979219503028BIB024 doi: 10.1063/1.4999100 – volume: 82 start-page: 1 year: 2010 ident: S0217979219503028BIB009 publication-title: Phys. Rev. E – ident: S0217979219503028BIB030 doi: 10.1142/S0217979216502519 – ident: S0217979219503028BIB034 doi: 10.1103/PhysRevE.60.7332 – ident: S0217979219503028BIB013 doi: 10.1103/PhysRevE.84.031916 – volume: 12 start-page: 7 year: 2011 ident: S0217979219503028BIB008 publication-title: Nature Rev. Neurosci. – ident: S0217979219503028BIB029 doi: 10.1038/srep43452 – ident: S0217979219503028BIB026 doi: 10.1007/s11071-016-2773-6 – ident: S0217979219503028BIB022 doi: 10.1016/j.neucom.2011.02.005 – ident: S0217979219503028BIB015 doi: 10.1016/j.physa.2016.11.056 – ident: S0217979219503028BIB027 doi: 10.1016/j.physleta.2017.05.020 – ident: S0217979219503028BIB028 doi: 10.1142/S0218127417500304 |
SSID | ssj0006270 |
Score | 2.2461367 |
Snippet | Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1950302 |
SubjectTerms | Computer simulation Electromagnetic induction Feedback Mathematical models Noise Noise intensity Phase noise Robustness (mathematics) Stochastic resonance Time lag |
Title | How electromagnetic induction and coupled delay affect stochastic resonance in a modified neuronal network subject to phase noise |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0217979219503028 https://www.proquest.com/docview/2322033741 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhcKp5ioSAfuECUJZt4neRYXqpQi0C00t5WthO3kbrJimwOcOMP8puYsZ3HNghRLlHkxM5u5vP482QehLxIsI52ljEfltbQZ1mifJkoOONMi0AmWpi4tdNP_PicfVwulpPJr4HXUrOVM_Xjj3El_yNVaAO5YpTsDSTbDQoNcA7yhSNIGI7_JGOsB-fq2KzFRYnxiB7ssRtX_ttErDWbK-CUmAvyuydsqmLge-pS1DZ7M1JxnNwFdMC6OIVGUmrSXCJRLa2buFc3Ei02SFU30Df3yqqod9yIdm2Lg4wUa1tuzdpQ6pn3xhhnKyy9W8Oj1ibDZ3sZr2GQk8kfjVFifbNwhNk1dfrKWbyXhai8k6LzMCqarvULzIGLoX1jnuLCEAa9FjU-RUbRGeepoXlurDJhg-Wnsa2uN8utSgcNhA4-yVDn2-QbDts2ZH-8lrDQfM2GMXFIrJcbBS6SfTdF9-ieW2Q_hG0L6N39o3enJ187bsDD2Fr93O9039nhUa9Hg-wypX77c2By6dbdGxnwobO75MBtZOiRReU9MsnL--T2ZyubB-QnYJNewybtsEkBm9RhkxpsUotN2mOTdtiEflTQFpu0xSZ12KQOm3RbUYNNarD5kJx_eH_29th35T58FaFZO4PNdBSJTIhYqgUXmWaBSBlPkiiJ5gorHYiMz7VUueIi4IJJHYVSz3MRqRho5yOyV1Zl_phQoKWSM65ZzEKWpEzkWmdpxKVMcpFGiykJ2le7Ui4XPpZkuVrZOP1wNZLGlLzqumxsIpi_3XzYymvl5lu9AmUYwh8ECj8lL6_JsBtyNNSTG9z7lNzpZ9Ah2dt-a_JnwJm38rkD4m_hDMbm |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+electromagnetic+induction+and+coupled+delay+affect+stochastic+resonance+in+a+modified+neuronal+network+subject+to+phase+noise&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Yang%2C+Xiao+Li&rft.au=Liu%2C+Xiao+Qiang&rft.date=2019-10-20&rft.pub=World+Scientific+Publishing+Company&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=33&rft.issue=26&rft_id=info:doi/10.1142%2FS0217979219503028&rft.externalDocID=S0217979219503028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon |