How electromagnetic induction and coupled delay affect stochastic resonance in a modified neuronal network subject to phase noise

Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 33; no. 26; p. 1950302
Main Authors Yang, Xiao Li, Liu, Xiao Qiang
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 20.10.2019
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Through introducing the ingredients of electromagnetic induction and coupled time delay into the original Fitzhugh–Nagumo (FHN) neuronal network, the dynamics of stochastic resonance in a model of modified FHN neuronal network in the environment of phase noise is explored by numerical simulations in this study. On one hand, we demonstrate that the phenomenon of stochastic resonance can appear when the intensity of phase noise is appropriately adjusted, which is further verified to be robust to the edge-added probability of small-world network. Moreover, under the influence of electromagnetic induction, the phase noise-induced resonance response is suppressed, meanwhile, a large noise intensity is required to induce stochastic resonance as the feedback gain of induced current increases. On the other hand, when the coupled time delay is incorporated into this model, the results indicate that the properly tuned time delay can induce multiple stochastic resonances in this neuronal network. However, the phenomenon of multiple stochastic resonances is found to be restrained upon increasing feedback gain of induced current. Surprisingly, by changing the period of phase noise, multiple stochastic resonances can still emerge when the coupled time delay is appropriately tuned to be integer multiples of the period of phase noise.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0217-9792
1793-6578
DOI:10.1142/S0217979219503028