Leaf Disease Classification in Smart Agriculture Using Deep Neural Network Architecture and IoT

The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of circuits, systems, and computers Vol. 31; no. 15
Main Authors Ramana, Kadiyala, Aluvala, Rajanikanth, Kumar, Madapuri Rudra, Nagaraja, G., Krishna, Akula Vijaya, Nagendra, Pidugu
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.10.2022
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease prediction is possible. Deep neural network is used for classification of disease using the leaf images. Agriculture is the backbone of our country, but our output is poor when compared to the global standards due to lack of using technologies in the fields. In this work, various sensors like humidity sensor, pH level monitoring sensor, Temperature sensor, and Soil moisture sensor are used in the agricultural fields for collecting the real-time data. Multiple Sensors are installed in various locations of farms with one common controller Raspberry PI 3 module (RPI3), which was used to control all these sensors. Camera interfacing with RPI can be observed on leaf disease. Convolutional neural network architecture is used for leaf disease detection and classification. The accuracy of the disease classification system using convolutional neural network is 96% when the system is iterated for 50 epochs.
AbstractList The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease prediction is possible. Deep neural network is used for classification of disease using the leaf images. Agriculture is the backbone of our country, but our output is poor when compared to the global standards due to lack of using technologies in the fields. In this work, various sensors like humidity sensor, pH level monitoring sensor, Temperature sensor, and Soil moisture sensor are used in the agricultural fields for collecting the real-time data. Multiple Sensors are installed in various locations of farms with one common controller Raspberry PI 3 module (RPI3), which was used to control all these sensors. Camera interfacing with RPI can be observed on leaf disease. Convolutional neural network architecture is used for leaf disease detection and classification. The accuracy of the disease classification system using convolutional neural network is 96% when the system is iterated for 50 epochs.
Author Kumar, Madapuri Rudra
Krishna, Akula Vijaya
Nagaraja, G.
Ramana, Kadiyala
Aluvala, Rajanikanth
Nagendra, Pidugu
Author_xml – sequence: 1
  givenname: Kadiyala
  surname: Ramana
  fullname: Ramana, Kadiyala
– sequence: 2
  givenname: Rajanikanth
  surname: Aluvala
  fullname: Aluvala, Rajanikanth
– sequence: 3
  givenname: Madapuri Rudra
  surname: Kumar
  fullname: Kumar, Madapuri Rudra
– sequence: 4
  givenname: G.
  surname: Nagaraja
  fullname: Nagaraja, G.
– sequence: 5
  givenname: Akula Vijaya
  surname: Krishna
  fullname: Krishna, Akula Vijaya
– sequence: 6
  givenname: Pidugu
  surname: Nagendra
  fullname: Nagendra, Pidugu
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6v57G6OpfWjUPTQ9hyySbamrtmaZBH_vbuteLDgaRjmfWaYZwQGvvEWgGuMbjFm5G6FCC4wmUwIYQghlp-BIc4FzSaMswEY9uOsn1-AUYy7PsILNARyaVUF5y5aFS2c1SpGVzmtkms8dB6u3lVIcLoNTrd1aoOFm-j8Fs6t3cNn2wZVdyV9NuENToN-dcnqQ0x5AxfN-hKcV6qO9uqnjsHm4X49e8qWL4-L2XSZaYpZnjFEaVWUgiqGBWeMqdIUWpWV4CUTRjGOEDWqKFmuhSW4MrxrckqRKLUwho7BzXHvPjQfrY1J7po2-O6kJDnmghJOaZfKjykdmhiDraR26fBrCsrVEiPZ25QnNjsS_yH3wXVuvv5l0JHp7NQmamd96uX-oqfIN5d1hys
CitedBy_id crossref_primary_10_1142_S230138502450016X
crossref_primary_10_1155_2022_4093658
crossref_primary_10_1109_ACCESS_2023_3347614
crossref_primary_10_3390_agriculture13081606
crossref_primary_10_3390_agriculture12071034
crossref_primary_10_4108_eetsis_4056
crossref_primary_10_1007_s43621_024_00285_4
crossref_primary_10_3390_agriculture15050479
crossref_primary_10_1109_ACCESS_2024_3394617
crossref_primary_10_1186_s13677_024_00626_8
crossref_primary_10_3390_s24185965
Cites_doi 10.35940/ijitee.L1001.10812S219
10.3233/AIS-170440
10.1109/ICTC.2017.8190957
10.1155/2022/4190023
10.20546/ijcmas.2017.603.045
10.1016/j.compag.2018.07.032
10.1016/j.adhoc.2018.07.017
10.1016/j.comnet.2021.107819
10.1016/j.agsy.2017.01.023
10.1109/TIE.2017.2696508
10.1007/s12652-020-01934-y
10.1109/JIOT.2019.2947624
10.1049/iet-net.2018.5182
10.35940/ijisme.D1186.016420
10.1155/2021/5912051
10.1109/ICCIC.2014.7238283
10.1109/MIS.2015.67
10.1007/s11277-021-08903-4
10.1109/TENCONSpring.2017.8070100
10.1109/BID.2017.8336597
10.1109/TII.2021.3070544
10.1109/PERVASIVE.2015.7086983
10.1109/ACCESS.2020.3028595
10.4236/ait.2017.73005
10.1109/JSEN.2021.3049471
10.1109/ACCESS.2020.2982086
10.1016/j.iot.2020.100187
10.1109/MWC.001.2000374
10.1016/j.iot.2019.100142
10.1007/s11554-020-00987-8
ContentType Journal Article
Copyright 2022, World Scientific Publishing Company
2022. World Scientific Publishing Company
Copyright_xml – notice: 2022, World Scientific Publishing Company
– notice: 2022. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218126622400047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1793-6454
ExternalDocumentID 10_1142_S0218126622400047
S0218126622400047
GroupedDBID .DC
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
O9-
P2P
P71
RWJ
WSC
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3147-4033f8b93a4195444abd8cabf95b49da45003da8b47c9e21fd5a8b73309bc9dd3
ISSN 0218-1266
IngestDate Mon Jun 30 13:00:36 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 03:09:46 EDT 2025
Fri Aug 23 08:19:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Smart agriculture
sensor data for agriculture
IOT in smart farming
disease classification
convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3147-4033f8b93a4195444abd8cabf95b49da45003da8b47c9e21fd5a8b73309bc9dd3
Notes This paper was recommended by Regional Editor Takuro Sato.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4604-846X
PQID 2715932533
PQPubID 2049873
ParticipantIDs crossref_primary_10_1142_S0218126622400047
proquest_journals_2715932533
worldscientific_primary_S0218126622400047
crossref_citationtrail_10_1142_S0218126622400047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of circuits, systems, and computers
PublicationYear 2022
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218126622400047BIB007
S0218126622400047BIB008
S0218126622400047BIB005
S0218126622400047BIB027
S0218126622400047BIB006
S0218126622400047BIB028
S0218126622400047BIB003
S0218126622400047BIB025
S0218126622400047BIB004
S0218126622400047BIB026
S0218126622400047BIB001
S0218126622400047BIB023
Prema K. (S0218126622400047BIB010) 2019; 8
Gavaskar S. (S0218126622400047BIB013) 2017; 3
Tan L. (S0218126622400047BIB022) 2021
Dhaygude S. B. (S0218126622400047BIB033) 2013; 2
S0218126622400047BIB020
Kadam V. (S0218126622400047BIB009) 2014; 7
Guo Z. (S0218126622400047BIB024) 2021; 9
Sen S. (S0218126622400047BIB029) 2016; 6
S0218126622400047BIB018
S0218126622400047BIB019
S0218126622400047BIB016
S0218126622400047BIB038
S0218126622400047BIB017
S0218126622400047BIB039
Elsharif A. A. (S0218126622400047BIB002) 2019; 3
S0218126622400047BIB014
S0218126622400047BIB036
S0218126622400047BIB015
S0218126622400047BIB037
S0218126622400047BIB012
Ding F. (S0218126622400047BIB021) 2020
S0218126622400047BIB034
S0218126622400047BIB035
S0218126622400047BIB032
S0218126622400047BIB030
S0218126622400047BIB031
Jha K. (S0218126622400047BIB011) 2019; 2
References_xml – volume: 8
  start-page: 1
  year: 2019
  ident: S0218126622400047BIB010
  publication-title: Int. J. Innov. Technol. Explor. Eng.
  doi: 10.35940/ijitee.L1001.10812S219
– ident: S0218126622400047BIB012
  doi: 10.3233/AIS-170440
– ident: S0218126622400047BIB014
  doi: 10.1109/ICTC.2017.8190957
– ident: S0218126622400047BIB027
  doi: 10.1155/2022/4190023
– ident: S0218126622400047BIB003
  doi: 10.20546/ijcmas.2017.603.045
– volume: 2
  start-page: 599
  year: 2013
  ident: S0218126622400047BIB033
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– ident: S0218126622400047BIB005
  doi: 10.1016/j.compag.2018.07.032
– ident: S0218126622400047BIB032
  doi: 10.1016/j.adhoc.2018.07.017
– ident: S0218126622400047BIB023
  doi: 10.1016/j.comnet.2021.107819
– ident: S0218126622400047BIB030
  doi: 10.1016/j.agsy.2017.01.023
– ident: S0218126622400047BIB007
  doi: 10.1109/TIE.2017.2696508
– volume: 7
  start-page: 827
  year: 2014
  ident: S0218126622400047BIB009
  publication-title: Int. J. Adv. Eng. Technol.
– ident: S0218126622400047BIB015
  doi: 10.1007/s12652-020-01934-y
– ident: S0218126622400047BIB037
  doi: 10.1109/JIOT.2019.2947624
– volume: 9
  start-page: 1
  issue: 3
  year: 2021
  ident: S0218126622400047BIB024
  publication-title: IEEE Trans. Netw. Sci. Eng.
– ident: S0218126622400047BIB004
  doi: 10.1049/iet-net.2018.5182
– ident: S0218126622400047BIB008
  doi: 10.35940/ijisme.D1186.016420
– ident: S0218126622400047BIB025
  doi: 10.1155/2021/5912051
– volume: 2
  start-page: 1
  year: 2019
  ident: S0218126622400047BIB011
  publication-title: Artif. Intell. Agric.
– ident: S0218126622400047BIB034
  doi: 10.1109/ICCIC.2014.7238283
– ident: S0218126622400047BIB006
  doi: 10.1109/MIS.2015.67
– ident: S0218126622400047BIB019
  doi: 10.1007/s11277-021-08903-4
– ident: S0218126622400047BIB001
  doi: 10.1109/TENCONSpring.2017.8070100
– ident: S0218126622400047BIB035
  doi: 10.1109/BID.2017.8336597
– start-page: 42
  year: 2020
  ident: S0218126622400047BIB021
  publication-title: IEEE Consum. Electron. Mag.
– ident: S0218126622400047BIB028
  doi: 10.1109/TII.2021.3070544
– ident: S0218126622400047BIB016
  doi: 10.1109/PERVASIVE.2015.7086983
– ident: S0218126622400047BIB020
  doi: 10.1109/ACCESS.2020.3028595
– ident: S0218126622400047BIB031
  doi: 10.4236/ait.2017.73005
– ident: S0218126622400047BIB026
  doi: 10.1109/JSEN.2021.3049471
– start-page: 1
  year: 2021
  ident: S0218126622400047BIB022
  publication-title: Neural Comput. Appl.
– ident: S0218126622400047BIB036
  doi: 10.1109/ACCESS.2020.2982086
– volume: 3
  start-page: 46
  year: 2017
  ident: S0218126622400047BIB013
  publication-title: IJSTE-Int. J. Sci. Technol. Eng.
– ident: S0218126622400047BIB039
  doi: 10.1016/j.iot.2020.100187
– volume: 3
  start-page: 19
  year: 2019
  ident: S0218126622400047BIB002
  publication-title: Int. J. Acad. Eng. Res.
– ident: S0218126622400047BIB018
  doi: 10.1109/MWC.001.2000374
– ident: S0218126622400047BIB038
  doi: 10.1016/j.iot.2019.100142
– volume: 6
  start-page: 197
  year: 2016
  ident: S0218126622400047BIB029
  publication-title: Int. J. Eng. Sci. Res. Technol.
– ident: S0218126622400047BIB017
  doi: 10.1007/s11554-020-00987-8
SSID ssj0004580
Score 2.4304712
Snippet The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agriculture
Artificial neural networks
Classification
Computer architecture
Farms
Image classification
Internet of Things
Moisture effects
Neural networks
Plant diseases
Real time
Remote sensors
Sensors
Soil moisture
Temperature sensors
Title Leaf Disease Classification in Smart Agriculture Using Deep Neural Network Architecture and IoT
URI http://www.worldscientific.com/doi/abs/10.1142/S0218126622400047
https://www.proquest.com/docview/2715932533
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZKd4HDxKcoDOQDF6gyGttJmmPEQAOtPbBO2i3yRzJllKxKm8P2i_iZvP5ImjUDMS5Rm9pO5ffJ69evHz9G6J2aRFL5RHqKSuIxJfVm5UB6uWKCxIIqYna9z-bh8Rn7dh6cDwa_OqyleiMO5c2d-0r-x6pwD-yqd8new7Jto3ADPoN94QoWhus_2fgk47nWz9RLLPZ4S0384Q1_8fQn1BknF5XT14AI02QGjrJsNdaqHGCeuaWBj5PdBYWvV4s_BK6yqGRdbAwArBD0uuGASndGxJZAzzU91tI2VHHNl-0okCxr6AobuvJLXhY_wMZtbrplfs-44qu6Ksbfa1W1lef8gldQy2T1D7uZC5j0Nhw45x8NW8i4MEOL6ibe-s4QQhHPJ6GTzbbOGnyLpxXJut7cjSkOtcHdowQjZp3ahDdhaHi0Eyv8uSO-3SvzAO0RmJCQIdpLjmYnpx1l-qnN57n_6VbQ4VEfe43cjoG2E5t9o5K7bnukE-ksHqN9Z2mcWLw9QYOsfIoedYQrn6FUIw875OHbyMNFiQ3ycAd52CAPa-RhizzskIe7yMMAIgzIe47OvnxefDr23FEdnqQ-izw2oTSfiphypiUEGeNCTSUXeRwIFivOAhg9FJ8KFsk4I36uAvgSUTqJhYyVoi_QsLwqs5cI0zwiTPl-RsOYhQJ-z4ngggQCJtuCTkdo0nReKp2OvT5OZZnaPfYk7fX3CH1oq6ysiMvfCh80Fkndu75OSQRhPyUwNxqh9ztWapvsNfXqHmVfo4fbd-QADTdVnb2BeHcj3jqo_QYq-6jY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+Disease+Classification+in+Smart+Agriculture+Using+Deep+Neural+Network+Architecture+and+IoT&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Ramana%2C+Kadiyala&rft.au=Aluvala%2C+Rajanikanth&rft.au=Kumar%2C+Madapuri+Rudra&rft.au=Nagaraja%2C+G.&rft.date=2022-10-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=15&rft_id=info:doi/10.1142%2FS0218126622400047&rft.externalDocID=S0218126622400047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon