Leaf Disease Classification in Smart Agriculture Using Deep Neural Network Architecture and IoT
The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease pr...
Saved in:
Published in | Journal of circuits, systems, and computers Vol. 31; no. 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.10.2022
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease prediction is possible. Deep neural network is used for classification of disease using the leaf images. Agriculture is the backbone of our country, but our output is poor when compared to the global standards due to lack of using technologies in the fields. In this work, various sensors like humidity sensor, pH level monitoring sensor, Temperature sensor, and Soil moisture sensor are used in the agricultural fields for collecting the real-time data. Multiple Sensors are installed in various locations of farms with one common controller Raspberry PI 3 module (RPI3), which was used to control all these sensors. Camera interfacing with RPI can be observed on leaf disease. Convolutional neural network architecture is used for leaf disease detection and classification. The accuracy of the disease classification system using convolutional neural network is 96% when the system is iterated for 50 epochs. |
---|---|
AbstractList | The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in real time and move it to remote areas for processing. With the available sensor data and the image taken from the fields, automated disease prediction is possible. Deep neural network is used for classification of disease using the leaf images. Agriculture is the backbone of our country, but our output is poor when compared to the global standards due to lack of using technologies in the fields. In this work, various sensors like humidity sensor, pH level monitoring sensor, Temperature sensor, and Soil moisture sensor are used in the agricultural fields for collecting the real-time data. Multiple Sensors are installed in various locations of farms with one common controller Raspberry PI 3 module (RPI3), which was used to control all these sensors. Camera interfacing with RPI can be observed on leaf disease. Convolutional neural network architecture is used for leaf disease detection and classification. The accuracy of the disease classification system using convolutional neural network is 96% when the system is iterated for 50 epochs. |
Author | Kumar, Madapuri Rudra Krishna, Akula Vijaya Nagaraja, G. Ramana, Kadiyala Aluvala, Rajanikanth Nagendra, Pidugu |
Author_xml | – sequence: 1 givenname: Kadiyala surname: Ramana fullname: Ramana, Kadiyala – sequence: 2 givenname: Rajanikanth surname: Aluvala fullname: Aluvala, Rajanikanth – sequence: 3 givenname: Madapuri Rudra surname: Kumar fullname: Kumar, Madapuri Rudra – sequence: 4 givenname: G. surname: Nagaraja fullname: Nagaraja, G. – sequence: 5 givenname: Akula Vijaya surname: Krishna fullname: Krishna, Akula Vijaya – sequence: 6 givenname: Pidugu surname: Nagendra fullname: Nagendra, Pidugu |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz6v57G6OpfWjUPTQ9hyySbamrtmaZBH_vbuteLDgaRjmfWaYZwQGvvEWgGuMbjFm5G6FCC4wmUwIYQghlp-BIc4FzSaMswEY9uOsn1-AUYy7PsILNARyaVUF5y5aFS2c1SpGVzmtkms8dB6u3lVIcLoNTrd1aoOFm-j8Fs6t3cNn2wZVdyV9NuENToN-dcnqQ0x5AxfN-hKcV6qO9uqnjsHm4X49e8qWL4-L2XSZaYpZnjFEaVWUgiqGBWeMqdIUWpWV4CUTRjGOEDWqKFmuhSW4MrxrckqRKLUwho7BzXHvPjQfrY1J7po2-O6kJDnmghJOaZfKjykdmhiDraR26fBrCsrVEiPZ25QnNjsS_yH3wXVuvv5l0JHp7NQmamd96uX-oqfIN5d1hys |
CitedBy_id | crossref_primary_10_1142_S230138502450016X crossref_primary_10_1155_2022_4093658 crossref_primary_10_1109_ACCESS_2023_3347614 crossref_primary_10_3390_agriculture13081606 crossref_primary_10_3390_agriculture12071034 crossref_primary_10_4108_eetsis_4056 crossref_primary_10_1007_s43621_024_00285_4 crossref_primary_10_3390_agriculture15050479 crossref_primary_10_1109_ACCESS_2024_3394617 crossref_primary_10_1186_s13677_024_00626_8 crossref_primary_10_3390_s24185965 |
Cites_doi | 10.35940/ijitee.L1001.10812S219 10.3233/AIS-170440 10.1109/ICTC.2017.8190957 10.1155/2022/4190023 10.20546/ijcmas.2017.603.045 10.1016/j.compag.2018.07.032 10.1016/j.adhoc.2018.07.017 10.1016/j.comnet.2021.107819 10.1016/j.agsy.2017.01.023 10.1109/TIE.2017.2696508 10.1007/s12652-020-01934-y 10.1109/JIOT.2019.2947624 10.1049/iet-net.2018.5182 10.35940/ijisme.D1186.016420 10.1155/2021/5912051 10.1109/ICCIC.2014.7238283 10.1109/MIS.2015.67 10.1007/s11277-021-08903-4 10.1109/TENCONSpring.2017.8070100 10.1109/BID.2017.8336597 10.1109/TII.2021.3070544 10.1109/PERVASIVE.2015.7086983 10.1109/ACCESS.2020.3028595 10.4236/ait.2017.73005 10.1109/JSEN.2021.3049471 10.1109/ACCESS.2020.2982086 10.1016/j.iot.2020.100187 10.1109/MWC.001.2000374 10.1016/j.iot.2019.100142 10.1007/s11554-020-00987-8 |
ContentType | Journal Article |
Copyright | 2022, World Scientific Publishing Company 2022. World Scientific Publishing Company |
Copyright_xml | – notice: 2022, World Scientific Publishing Company – notice: 2022. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0218126622400047 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1793-6454 |
ExternalDocumentID | 10_1142_S0218126622400047 S0218126622400047 |
GroupedDBID | .DC 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ O9- P2P P71 RWJ WSC AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3147-4033f8b93a4195444abd8cabf95b49da45003da8b47c9e21fd5a8b73309bc9dd3 |
ISSN | 0218-1266 |
IngestDate | Mon Jun 30 13:00:36 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 03:09:46 EDT 2025 Fri Aug 23 08:19:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Smart agriculture sensor data for agriculture IOT in smart farming disease classification convolutional neural network |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3147-4033f8b93a4195444abd8cabf95b49da45003da8b47c9e21fd5a8b73309bc9dd3 |
Notes | This paper was recommended by Regional Editor Takuro Sato. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4604-846X |
PQID | 2715932533 |
PQPubID | 2049873 |
ParticipantIDs | crossref_primary_10_1142_S0218126622400047 proquest_journals_2715932533 worldscientific_primary_S0218126622400047 crossref_citationtrail_10_1142_S0218126622400047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of circuits, systems, and computers |
PublicationYear | 2022 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0218126622400047BIB007 S0218126622400047BIB008 S0218126622400047BIB005 S0218126622400047BIB027 S0218126622400047BIB006 S0218126622400047BIB028 S0218126622400047BIB003 S0218126622400047BIB025 S0218126622400047BIB004 S0218126622400047BIB026 S0218126622400047BIB001 S0218126622400047BIB023 Prema K. (S0218126622400047BIB010) 2019; 8 Gavaskar S. (S0218126622400047BIB013) 2017; 3 Tan L. (S0218126622400047BIB022) 2021 Dhaygude S. B. (S0218126622400047BIB033) 2013; 2 S0218126622400047BIB020 Kadam V. (S0218126622400047BIB009) 2014; 7 Guo Z. (S0218126622400047BIB024) 2021; 9 Sen S. (S0218126622400047BIB029) 2016; 6 S0218126622400047BIB018 S0218126622400047BIB019 S0218126622400047BIB016 S0218126622400047BIB038 S0218126622400047BIB017 S0218126622400047BIB039 Elsharif A. A. (S0218126622400047BIB002) 2019; 3 S0218126622400047BIB014 S0218126622400047BIB036 S0218126622400047BIB015 S0218126622400047BIB037 S0218126622400047BIB012 Ding F. (S0218126622400047BIB021) 2020 S0218126622400047BIB034 S0218126622400047BIB035 S0218126622400047BIB032 S0218126622400047BIB030 S0218126622400047BIB031 Jha K. (S0218126622400047BIB011) 2019; 2 |
References_xml | – volume: 8 start-page: 1 year: 2019 ident: S0218126622400047BIB010 publication-title: Int. J. Innov. Technol. Explor. Eng. doi: 10.35940/ijitee.L1001.10812S219 – ident: S0218126622400047BIB012 doi: 10.3233/AIS-170440 – ident: S0218126622400047BIB014 doi: 10.1109/ICTC.2017.8190957 – ident: S0218126622400047BIB027 doi: 10.1155/2022/4190023 – ident: S0218126622400047BIB003 doi: 10.20546/ijcmas.2017.603.045 – volume: 2 start-page: 599 year: 2013 ident: S0218126622400047BIB033 publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng. – ident: S0218126622400047BIB005 doi: 10.1016/j.compag.2018.07.032 – ident: S0218126622400047BIB032 doi: 10.1016/j.adhoc.2018.07.017 – ident: S0218126622400047BIB023 doi: 10.1016/j.comnet.2021.107819 – ident: S0218126622400047BIB030 doi: 10.1016/j.agsy.2017.01.023 – ident: S0218126622400047BIB007 doi: 10.1109/TIE.2017.2696508 – volume: 7 start-page: 827 year: 2014 ident: S0218126622400047BIB009 publication-title: Int. J. Adv. Eng. Technol. – ident: S0218126622400047BIB015 doi: 10.1007/s12652-020-01934-y – ident: S0218126622400047BIB037 doi: 10.1109/JIOT.2019.2947624 – volume: 9 start-page: 1 issue: 3 year: 2021 ident: S0218126622400047BIB024 publication-title: IEEE Trans. Netw. Sci. Eng. – ident: S0218126622400047BIB004 doi: 10.1049/iet-net.2018.5182 – ident: S0218126622400047BIB008 doi: 10.35940/ijisme.D1186.016420 – ident: S0218126622400047BIB025 doi: 10.1155/2021/5912051 – volume: 2 start-page: 1 year: 2019 ident: S0218126622400047BIB011 publication-title: Artif. Intell. Agric. – ident: S0218126622400047BIB034 doi: 10.1109/ICCIC.2014.7238283 – ident: S0218126622400047BIB006 doi: 10.1109/MIS.2015.67 – ident: S0218126622400047BIB019 doi: 10.1007/s11277-021-08903-4 – ident: S0218126622400047BIB001 doi: 10.1109/TENCONSpring.2017.8070100 – ident: S0218126622400047BIB035 doi: 10.1109/BID.2017.8336597 – start-page: 42 year: 2020 ident: S0218126622400047BIB021 publication-title: IEEE Consum. Electron. Mag. – ident: S0218126622400047BIB028 doi: 10.1109/TII.2021.3070544 – ident: S0218126622400047BIB016 doi: 10.1109/PERVASIVE.2015.7086983 – ident: S0218126622400047BIB020 doi: 10.1109/ACCESS.2020.3028595 – ident: S0218126622400047BIB031 doi: 10.4236/ait.2017.73005 – ident: S0218126622400047BIB026 doi: 10.1109/JSEN.2021.3049471 – start-page: 1 year: 2021 ident: S0218126622400047BIB022 publication-title: Neural Comput. Appl. – ident: S0218126622400047BIB036 doi: 10.1109/ACCESS.2020.2982086 – volume: 3 start-page: 46 year: 2017 ident: S0218126622400047BIB013 publication-title: IJSTE-Int. J. Sci. Technol. Eng. – ident: S0218126622400047BIB039 doi: 10.1016/j.iot.2020.100187 – volume: 3 start-page: 19 year: 2019 ident: S0218126622400047BIB002 publication-title: Int. J. Acad. Eng. Res. – ident: S0218126622400047BIB018 doi: 10.1109/MWC.001.2000374 – ident: S0218126622400047BIB038 doi: 10.1016/j.iot.2019.100142 – volume: 6 start-page: 197 year: 2016 ident: S0218126622400047BIB029 publication-title: Int. J. Eng. Sci. Res. Technol. – ident: S0218126622400047BIB017 doi: 10.1007/s11554-020-00987-8 |
SSID | ssj0004580 |
Score | 2.4304712 |
Snippet | The Internet of Things (IoT) is bringing a new dimension to the smart farming market. This helps the user to collect the data from the agricultural fields in... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Agriculture Artificial neural networks Classification Computer architecture Farms Image classification Internet of Things Moisture effects Neural networks Plant diseases Real time Remote sensors Sensors Soil moisture Temperature sensors |
Title | Leaf Disease Classification in Smart Agriculture Using Deep Neural Network Architecture and IoT |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0218126622400047 https://www.proquest.com/docview/2715932533 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZKd4HDxKcoDOQDF6gyGttJmmPEQAOtPbBO2i3yRzJllKxKm8P2i_iZvP5ImjUDMS5Rm9pO5ffJ69evHz9G6J2aRFL5RHqKSuIxJfVm5UB6uWKCxIIqYna9z-bh8Rn7dh6cDwa_OqyleiMO5c2d-0r-x6pwD-yqd8new7Jto3ADPoN94QoWhus_2fgk47nWz9RLLPZ4S0384Q1_8fQn1BknF5XT14AI02QGjrJsNdaqHGCeuaWBj5PdBYWvV4s_BK6yqGRdbAwArBD0uuGASndGxJZAzzU91tI2VHHNl-0okCxr6AobuvJLXhY_wMZtbrplfs-44qu6Ksbfa1W1lef8gldQy2T1D7uZC5j0Nhw45x8NW8i4MEOL6ibe-s4QQhHPJ6GTzbbOGnyLpxXJut7cjSkOtcHdowQjZp3ahDdhaHi0Eyv8uSO-3SvzAO0RmJCQIdpLjmYnpx1l-qnN57n_6VbQ4VEfe43cjoG2E5t9o5K7bnukE-ksHqN9Z2mcWLw9QYOsfIoedYQrn6FUIw875OHbyMNFiQ3ycAd52CAPa-RhizzskIe7yMMAIgzIe47OvnxefDr23FEdnqQ-izw2oTSfiphypiUEGeNCTSUXeRwIFivOAhg9FJ8KFsk4I36uAvgSUTqJhYyVoi_QsLwqs5cI0zwiTPl-RsOYhQJ-z4ngggQCJtuCTkdo0nReKp2OvT5OZZnaPfYk7fX3CH1oq6ysiMvfCh80Fkndu75OSQRhPyUwNxqh9ztWapvsNfXqHmVfo4fbd-QADTdVnb2BeHcj3jqo_QYq-6jY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+Disease+Classification+in+Smart+Agriculture+Using+Deep+Neural+Network+Architecture+and+IoT&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Ramana%2C+Kadiyala&rft.au=Aluvala%2C+Rajanikanth&rft.au=Kumar%2C+Madapuri+Rudra&rft.au=Nagaraja%2C+G.&rft.date=2022-10-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=15&rft_id=info:doi/10.1142%2FS0218126622400047&rft.externalDocID=S0218126622400047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon |