Regioselective Hydroformylation of α,β‐Unsaturated Esters: Impact of Reaction Parameters & Reaction Optimization

The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of organic chemistry Vol. 28; no. 19
Main Authors Bork, Hannah, Gröger, Harald
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 27.05.2025
Subjects
Online AccessGet full text
ISSN1434-193X
1099-0690
DOI10.1002/ejoc.202401116

Cover

Abstract The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity. The hydroformylation of methyl 4‐chlorocinnamate exhibited either high values for regioselectivity (96 %) or selectivity (78 %) for the β‐aldehyde 2 a depending on pressure, CO/H2 composition and temperature in a design of experiments approach. Expanding the substrate scope gave insights into the structure‐activity relationship revealing a significant electronic influence of the substituent on regioselectivity and selectivity for the β‐aldehyde.
AbstractList The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as ( R )‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H 2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity.
The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity. The hydroformylation of methyl 4‐chlorocinnamate exhibited either high values for regioselectivity (96 %) or selectivity (78 %) for the β‐aldehyde 2 a depending on pressure, CO/H2 composition and temperature in a design of experiments approach. Expanding the substrate scope gave insights into the structure‐activity relationship revealing a significant electronic influence of the substituent on regioselectivity and selectivity for the β‐aldehyde.
The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity.
Author Bork, Hannah
Gröger, Harald
Author_xml – sequence: 1
  givenname: Hannah
  orcidid: 0009-0001-5009-3140
  surname: Bork
  fullname: Bork, Hannah
  organization: Bielefeld University
– sequence: 2
  givenname: Harald
  orcidid: 0000-0001-8582-2107
  surname: Gröger
  fullname: Gröger, Harald
  email: harald.groeger@uni-bielefeld.de
  organization: Bielefeld University
BookMark eNqFkM1Kw0AUhQepYFvdug4Irky9M5kmGXdSqq0UKsWCuzBJbiQlycSZqVJXPoKvog_Sh_BJTKzo0tX9O9-5cHqkU6kKCTmmMKAA7BxXKhkwYBwopf4e6VIQwgVfQKfpucddKrz7A9IzZgUAwvdpl9gFPuTKYIGJzZ_QmWxSrTKly00hba4qR2XO9v1s-_H5-rasjLRrLS2mzthY1ObCmZa1TGyrWmDTtMSt1LLE9uyc_m3ntc3L_OXb9JDsZ7IwePRT-2R5Nb4bTdzZ_Ho6upy5iUe57waxjIXwBWc8ERDHQZbGAfpZBpjxofRDJpAzmoZBymCYsoSJmEMKodcMYRh6fXKy8621elyjsdFKrXXVvIw8xkLhCR6wRjXYqRKtjNGYRbXOS6k3EYWoTTZqk41-k20AsQOe8wI3_6ij8c189Md-ARwAgp4
Cites_doi 10.1016/j.pbb.2013.07.003
10.1155/2019/3941242
10.1021/om00029a060
10.1002/chem.200600914
10.1002/anie.201901673
10.1002/9783527677931
10.1021/acs.chemrev.2c00798
10.1021/om010760y
10.1246/bcsj.47.1698
10.1246/bcsj.50.2351
10.1002/ejoc.201500054
10.1023/A:1018841418819
10.1021/om00001a010
10.1002/ejoc.202401115
10.1002/adsc.201701449
10.1016/j.jcat.2021.06.001
10.1021/jo01097a026
10.1021/acs.joc.9b01577
10.1021/om00010a031
10.1016/S0040-4039(00)85762-7
10.1016/j.jorganchem.2009.04.003
10.1007/s40828-021-00154-x
10.1016/j.isci.2023.106183
10.1021/cs300470u
10.1039/C2DT31738A
10.1021/jacs.6b10297
10.1021/ja909619a
10.1039/D1CY00737H
10.1007/s10562-009-0001-4
10.1021/cr3001803
10.1016/0304-5102(89)80104-X
10.1021/ja00127a014
10.1021/ol036182u
10.1016/0022-328X(93)83039-X
10.1039/c2ra20898a
10.1126/science.abm4465
10.1039/C5GC01965F
10.1021/om501015z
10.1021/acs.jmedchem.0c00754
10.1016/S0022-328X(00)00389-2
10.1039/C7RA01649B
10.1039/b616918j
10.1002/ejic.200900304
ContentType Journal Article
Copyright 2025 The Author(s). European Journal of Organic Chemistry published by Wiley-VCH GmbH
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2025 The Author(s). European Journal of Organic Chemistry published by Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/ejoc.202401116
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0690
EndPage n/a
ExternalDocumentID 10_1002_ejoc_202401116
EJOC202401116
Genre article
GrantInformation_xml – fundername: “Zentrales Innovationsprogramm Mittelstand (ZIM)”
  funderid: ZF4832701CR9
– fundername: German Federal Ministry for Economic Affairs and Energy
– fundername: “Central Innovation Programme
– fundername: ‘Sustainable Chemical Synthesis 2.0’
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
LH4
1OB
ID FETCH-LOGICAL-c3146-7bab9969424c90bb7fdb7e6ff0ef45a6829e421d87d205d2c29b40d0835d28883
IEDL.DBID DR2
ISSN 1434-193X
IngestDate Wed Aug 13 06:09:39 EDT 2025
Thu Jul 03 08:47:18 EDT 2025
Thu May 29 06:17:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3146-7bab9969424c90bb7fdb7e6ff0ef45a6829e421d87d205d2c29b40d0835d28883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5009-3140
0000-0001-8582-2107
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202401116
PQID 3228939472
PQPubID 986364
PageCount 10
ParticipantIDs proquest_journals_3228939472
crossref_primary_10_1002_ejoc_202401116
wiley_primary_10_1002_ejoc_202401116_EJOC202401116
PublicationCentury 2000
PublicationDate May 27, 2025
PublicationDateYYYYMMDD 2025-05-27
PublicationDate_xml – month: 05
  year: 2025
  text: May 27, 2025
  day: 27
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of organic chemistry
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
2017; 7
2019; 2019
2013; 3
2018; 360
2006; 12
2020; 63
2021; 400
1995; 14
2023; 123
2013; 42
2019; 58
2009
1995; 117
2009; 694
2000; 70
2004; 6
1972
1970
2025
2009; 131
2016; 18
2022; 377
1982; 23
1974; 47
1993; 12
2000; 608
1989; 50
2012; 2
2012; 112
2019; 84
2021; 11
2000
2023; 26
2022; 8
2002; 21
1958; 23
2010; 132
2015; 2015
2007; 9
1977; 50
1986
2016
2016; 138
2013; 110
1993; 451
e_1_2_8_28_1
e_1_2_8_47_1
Eicher T. (e_1_2_8_21_1) 1986
e_1_2_8_26_1
e_1_2_8_49_1
Van Leeuwen P. W. N. M. (e_1_2_8_31_1) 2000
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
Bork H. (e_1_2_8_29_1) 2025
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
Exner O. (e_1_2_8_37_1) 1972
Ojima I. (e_1_2_8_24_1) 2000
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Uchimaru F. (e_1_2_8_20_1) 1970
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Silva R. H. N. (e_1_2_8_32_1) 2019; 2019
e_1_2_8_10_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 451
  start-page: C18
  year: 1993
  end-page: C21
  publication-title: J. Organomet. Chem.
– start-page: 2776
  year: 2009
  end-page: 2788
  publication-title: Eur. J. Inorg. Chem.
– volume: 6
  start-page: 221
  year: 2004
  end-page: 224
  publication-title: Org. Lett.
– volume: 117
  start-page: 6007
  year: 1995
  end-page: 6014
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1698
  year: 1974
  end-page: 1703
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 608
  start-page: 115
  year: 2000
  end-page: 121
  publication-title: J. Organomet. Chem.
– volume: 26
  year: 2023
  publication-title: iScience
– volume: 7
  start-page: 14816
  year: 2017
  end-page: 14823
  publication-title: RSC Adv.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 13
  publication-title: BioMed Res. Int.
– year: 1972
  publication-title: The Hammett Equation-the Present Position
– volume: 18
  start-page: 686
  year: 2016
  end-page: 690
  publication-title: Green Chem.
– volume: 21
  start-page: 3873
  year: 2002
  end-page: 3883
  publication-title: Organometallics
– volume: 131
  start-page: 649
  year: 2009
  end-page: 655
  publication-title: Catal. Lett.
– year: 1986
– year: 2000
  publication-title: Rhodium Catalyzed Hydroformylation
– volume: 132
  start-page: 10306
  year: 2010
  end-page: 10317
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2000
– volume: 377
  start-page: 1223
  year: 2022
  end-page: 1227
  publication-title: Science
– volume: 110
  start-page: 174
  year: 2013
  end-page: 184
  publication-title: Pharmacol. Biochem. Behav.
– volume: 2
  start-page: 6135
  year: 2012
  end-page: 6139
  publication-title: RSC Adv.
– year: 2025
  publication-title: Eur. J. Org. Chem.
– volume: 400
  start-page: 234
  year: 2021
  end-page: 243
  publication-title: J. Catal.
– volume: 14
  start-page: 34
  year: 1995
  end-page: 43
  publication-title: Organometallics
– volume: 9
  start-page: 792
  year: 2007
  end-page: 796
  publication-title: Green Chem.
– volume: 70
  start-page: 149
  year: 2000
  end-page: 154
  publication-title: Catal. Lett.
– volume: 23
  start-page: 420
  year: 1958
  end-page: 427
  publication-title: J. Org. Chem.
– volume: 42
  start-page: 137
  year: 2013
  end-page: 142
  publication-title: Dalton Trans.
– volume: 14
  start-page: 4644
  year: 1995
  end-page: 4650
  publication-title: Organometallics
– volume: 23
  start-page: 4967
  year: 1982
  end-page: 4968
  publication-title: Tetrahedron Lett.
– volume: 112
  start-page: 5675
  year: 2012
  end-page: 5732
  publication-title: Chem. Rev.
– volume: 694
  start-page: 2548
  year: 2009
  end-page: 2554
  publication-title: J. Organomet. Chem.
– volume: 58
  start-page: 7485
  year: 2019
  end-page: 7489
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 7978
  year: 2006
  end-page: 7986
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 1954
  year: 1993
  end-page: 1959
  publication-title: Organometallics
– volume: 123
  start-page: 3089
  year: 2023
  end-page: 3126
  publication-title: Chem. Rev.
– volume: 50
  start-page: 2351
  year: 1977
  end-page: 2357
  publication-title: Bull. Chem. Soc. Jpn.
– year: 2016
– volume: 50
  start-page: 1
  year: 1989
  end-page: 9
  publication-title: J. Mol. Catal.
– volume: 360
  start-page: 768
  year: 2018
  end-page: 778
  publication-title: Adv. Synth. Catal.
– year: 1970
  publication-title: JP 45016692 B
– volume: 8
  start-page: 1
  year: 2022
  end-page: 26
  publication-title: ChemTexts
– volume: 2019
  year: 2019
  publication-title: BioMed Res. Int.
– volume: 138
  start-page: 14864
  year: 2016
  end-page: 14867
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5388
  year: 2021
  end-page: 5411
  publication-title: Catal. Sci. Technol.
– volume: 2015
  start-page: 3524
  year: 2015
  end-page: 3530
  publication-title: Eur. J. Org. Chem.
– volume: 63
  start-page: 8408
  year: 2020
  end-page: 8418
  publication-title: J. Med. Chem.
– volume: 84
  start-page: 12301
  year: 2019
  end-page: 12313
  publication-title: J. Org. Chem.
– volume: 3
  start-page: 128
  year: 2013
  end-page: 137
  publication-title: ACS Catal.
– volume: 34
  start-page: 841
  year: 2015
  end-page: 847
  publication-title: Organometallics
– ident: e_1_2_8_19_1
  doi: 10.1016/j.pbb.2013.07.003
– ident: e_1_2_8_42_1
  doi: 10.1155/2019/3941242
– ident: e_1_2_8_15_1
  doi: 10.1021/om00029a060
– ident: e_1_2_8_25_1
  doi: 10.1002/chem.200600914
– year: 1972
  ident: e_1_2_8_37_1
  publication-title: The Hammett Equation-the Present Position
– ident: e_1_2_8_49_1
  doi: 10.1002/anie.201901673
– ident: e_1_2_8_2_1
  doi: 10.1002/9783527677931
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.chemrev.2c00798
– ident: e_1_2_8_38_1
  doi: 10.1021/om010760y
– ident: e_1_2_8_28_1
– ident: e_1_2_8_10_1
  doi: 10.1246/bcsj.47.1698
– ident: e_1_2_8_14_1
  doi: 10.1246/bcsj.50.2351
– year: 2000
  ident: e_1_2_8_31_1
  publication-title: Rhodium Catalyzed Hydroformylation
– ident: e_1_2_8_47_1
  doi: 10.1002/ejoc.201500054
– ident: e_1_2_8_17_1
  doi: 10.1023/A:1018841418819
– start-page: 1
  volume-title: Organic Reactions, Volume 56
  year: 2000
  ident: e_1_2_8_24_1
– ident: e_1_2_8_35_1
  doi: 10.1021/om00001a010
– year: 2025
  ident: e_1_2_8_29_1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202401115
– ident: e_1_2_8_48_1
  doi: 10.1002/adsc.201701449
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jcat.2021.06.001
– year: 1970
  ident: e_1_2_8_20_1
  publication-title: JP 45016692 B
– volume-title: Synthese, Gewinnung und Charakterisierung von Arzneistoffen: Ein Praktikumsbuch
  year: 1986
  ident: e_1_2_8_21_1
– ident: e_1_2_8_36_1
  doi: 10.1021/jo01097a026
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.joc.9b01577
– ident: e_1_2_8_41_1
  doi: 10.1021/om00010a031
– ident: e_1_2_8_22_1
  doi: 10.1016/S0040-4039(00)85762-7
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jorganchem.2009.04.003
– ident: e_1_2_8_3_1
  doi: 10.1007/s40828-021-00154-x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.isci.2023.106183
– ident: e_1_2_8_7_1
  doi: 10.1021/cs300470u
– ident: e_1_2_8_11_1
  doi: 10.1039/C2DT31738A
– ident: e_1_2_8_50_1
  doi: 10.1021/jacs.6b10297
– ident: e_1_2_8_12_1
  doi: 10.1021/ja909619a
– ident: e_1_2_8_13_1
  doi: 10.1039/D1CY00737H
– ident: e_1_2_8_8_1
  doi: 10.1007/s10562-009-0001-4
– ident: e_1_2_8_1_1
  doi: 10.1021/cr3001803
– ident: e_1_2_8_39_1
  doi: 10.1016/0304-5102(89)80104-X
– ident: e_1_2_8_33_1
  doi: 10.1021/ja00127a014
– ident: e_1_2_8_44_1
  doi: 10.1021/ol036182u
– ident: e_1_2_8_23_1
  doi: 10.1016/0022-328X(93)83039-X
– ident: e_1_2_8_51_1
  doi: 10.1039/c2ra20898a
– ident: e_1_2_8_5_1
  doi: 10.1126/science.abm4465
– ident: e_1_2_8_27_1
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_8_32_1
  publication-title: BioMed Res. Int.
– ident: e_1_2_8_45_1
  doi: 10.1039/C5GC01965F
– ident: e_1_2_8_40_1
  doi: 10.1021/om501015z
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.jmedchem.0c00754
– ident: e_1_2_8_34_1
  doi: 10.1016/S0022-328X(00)00389-2
– ident: e_1_2_8_16_1
  doi: 10.1039/C7RA01649B
– ident: e_1_2_8_9_1
  doi: 10.1039/b616918j
– ident: e_1_2_8_26_1
  doi: 10.1002/ejic.200900304
SSID ssj0009661
Score 2.4705148
Snippet The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aldehydes
Catalysts
Design of Experiments
Design optimization
Esters
Hydroformylation
Optimization
Parameter identification
Phosphines
Regioselectivity
Rhodium
Title Regioselective Hydroformylation of α,β‐Unsaturated Esters: Impact of Reaction Parameters & Reaction Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202401116
https://www.proquest.com/docview/3228939472
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oF734b0SR7MHoxcIyXUrrzSAETRRCJOHW7Ha3Ro1gLBzw5CP4KvogPIRP4mxL-fFiosf-7Kbd2Zn5ZjPzDSFHqqSY9KTAsERggBIq15KgpKVsxQPNBHBhjgaub5xGh191y925Kv6EH2J64GY0I7bXRsGFjIoz0lD90DcUhOiRUF0N53bJdgx5_kV7xh-FWD6OuLjNLUQq3ZS1kUFxcfiiV5pBzXnAGnuc-joR6bcmiSaPheFAFoLXHzSO__mZDbI2gaP0PNk_m2RJ97bISjXtArdNBm19d9-P4m45aBhpY6TQciPQHSVJdLQf0vHH6fjz6-2904sMTSiiV0VrhoAhOqOXcRWmeautkxoK2hImIcw8psezu020XU-TotAd0qnXbqsNa9KpwQpsNLVWRQqJgZPHgQcek7ISGtZmJwyZDnlZOC54mkNJuRUFrKwgAE9ypgz8U4AxuL1LMr1-T-8RyiHwQq1l4GqcTHJXlFxpQzl0QLu2YFlykkrKf04IOfyEehl8s4r-dBWzJJcK0p8oZuSj_UKE5vEKZAnEEvllFr921axOr_b_MuiArILpGsxM9V-OZAYvQ32IUGYg82QZeCsfb9pvlZbwpA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAXKLRVA2m7h4pe6mQz3jg2tyoNCpSfKiISN2vXu64AkSCcHMKJR-BV4EF4iD5JZ-w4gV4qtUf_7Mre2Zn9ZjTzDcAn27TSREaTW6LJQUlt6Bm0xrO-VYmTGpXm0MDhUdAbqP3TVplNyLUwBT_EPODGmpHba1ZwDkg3Fqyh7nzEHIR0JJG-Bi9gWRHaYP_rW3_BIEVoPve5lK88wiqnJW-jxMbz8c_PpQXYfApZ8zNndw1M-bVFqslFfTI29eTmDyLH__qdV7A6Q6Tia7GF1mHJDTdgpVM2gnsN4777eTbK8oY5ZBtFb2rJeBPWnRZ5dGKUisf7L48Pv27vBsOMmUIJwFrRZQ6GbEfs5YWY_FbfFWUU4ofmnDB-LLYXd4_JfF3O6kLfwGC3e9LpebNmDV7ik7X12kYb8p0ihSqJpDHtlImbgzSVLlUtHYQYOYVNG7YtypbFBCOjpGUEaJHccP8tVIajoXsHQmESpc6ZJHQ0mVGhbobGx1YaoAt9LavwuRRVfFVwcsQF-zLGvIrxfBWrUCslGc90M4vJhBFIi1Qbq4C5SP4yS9zdP-7Mrzb_ZdBHWOmdHB7EB3tH37fgJXITYcnFgDWojK8n7j0hm7H5kO_d3_gp8-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB3xkIANr3sR5ekFgs0NuBM3Tdih0qq8UXUrdRfZsY0A0SJaFrDiE_gV-BA-gi9hnDQtsEG6d5mHrcTjmTljzZwB2NBFzVWkJIUlkgIUq0NPoVae9rVIDJcopDsaODkN6k1x2Cq1PlXxZ_wQgwM3pxmpvXYKfqvtzpA01Fx1HAUheSRS12AUxkVAcMLBosaQQIrAfBpyCV94BFVaOW0jx52v47-6pSHW_IxYU5dTmwGZf2yWaXK9fd9T28njNx7H__mbWZju41G2l22gORgx7XmYrORt4H5Br2EuLjvdtF0OWUZWf9BkugnpPmRZdKxj2dvLn7fX96fnZrvreEIJvmpWdQwM3V12kJZhurcaJiuiYOfSZYS5x2xzePeMjNdNvyr0NzRr1b-Vutdv1eAlPtlar6ykosgpEiiSiCtVto62ObCWGytKMggxMgKLOixr5CWNCUZKcO3wn0YKwv0FGGt32mYRmMAkssaoJDQ0mRKhLIbKx5IN0IS-5AXYyiUV32aMHHHGvYyxW8V4sIoFWMkFGfc1sxuTASOIFokyFgBTifwwS1w9PKsMrpb-ZdA6TJzv1-Ljg9OjZZhC10GYu0rAFRjr3d2bVYI1PbWW7twPLZPymw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regioselective+Hydroformylation+of+%CE%B1%2C%CE%B2%E2%80%90Unsaturated+Esters%3A+Impact+of+Reaction+Parameters+%26+Reaction+Optimization&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Bork%2C+Hannah&rft.au=Gr%C3%B6ger%2C+Harald&rft.date=2025-05-27&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=28&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejoc.202401116&rft.externalDBID=10.1002%252Fejoc.202401116&rft.externalDocID=EJOC202401116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon