Regioselective Hydroformylation of α,β‐Unsaturated Esters: Impact of Reaction Parameters & Reaction Optimization
The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied...
Saved in:
Published in | European journal of organic chemistry Vol. 28; no. 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
27.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1434-193X 1099-0690 |
DOI | 10.1002/ejoc.202401116 |
Cover
Abstract | The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity.
The hydroformylation of methyl 4‐chlorocinnamate exhibited either high values for regioselectivity (96 %) or selectivity (78 %) for the β‐aldehyde 2 a depending on pressure, CO/H2 composition and temperature in a design of experiments approach. Expanding the substrate scope gave insights into the structure‐activity relationship revealing a significant electronic influence of the substituent on regioselectivity and selectivity for the β‐aldehyde. |
---|---|
AbstractList | The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as ( R )‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H 2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity. The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity. The hydroformylation of methyl 4‐chlorocinnamate exhibited either high values for regioselectivity (96 %) or selectivity (78 %) for the β‐aldehyde 2 a depending on pressure, CO/H2 composition and temperature in a design of experiments approach. Expanding the substrate scope gave insights into the structure‐activity relationship revealing a significant electronic influence of the substituent on regioselectivity and selectivity for the β‐aldehyde. The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for derivatization to pharmaceuticals such as (R)‐Baclofen or Pregabalin. Methyl 4‐chlorocinnamate as an α,β‐unsaturated ester has been rarely studied in hydroformylation, particularly with regard to a parameter screening for reaction optimization. In this work, regioselective hydroformylation of methyl 4‐chlorocinnamate to the desired β‐aldehyde utilizing a phosphine‐free Rh catalyst was investigated with a focus on identification of parameters with a significant effect on regioselectivity and selectivity to the β‐aldehyde amongst all products. Initially, reaction time, solvent, and catalyst loading were screened, followed by a reaction optimization using design of experiments (DoE). The reaction output was analyzed in relation to pressure, temperature and CO/H2 composition revealing that while either regioselectivity or overall selectivity (termed selectivity) can attain high values, none of the conditions leads to optimal levels of both regioselectivity and selectivity. As predicted by the model, the experimental results under two different conditions demonstrated excellent regioselectivity (96 %) with medium selectivity (57 %) and high selectivity (78 %) with good regioselectivity (93 %). Expansion of the substrate scope to substituted methyl cinnamate derivatives showed significant influence of the substituents and, thus, their electronic effects on regioselectivity and selectivity. |
Author | Bork, Hannah Gröger, Harald |
Author_xml | – sequence: 1 givenname: Hannah orcidid: 0009-0001-5009-3140 surname: Bork fullname: Bork, Hannah organization: Bielefeld University – sequence: 2 givenname: Harald orcidid: 0000-0001-8582-2107 surname: Gröger fullname: Gröger, Harald email: harald.groeger@uni-bielefeld.de organization: Bielefeld University |
BookMark | eNqFkM1Kw0AUhQepYFvdug4Irky9M5kmGXdSqq0UKsWCuzBJbiQlycSZqVJXPoKvog_Sh_BJTKzo0tX9O9-5cHqkU6kKCTmmMKAA7BxXKhkwYBwopf4e6VIQwgVfQKfpucddKrz7A9IzZgUAwvdpl9gFPuTKYIGJzZ_QmWxSrTKly00hba4qR2XO9v1s-_H5-rasjLRrLS2mzthY1ObCmZa1TGyrWmDTtMSt1LLE9uyc_m3ntc3L_OXb9JDsZ7IwePRT-2R5Nb4bTdzZ_Ho6upy5iUe57waxjIXwBWc8ERDHQZbGAfpZBpjxofRDJpAzmoZBymCYsoSJmEMKodcMYRh6fXKy8621elyjsdFKrXXVvIw8xkLhCR6wRjXYqRKtjNGYRbXOS6k3EYWoTTZqk41-k20AsQOe8wI3_6ij8c189Md-ARwAgp4 |
Cites_doi | 10.1016/j.pbb.2013.07.003 10.1155/2019/3941242 10.1021/om00029a060 10.1002/chem.200600914 10.1002/anie.201901673 10.1002/9783527677931 10.1021/acs.chemrev.2c00798 10.1021/om010760y 10.1246/bcsj.47.1698 10.1246/bcsj.50.2351 10.1002/ejoc.201500054 10.1023/A:1018841418819 10.1021/om00001a010 10.1002/ejoc.202401115 10.1002/adsc.201701449 10.1016/j.jcat.2021.06.001 10.1021/jo01097a026 10.1021/acs.joc.9b01577 10.1021/om00010a031 10.1016/S0040-4039(00)85762-7 10.1016/j.jorganchem.2009.04.003 10.1007/s40828-021-00154-x 10.1016/j.isci.2023.106183 10.1021/cs300470u 10.1039/C2DT31738A 10.1021/jacs.6b10297 10.1021/ja909619a 10.1039/D1CY00737H 10.1007/s10562-009-0001-4 10.1021/cr3001803 10.1016/0304-5102(89)80104-X 10.1021/ja00127a014 10.1021/ol036182u 10.1016/0022-328X(93)83039-X 10.1039/c2ra20898a 10.1126/science.abm4465 10.1039/C5GC01965F 10.1021/om501015z 10.1021/acs.jmedchem.0c00754 10.1016/S0022-328X(00)00389-2 10.1039/C7RA01649B 10.1039/b616918j 10.1002/ejic.200900304 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). European Journal of Organic Chemistry published by Wiley-VCH GmbH 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). European Journal of Organic Chemistry published by Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/ejoc.202401116 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0690 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ejoc_202401116 EJOC202401116 |
Genre | article |
GrantInformation_xml | – fundername: “Zentrales Innovationsprogramm Mittelstand (ZIM)” funderid: ZF4832701CR9 – fundername: German Federal Ministry for Economic Affairs and Energy – fundername: “Central Innovation Programme – fundername: ‘Sustainable Chemical Synthesis 2.0’ |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION LH4 1OB |
ID | FETCH-LOGICAL-c3146-7bab9969424c90bb7fdb7e6ff0ef45a6829e421d87d205d2c29b40d0835d28883 |
IEDL.DBID | DR2 |
ISSN | 1434-193X |
IngestDate | Wed Aug 13 06:09:39 EDT 2025 Thu Jul 03 08:47:18 EDT 2025 Thu May 29 06:17:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3146-7bab9969424c90bb7fdb7e6ff0ef45a6829e421d87d205d2c29b40d0835d28883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-5009-3140 0000-0001-8582-2107 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202401116 |
PQID | 3228939472 |
PQPubID | 986364 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3228939472 crossref_primary_10_1002_ejoc_202401116 wiley_primary_10_1002_ejoc_202401116_EJOC202401116 |
PublicationCentury | 2000 |
PublicationDate | May 27, 2025 |
PublicationDateYYYYMMDD | 2025-05-27 |
PublicationDate_xml | – month: 05 year: 2025 text: May 27, 2025 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of organic chemistry |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 34 2017; 7 2019; 2019 2013; 3 2018; 360 2006; 12 2020; 63 2021; 400 1995; 14 2023; 123 2013; 42 2019; 58 2009 1995; 117 2009; 694 2000; 70 2004; 6 1972 1970 2025 2009; 131 2016; 18 2022; 377 1982; 23 1974; 47 1993; 12 2000; 608 1989; 50 2012; 2 2012; 112 2019; 84 2021; 11 2000 2023; 26 2022; 8 2002; 21 1958; 23 2010; 132 2015; 2015 2007; 9 1977; 50 1986 2016 2016; 138 2013; 110 1993; 451 e_1_2_8_28_1 e_1_2_8_47_1 Eicher T. (e_1_2_8_21_1) 1986 e_1_2_8_26_1 e_1_2_8_49_1 Van Leeuwen P. W. N. M. (e_1_2_8_31_1) 2000 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 Bork H. (e_1_2_8_29_1) 2025 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 Exner O. (e_1_2_8_37_1) 1972 Ojima I. (e_1_2_8_24_1) 2000 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Uchimaru F. (e_1_2_8_20_1) 1970 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Silva R. H. N. (e_1_2_8_32_1) 2019; 2019 e_1_2_8_10_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 451 start-page: C18 year: 1993 end-page: C21 publication-title: J. Organomet. Chem. – start-page: 2776 year: 2009 end-page: 2788 publication-title: Eur. J. Inorg. Chem. – volume: 6 start-page: 221 year: 2004 end-page: 224 publication-title: Org. Lett. – volume: 117 start-page: 6007 year: 1995 end-page: 6014 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1698 year: 1974 end-page: 1703 publication-title: Bull. Chem. Soc. Jpn. – volume: 608 start-page: 115 year: 2000 end-page: 121 publication-title: J. Organomet. Chem. – volume: 26 year: 2023 publication-title: iScience – volume: 7 start-page: 14816 year: 2017 end-page: 14823 publication-title: RSC Adv. – volume: 2019 start-page: 1 year: 2019 end-page: 13 publication-title: BioMed Res. Int. – year: 1972 publication-title: The Hammett Equation-the Present Position – volume: 18 start-page: 686 year: 2016 end-page: 690 publication-title: Green Chem. – volume: 21 start-page: 3873 year: 2002 end-page: 3883 publication-title: Organometallics – volume: 131 start-page: 649 year: 2009 end-page: 655 publication-title: Catal. Lett. – year: 1986 – year: 2000 publication-title: Rhodium Catalyzed Hydroformylation – volume: 132 start-page: 10306 year: 2010 end-page: 10317 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2000 – volume: 377 start-page: 1223 year: 2022 end-page: 1227 publication-title: Science – volume: 110 start-page: 174 year: 2013 end-page: 184 publication-title: Pharmacol. Biochem. Behav. – volume: 2 start-page: 6135 year: 2012 end-page: 6139 publication-title: RSC Adv. – year: 2025 publication-title: Eur. J. Org. Chem. – volume: 400 start-page: 234 year: 2021 end-page: 243 publication-title: J. Catal. – volume: 14 start-page: 34 year: 1995 end-page: 43 publication-title: Organometallics – volume: 9 start-page: 792 year: 2007 end-page: 796 publication-title: Green Chem. – volume: 70 start-page: 149 year: 2000 end-page: 154 publication-title: Catal. Lett. – volume: 23 start-page: 420 year: 1958 end-page: 427 publication-title: J. Org. Chem. – volume: 42 start-page: 137 year: 2013 end-page: 142 publication-title: Dalton Trans. – volume: 14 start-page: 4644 year: 1995 end-page: 4650 publication-title: Organometallics – volume: 23 start-page: 4967 year: 1982 end-page: 4968 publication-title: Tetrahedron Lett. – volume: 112 start-page: 5675 year: 2012 end-page: 5732 publication-title: Chem. Rev. – volume: 694 start-page: 2548 year: 2009 end-page: 2554 publication-title: J. Organomet. Chem. – volume: 58 start-page: 7485 year: 2019 end-page: 7489 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 7978 year: 2006 end-page: 7986 publication-title: Chem. Eur. J. – volume: 12 start-page: 1954 year: 1993 end-page: 1959 publication-title: Organometallics – volume: 123 start-page: 3089 year: 2023 end-page: 3126 publication-title: Chem. Rev. – volume: 50 start-page: 2351 year: 1977 end-page: 2357 publication-title: Bull. Chem. Soc. Jpn. – year: 2016 – volume: 50 start-page: 1 year: 1989 end-page: 9 publication-title: J. Mol. Catal. – volume: 360 start-page: 768 year: 2018 end-page: 778 publication-title: Adv. Synth. Catal. – year: 1970 publication-title: JP 45016692 B – volume: 8 start-page: 1 year: 2022 end-page: 26 publication-title: ChemTexts – volume: 2019 year: 2019 publication-title: BioMed Res. Int. – volume: 138 start-page: 14864 year: 2016 end-page: 14867 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5388 year: 2021 end-page: 5411 publication-title: Catal. Sci. Technol. – volume: 2015 start-page: 3524 year: 2015 end-page: 3530 publication-title: Eur. J. Org. Chem. – volume: 63 start-page: 8408 year: 2020 end-page: 8418 publication-title: J. Med. Chem. – volume: 84 start-page: 12301 year: 2019 end-page: 12313 publication-title: J. Org. Chem. – volume: 3 start-page: 128 year: 2013 end-page: 137 publication-title: ACS Catal. – volume: 34 start-page: 841 year: 2015 end-page: 847 publication-title: Organometallics – ident: e_1_2_8_19_1 doi: 10.1016/j.pbb.2013.07.003 – ident: e_1_2_8_42_1 doi: 10.1155/2019/3941242 – ident: e_1_2_8_15_1 doi: 10.1021/om00029a060 – ident: e_1_2_8_25_1 doi: 10.1002/chem.200600914 – year: 1972 ident: e_1_2_8_37_1 publication-title: The Hammett Equation-the Present Position – ident: e_1_2_8_49_1 doi: 10.1002/anie.201901673 – ident: e_1_2_8_2_1 doi: 10.1002/9783527677931 – ident: e_1_2_8_30_1 doi: 10.1021/acs.chemrev.2c00798 – ident: e_1_2_8_38_1 doi: 10.1021/om010760y – ident: e_1_2_8_28_1 – ident: e_1_2_8_10_1 doi: 10.1246/bcsj.47.1698 – ident: e_1_2_8_14_1 doi: 10.1246/bcsj.50.2351 – year: 2000 ident: e_1_2_8_31_1 publication-title: Rhodium Catalyzed Hydroformylation – ident: e_1_2_8_47_1 doi: 10.1002/ejoc.201500054 – ident: e_1_2_8_17_1 doi: 10.1023/A:1018841418819 – start-page: 1 volume-title: Organic Reactions, Volume 56 year: 2000 ident: e_1_2_8_24_1 – ident: e_1_2_8_35_1 doi: 10.1021/om00001a010 – year: 2025 ident: e_1_2_8_29_1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202401115 – ident: e_1_2_8_48_1 doi: 10.1002/adsc.201701449 – ident: e_1_2_8_6_1 doi: 10.1016/j.jcat.2021.06.001 – year: 1970 ident: e_1_2_8_20_1 publication-title: JP 45016692 B – volume-title: Synthese, Gewinnung und Charakterisierung von Arzneistoffen: Ein Praktikumsbuch year: 1986 ident: e_1_2_8_21_1 – ident: e_1_2_8_36_1 doi: 10.1021/jo01097a026 – ident: e_1_2_8_46_1 doi: 10.1021/acs.joc.9b01577 – ident: e_1_2_8_41_1 doi: 10.1021/om00010a031 – ident: e_1_2_8_22_1 doi: 10.1016/S0040-4039(00)85762-7 – ident: e_1_2_8_43_1 doi: 10.1016/j.jorganchem.2009.04.003 – ident: e_1_2_8_3_1 doi: 10.1007/s40828-021-00154-x – ident: e_1_2_8_4_1 doi: 10.1016/j.isci.2023.106183 – ident: e_1_2_8_7_1 doi: 10.1021/cs300470u – ident: e_1_2_8_11_1 doi: 10.1039/C2DT31738A – ident: e_1_2_8_50_1 doi: 10.1021/jacs.6b10297 – ident: e_1_2_8_12_1 doi: 10.1021/ja909619a – ident: e_1_2_8_13_1 doi: 10.1039/D1CY00737H – ident: e_1_2_8_8_1 doi: 10.1007/s10562-009-0001-4 – ident: e_1_2_8_1_1 doi: 10.1021/cr3001803 – ident: e_1_2_8_39_1 doi: 10.1016/0304-5102(89)80104-X – ident: e_1_2_8_33_1 doi: 10.1021/ja00127a014 – ident: e_1_2_8_44_1 doi: 10.1021/ol036182u – ident: e_1_2_8_23_1 doi: 10.1016/0022-328X(93)83039-X – ident: e_1_2_8_51_1 doi: 10.1039/c2ra20898a – ident: e_1_2_8_5_1 doi: 10.1126/science.abm4465 – ident: e_1_2_8_27_1 – volume: 2019 start-page: 1 year: 2019 ident: e_1_2_8_32_1 publication-title: BioMed Res. Int. – ident: e_1_2_8_45_1 doi: 10.1039/C5GC01965F – ident: e_1_2_8_40_1 doi: 10.1021/om501015z – ident: e_1_2_8_18_1 doi: 10.1021/acs.jmedchem.0c00754 – ident: e_1_2_8_34_1 doi: 10.1016/S0022-328X(00)00389-2 – ident: e_1_2_8_16_1 doi: 10.1039/C7RA01649B – ident: e_1_2_8_9_1 doi: 10.1039/b616918j – ident: e_1_2_8_26_1 doi: 10.1002/ejic.200900304 |
SSID | ssj0009661 |
Score | 2.4705148 |
Snippet | The hydroformylation of α,β‐unsaturated esters represents a highly atom‐economical route towards β‐aldehydes with potential application as precursors for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aldehydes Catalysts Design of Experiments Design optimization Esters Hydroformylation Optimization Parameter identification Phosphines Regioselectivity Rhodium |
Title | Regioselective Hydroformylation of α,β‐Unsaturated Esters: Impact of Reaction Parameters & Reaction Optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejoc.202401116 https://www.proquest.com/docview/3228939472 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oF734b0SR7MHoxcIyXUrrzSAETRRCJOHW7Ha3Ro1gLBzw5CP4KvogPIRP4mxL-fFiosf-7Kbd2Zn5ZjPzDSFHqqSY9KTAsERggBIq15KgpKVsxQPNBHBhjgaub5xGh191y925Kv6EH2J64GY0I7bXRsGFjIoz0lD90DcUhOiRUF0N53bJdgx5_kV7xh-FWD6OuLjNLUQq3ZS1kUFxcfiiV5pBzXnAGnuc-joR6bcmiSaPheFAFoLXHzSO__mZDbI2gaP0PNk_m2RJ97bISjXtArdNBm19d9-P4m45aBhpY6TQciPQHSVJdLQf0vHH6fjz6-2904sMTSiiV0VrhoAhOqOXcRWmeautkxoK2hImIcw8psezu020XU-TotAd0qnXbqsNa9KpwQpsNLVWRQqJgZPHgQcek7ISGtZmJwyZDnlZOC54mkNJuRUFrKwgAE9ypgz8U4AxuL1LMr1-T-8RyiHwQq1l4GqcTHJXlFxpQzl0QLu2YFlykkrKf04IOfyEehl8s4r-dBWzJJcK0p8oZuSj_UKE5vEKZAnEEvllFr921axOr_b_MuiArILpGsxM9V-OZAYvQ32IUGYg82QZeCsfb9pvlZbwpA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAXKLRVA2m7h4pe6mQz3jg2tyoNCpSfKiISN2vXu64AkSCcHMKJR-BV4EF4iD5JZ-w4gV4qtUf_7Mre2Zn9ZjTzDcAn27TSREaTW6LJQUlt6Bm0xrO-VYmTGpXm0MDhUdAbqP3TVplNyLUwBT_EPODGmpHba1ZwDkg3Fqyh7nzEHIR0JJG-Bi9gWRHaYP_rW3_BIEVoPve5lK88wiqnJW-jxMbz8c_PpQXYfApZ8zNndw1M-bVFqslFfTI29eTmDyLH__qdV7A6Q6Tia7GF1mHJDTdgpVM2gnsN4777eTbK8oY5ZBtFb2rJeBPWnRZ5dGKUisf7L48Pv27vBsOMmUIJwFrRZQ6GbEfs5YWY_FbfFWUU4ofmnDB-LLYXd4_JfF3O6kLfwGC3e9LpebNmDV7ik7X12kYb8p0ihSqJpDHtlImbgzSVLlUtHYQYOYVNG7YtypbFBCOjpGUEaJHccP8tVIajoXsHQmESpc6ZJHQ0mVGhbobGx1YaoAt9LavwuRRVfFVwcsQF-zLGvIrxfBWrUCslGc90M4vJhBFIi1Qbq4C5SP4yS9zdP-7Mrzb_ZdBHWOmdHB7EB3tH37fgJXITYcnFgDWojK8n7j0hm7H5kO_d3_gp8-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB3xkIANr3sR5ekFgs0NuBM3Tdih0qq8UXUrdRfZsY0A0SJaFrDiE_gV-BA-gi9hnDQtsEG6d5mHrcTjmTljzZwB2NBFzVWkJIUlkgIUq0NPoVae9rVIDJcopDsaODkN6k1x2Cq1PlXxZ_wQgwM3pxmpvXYKfqvtzpA01Fx1HAUheSRS12AUxkVAcMLBosaQQIrAfBpyCV94BFVaOW0jx52v47-6pSHW_IxYU5dTmwGZf2yWaXK9fd9T28njNx7H__mbWZju41G2l22gORgx7XmYrORt4H5Br2EuLjvdtF0OWUZWf9BkugnpPmRZdKxj2dvLn7fX96fnZrvreEIJvmpWdQwM3V12kJZhurcaJiuiYOfSZYS5x2xzePeMjNdNvyr0NzRr1b-Vutdv1eAlPtlar6ykosgpEiiSiCtVto62ObCWGytKMggxMgKLOixr5CWNCUZKcO3wn0YKwv0FGGt32mYRmMAkssaoJDQ0mRKhLIbKx5IN0IS-5AXYyiUV32aMHHHGvYyxW8V4sIoFWMkFGfc1sxuTASOIFokyFgBTifwwS1w9PKsMrpb-ZdA6TJzv1-Ljg9OjZZhC10GYu0rAFRjr3d2bVYI1PbWW7twPLZPymw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regioselective+Hydroformylation+of+%CE%B1%2C%CE%B2%E2%80%90Unsaturated+Esters%3A+Impact+of+Reaction+Parameters+%26+Reaction+Optimization&rft.jtitle=European+journal+of+organic+chemistry&rft.au=Bork%2C+Hannah&rft.au=Gr%C3%B6ger%2C+Harald&rft.date=2025-05-27&rft.issn=1434-193X&rft.eissn=1099-0690&rft.volume=28&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejoc.202401116&rft.externalDBID=10.1002%252Fejoc.202401116&rft.externalDocID=EJOC202401116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-193X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-193X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-193X&client=summon |