A Deep Neural Network-Based Assistive Decision Method for Financial Risk Prediction in Carbon Trading Market

The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this p...

Full description

Saved in:
Bibliographic Details
Published inJournal of circuits, systems, and computers Vol. 33; no. 8
Main Authors Luo, Ji, Zhuo, Wuyang, Xu, Binfei
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 30.05.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-1266
1793-6454
DOI10.1142/S0218126624501536

Cover

Loading…
Abstract The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this paper, a deep neural network-based assistive decision model for financial risk prediction in carbon trading market is proposed for this purpose. Specifically, the dynamic risk spillover effects of domestic and international carbon trading markets are studied, and a frontier time-varying model is utilized to measure the risk spillover effects. Then, the deep neural network is used for quantitative research and to construct an intelligent decision scheme that outputs financial risk prediction results. Four perspectives, energy price, climate environment, carbon market price, and macroeconomics, are selected as the input to analyze the influence factors of carbon emission rights price. Finally, several linear regression models are adopted as the baseline methods for comparison, and experimental results show that the proposed method can achieve better prediction performance compared with baseline methods.
AbstractList The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this paper, a deep neural network-based assistive decision model for financial risk prediction in carbon trading market is proposed for this purpose. Specifically, the dynamic risk spillover effects of domestic and international carbon trading markets are studied, and a frontier time-varying model is utilized to measure the risk spillover effects. Then, the deep neural network is used for quantitative research and to construct an intelligent decision scheme that outputs financial risk prediction results. Four perspectives, energy price, climate environment, carbon market price, and macroeconomics, are selected as the input to analyze the influence factors of carbon emission rights price. Finally, several linear regression models are adopted as the baseline methods for comparison, and experimental results show that the proposed method can achieve better prediction performance compared with baseline methods.
Author Luo, Ji
Zhuo, Wuyang
Xu, Binfei
Author_xml – sequence: 1
  givenname: Ji
  surname: Luo
  fullname: Luo, Ji
– sequence: 2
  givenname: Wuyang
  surname: Zhuo
  fullname: Zhuo, Wuyang
– sequence: 3
  givenname: Binfei
  surname: Xu
  fullname: Xu, Binfei
BookMark eNp9kEFLAzEQhYMoWKs_wFvA82qSTbK7x1qtCq2K1vOSZmc17ZrUJFX892apeFDw9Abe-2aYd4B2rbOA0DElp5RydvZIGC0pk5JxQajI5Q4a0KLKM8kF30WD3s56fx8dhLAkhHBRkgHqRvgCYI1vYeNVlyR-OL_KzlWABo9CMCGad0gZbYJxFs8gvrgGt87jibHKapOoBxNW-N5DY3TsQ8bisfKLNM29aox9xjPlVxAP0V6rugBH3zpET5PL-fg6m95d3YxH00znlMuMaqalhkaxBSccGFSQ85JQKSvZVDktSalFVRQMCl20VcFawvp3WiFURYjIh-hku3ft3dsGQqyXbuNtOlnnVIq0h-UypYptSnsXgoe21iaq_oHolelqSuq-2vpPtYmkv8i1N6_Kf_7LkC2T-u2aoA3YaFqjf9C_yBf6c4oj
CitedBy_id crossref_primary_10_1186_s40854_024_00696_2
crossref_primary_10_1007_s11846_024_00761_1
crossref_primary_10_1109_ACCESS_2024_3390938
crossref_primary_10_1007_s10479_025_06524_9
crossref_primary_10_1080_01605682_2025_2477665
crossref_primary_10_1016_j_esr_2024_101547
crossref_primary_10_1111_1477_8947_12473
crossref_primary_10_1016_j_asoc_2024_112539
crossref_primary_10_1371_journal_pone_0299322
crossref_primary_10_1111_1477_8947_12526
crossref_primary_10_3390_su16114338
crossref_primary_10_1109_ACCESS_2025_3530242
crossref_primary_10_3389_fenvs_2024_1509564
crossref_primary_10_1007_s12559_025_10422_4
crossref_primary_10_1007_s11277_024_11018_1
crossref_primary_10_1016_j_esr_2024_101590
crossref_primary_10_3390_math12193066
crossref_primary_10_1007_s11277_024_11240_x
crossref_primary_10_1007_s11356_024_32216_1
crossref_primary_10_1111_1477_8947_12560
crossref_primary_10_1038_s41598_024_54181_y
crossref_primary_10_1111_1477_8947_12561
crossref_primary_10_1016_j_heliyon_2024_e37207
crossref_primary_10_7717_peerj_cs_2473
crossref_primary_10_1007_s44196_024_00664_9
crossref_primary_10_1002_cpe_70031
crossref_primary_10_1007_s00180_025_01614_5
crossref_primary_10_1016_j_jenvman_2024_121116
crossref_primary_10_1093_ijlct_ctaf023
crossref_primary_10_1007_s00477_024_02696_1
crossref_primary_10_1038_s41598_024_62762_0
crossref_primary_10_1016_j_jclepro_2025_145279
crossref_primary_10_1016_j_solener_2024_112692
crossref_primary_10_7717_peerj_cs_1969
crossref_primary_10_1016_j_engappai_2025_110202
crossref_primary_10_7717_peerj_cs_1931
crossref_primary_10_1007_s10098_025_03140_w
crossref_primary_10_3389_fenvs_2024_1463833
crossref_primary_10_1002_ese3_1746
crossref_primary_10_1016_j_resourpol_2024_105086
crossref_primary_10_3390_su17031094
crossref_primary_10_1007_s13132_025_02694_w
crossref_primary_10_3390_su16167127
crossref_primary_10_3390_su16219284
crossref_primary_10_3390_su16072897
crossref_primary_10_3390_su16219281
crossref_primary_10_1016_j_jenvman_2024_123568
crossref_primary_10_1016_j_resourpol_2024_104706
crossref_primary_10_1080_15567249_2024_2419956
crossref_primary_10_1007_s10668_024_05504_6
crossref_primary_10_1111_exsy_13563
crossref_primary_10_1111_exsy_70018
crossref_primary_10_3390_axioms13020109
crossref_primary_10_3390_w16121749
crossref_primary_10_1007_s42823_024_00841_y
crossref_primary_10_1080_19942060_2024_2327437
crossref_primary_10_1007_s11356_024_32529_1
crossref_primary_10_1515_econ_2022_0086
crossref_primary_10_1080_19942060_2024_2322509
crossref_primary_10_1111_1477_8947_12424
Cites_doi 10.1016/j.eap.2022.02.010
10.1109/TII.2021.3073128
10.1109/JIOT.2022.3202628
10.1109/TCSS.2022.3212864
10.1109/TIFS.2023.3268843
10.1016/j.procs.2022.01.152
10.1016/j.oneear.2021.06.006
10.1177/0308518X18819004
10.1177/0309132519856260
10.1080/14693062.2020.1785380
10.1016/j.future.2022.10.029
10.1109/TITS.2022.3197424
10.1016/j.apm.2021.03.020
10.1109/TCSS.2022.3222682
10.1109/ACCESS.2019.2897760
10.1016/j.psep.2022.08.011
10.1145/3532093
10.1109/ICDCECE57866.2023.10150834
10.1080/17583004.2019.1686930
10.1016/j.cities.2022.103971
10.1007/s00500-021-05775-5
10.1016/j.future.2022.10.032
10.1016/j.comcom.2021.08.014
10.1109/TVT.2023.3265300
10.1109/TIV.2023.3237960
10.1080/17583004.2020.1755597
10.1038/s41586-021-03723-9
10.1002/mde.3510
10.15244/pjoes/114261
10.1109/JSYST.2023.3262255
10.1007/s10644-021-09353-5
ContentType Journal Article
Copyright 2024, World Scientific Publishing Company
2024. World Scientific Publishing Company
Copyright_xml – notice: 2024, World Scientific Publishing Company
– notice: 2024. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218126624501536
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1793-6454
ExternalDocumentID 10_1142_S0218126624501536
S0218126624501536
GroupedDBID .DC
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RWJ
WSC
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3146-1c2c6ceda2b404e2e9e348016696d931808c59772e7c7f972f020458f55a90053
ISSN 0218-1266
IngestDate Mon Jun 30 13:00:39 EDT 2025
Tue Jul 01 03:09:48 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Fri Aug 23 08:19:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep neural network
enterprise management
assistive decision
financial risk
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3146-1c2c6ceda2b404e2e9e348016696d931808c59772e7c7f972f020458f55a90053
Notes This paper was recommended by Regional Editor Takuro Sato.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-4934-769X
PQID 3165669236
PQPubID 2049873
ParticipantIDs crossref_citationtrail_10_1142_S0218126624501536
worldscientific_primary_S0218126624501536
crossref_primary_10_1142_S0218126624501536
proquest_journals_3165669236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240530
2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 20240530
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of circuits, systems, and computers
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Yue Z. (S0218126624501536BIB020) 2021; 2
Zhu X. (S0218126624501536BIB001) 2023
S0218126624501536BIB008
S0218126624501536BIB009
S0218126624501536BIB006
S0218126624501536BIB028
S0218126624501536BIB007
S0218126624501536BIB029
S0218126624501536BIB004
S0218126624501536BIB026
S0218126624501536BIB005
S0218126624501536BIB027
S0218126624501536BIB002
S0218126624501536BIB024
S0218126624501536BIB003
S0218126624501536BIB025
Wang J. (S0218126624501536BIB033) 2020; 6
S0218126624501536BIB022
S0218126624501536BIB023
S0218126624501536BIB021
S0218126624501536BIB019
S0218126624501536BIB017
S0218126624501536BIB018
S0218126624501536BIB015
S0218126624501536BIB016
S0218126624501536BIB013
S0218126624501536BIB014
S0218126624501536BIB011
S0218126624501536BIB012
S0218126624501536BIB034
S0218126624501536BIB031
S0218126624501536BIB010
S0218126624501536BIB032
S0218126624501536BIB030
References_xml – ident: S0218126624501536BIB015
  doi: 10.1016/j.eap.2022.02.010
– volume: 2
  start-page: 127
  year: 2021
  ident: S0218126624501536BIB020
  publication-title: Front. Econ. Manag.
– ident: S0218126624501536BIB027
  doi: 10.1109/TII.2021.3073128
– volume: 6
  start-page: 31
  year: 2020
  ident: S0218126624501536BIB033
  publication-title: CSEE J. Power Energy Syst.
– ident: S0218126624501536BIB008
  doi: 10.1109/JIOT.2022.3202628
– ident: S0218126624501536BIB009
  doi: 10.1109/TCSS.2022.3212864
– ident: S0218126624501536BIB011
  doi: 10.1109/TIFS.2023.3268843
– ident: S0218126624501536BIB023
  doi: 10.1016/j.procs.2022.01.152
– ident: S0218126624501536BIB034
  doi: 10.1016/j.oneear.2021.06.006
– ident: S0218126624501536BIB029
  doi: 10.1177/0308518X18819004
– ident: S0218126624501536BIB030
  doi: 10.1177/0309132519856260
– ident: S0218126624501536BIB024
  doi: 10.1080/14693062.2020.1785380
– ident: S0218126624501536BIB012
  doi: 10.1016/j.future.2022.10.029
– year: 2023
  ident: S0218126624501536BIB001
  publication-title: IEEE Internet Things J.
– ident: S0218126624501536BIB025
  doi: 10.1109/TITS.2022.3197424
– ident: S0218126624501536BIB021
  doi: 10.1016/j.apm.2021.03.020
– ident: S0218126624501536BIB005
  doi: 10.1109/TCSS.2022.3222682
– ident: S0218126624501536BIB031
  doi: 10.1109/ACCESS.2019.2897760
– ident: S0218126624501536BIB014
  doi: 10.1016/j.psep.2022.08.011
– ident: S0218126624501536BIB013
  doi: 10.1145/3532093
– ident: S0218126624501536BIB026
  doi: 10.1109/ICDCECE57866.2023.10150834
– ident: S0218126624501536BIB018
  doi: 10.1080/17583004.2019.1686930
– ident: S0218126624501536BIB010
  doi: 10.1016/j.cities.2022.103971
– ident: S0218126624501536BIB022
  doi: 10.1007/s00500-021-05775-5
– ident: S0218126624501536BIB007
  doi: 10.1016/j.future.2022.10.032
– ident: S0218126624501536BIB004
  doi: 10.1016/j.comcom.2021.08.014
– ident: S0218126624501536BIB003
  doi: 10.1109/TVT.2023.3265300
– ident: S0218126624501536BIB006
  doi: 10.1109/TIV.2023.3237960
– ident: S0218126624501536BIB019
  doi: 10.1080/17583004.2020.1755597
– ident: S0218126624501536BIB028
  doi: 10.1038/s41586-021-03723-9
– ident: S0218126624501536BIB032
  doi: 10.1002/mde.3510
– ident: S0218126624501536BIB017
  doi: 10.15244/pjoes/114261
– ident: S0218126624501536BIB002
  doi: 10.1109/JSYST.2023.3262255
– ident: S0218126624501536BIB016
  doi: 10.1007/s10644-021-09353-5
SSID ssj0004580
Score 2.5886197
Snippet The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Carbon
Emission analysis
Emissions trading
Neural networks
Regression models
Risk
Title A Deep Neural Network-Based Assistive Decision Method for Financial Risk Prediction in Carbon Trading Market
URI http://www.worldscientific.com/doi/abs/10.1142/S0218126624501536
https://www.proquest.com/docview/3165669236
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoHDxKcYDOQDF6g8Mid2k2MpqybUlgla0VuUOI4UaeqmNjnAmT-c92znY2s3bVyiyE2cyu_n95793vuZkA9p5g-4CBXLs0SyANY9DDmgmQhD30u8zE9NHfd0Js8WwbelWPZ6fztZS1WZHqs_O-tK_keq0AZyxSrZB0i26RQa4B7kC1eQMFzvJeMhqAt91UeCDRjpmc3oZl_AMGU47jh9TV6QPUanPzWnRZvEwnFDtPEDc8vP1xivqfMeR8k6hTswY6biZWoKo2_xYlWxVlVRGjRYVuhNnRCq3IERjdc-qWyYp2h3q23Lr-p34iwotC4rAzpMEyu6mxI8MPF0r1V9JhHIaCeT8dTdUxtdHvfPS210X5u5hPoOvA12wqVjxrb6GNQHQ9KxrsK2zBkOmOFuOxBwE4k2DoyUPBDg9vg7OLdn3-PxYjKJ56fL-SOyz2GxAep9f_h1OvnZYZ0P7V6d-4MuOg4f-bz1iev-TbtoOTAMuJtmSDpezPwpOXCCo0OLpWekp1fPyZMOKeULcjGkiCpqUUWvoYo2qKI1qqhFFQVU0QZVFFFFW1TRYkUtqqhDFbWoekkW49P56Iy5MzmY8sGoshPFlVQ6S3gaeIHmOtI-MhBJGcksAgPhhQopDbkeqEEeDXiO1dcizIVIItT4r8je6nKlXxMq_CwSPEhVpsGNxIB5pJQMI5VkMgdbc0i8eiRj5Qjr8dyUi9gW0_N4a_APyafmlSvL1nLXw0e1eGI3qTexj2xUElY98PPHGyJrutzq6s3dXb0lj9tJckT2ynWl34EvW6bvHdT-AVuDmuc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Neural+Network-Based+Assistive+Decision+Method+for+Financial+Risk+Prediction+in+Carbon+Trading+Market&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Luo%2C+Ji&rft.au=Zhuo%2C+Wuyang&rft.au=Xu%2C+Binfei&rft.date=2024-05-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1142%2FS0218126624501536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon