A Deep Neural Network-Based Assistive Decision Method for Financial Risk Prediction in Carbon Trading Market
The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this p...
Saved in:
Published in | Journal of circuits, systems, and computers Vol. 33; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
30.05.2024
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0218-1266 1793-6454 |
DOI | 10.1142/S0218126624501536 |
Cover
Loading…
Abstract | The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this paper, a deep neural network-based assistive decision model for financial risk prediction in carbon trading market is proposed for this purpose. Specifically, the dynamic risk spillover effects of domestic and international carbon trading markets are studied, and a frontier time-varying model is utilized to measure the risk spillover effects. Then, the deep neural network is used for quantitative research and to construct an intelligent decision scheme that outputs financial risk prediction results. Four perspectives, energy price, climate environment, carbon market price, and macroeconomics, are selected as the input to analyze the influence factors of carbon emission rights price. Finally, several linear regression models are adopted as the baseline methods for comparison, and experimental results show that the proposed method can achieve better prediction performance compared with baseline methods. |
---|---|
AbstractList | The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to conduct carbon trading activities, it is extremely necessary to fully grasp the price of carbon trading in the future period. Thus in this paper, a deep neural network-based assistive decision model for financial risk prediction in carbon trading market is proposed for this purpose. Specifically, the dynamic risk spillover effects of domestic and international carbon trading markets are studied, and a frontier time-varying model is utilized to measure the risk spillover effects. Then, the deep neural network is used for quantitative research and to construct an intelligent decision scheme that outputs financial risk prediction results. Four perspectives, energy price, climate environment, carbon market price, and macroeconomics, are selected as the input to analyze the influence factors of carbon emission rights price. Finally, several linear regression models are adopted as the baseline methods for comparison, and experimental results show that the proposed method can achieve better prediction performance compared with baseline methods. |
Author | Luo, Ji Zhuo, Wuyang Xu, Binfei |
Author_xml | – sequence: 1 givenname: Ji surname: Luo fullname: Luo, Ji – sequence: 2 givenname: Wuyang surname: Zhuo fullname: Zhuo, Wuyang – sequence: 3 givenname: Binfei surname: Xu fullname: Xu, Binfei |
BookMark | eNp9kEFLAzEQhYMoWKs_wFvA82qSTbK7x1qtCq2K1vOSZmc17ZrUJFX892apeFDw9Abe-2aYd4B2rbOA0DElp5RydvZIGC0pk5JxQajI5Q4a0KLKM8kF30WD3s56fx8dhLAkhHBRkgHqRvgCYI1vYeNVlyR-OL_KzlWABo9CMCGad0gZbYJxFs8gvrgGt87jibHKapOoBxNW-N5DY3TsQ8bisfKLNM29aox9xjPlVxAP0V6rugBH3zpET5PL-fg6m95d3YxH00znlMuMaqalhkaxBSccGFSQ85JQKSvZVDktSalFVRQMCl20VcFawvp3WiFURYjIh-hku3ft3dsGQqyXbuNtOlnnVIq0h-UypYptSnsXgoe21iaq_oHolelqSuq-2vpPtYmkv8i1N6_Kf_7LkC2T-u2aoA3YaFqjf9C_yBf6c4oj |
CitedBy_id | crossref_primary_10_1186_s40854_024_00696_2 crossref_primary_10_1007_s11846_024_00761_1 crossref_primary_10_1109_ACCESS_2024_3390938 crossref_primary_10_1007_s10479_025_06524_9 crossref_primary_10_1080_01605682_2025_2477665 crossref_primary_10_1016_j_esr_2024_101547 crossref_primary_10_1111_1477_8947_12473 crossref_primary_10_1016_j_asoc_2024_112539 crossref_primary_10_1371_journal_pone_0299322 crossref_primary_10_1111_1477_8947_12526 crossref_primary_10_3390_su16114338 crossref_primary_10_1109_ACCESS_2025_3530242 crossref_primary_10_3389_fenvs_2024_1509564 crossref_primary_10_1007_s12559_025_10422_4 crossref_primary_10_1007_s11277_024_11018_1 crossref_primary_10_1016_j_esr_2024_101590 crossref_primary_10_3390_math12193066 crossref_primary_10_1007_s11277_024_11240_x crossref_primary_10_1007_s11356_024_32216_1 crossref_primary_10_1111_1477_8947_12560 crossref_primary_10_1038_s41598_024_54181_y crossref_primary_10_1111_1477_8947_12561 crossref_primary_10_1016_j_heliyon_2024_e37207 crossref_primary_10_7717_peerj_cs_2473 crossref_primary_10_1007_s44196_024_00664_9 crossref_primary_10_1002_cpe_70031 crossref_primary_10_1007_s00180_025_01614_5 crossref_primary_10_1016_j_jenvman_2024_121116 crossref_primary_10_1093_ijlct_ctaf023 crossref_primary_10_1007_s00477_024_02696_1 crossref_primary_10_1038_s41598_024_62762_0 crossref_primary_10_1016_j_jclepro_2025_145279 crossref_primary_10_1016_j_solener_2024_112692 crossref_primary_10_7717_peerj_cs_1969 crossref_primary_10_1016_j_engappai_2025_110202 crossref_primary_10_7717_peerj_cs_1931 crossref_primary_10_1007_s10098_025_03140_w crossref_primary_10_3389_fenvs_2024_1463833 crossref_primary_10_1002_ese3_1746 crossref_primary_10_1016_j_resourpol_2024_105086 crossref_primary_10_3390_su17031094 crossref_primary_10_1007_s13132_025_02694_w crossref_primary_10_3390_su16167127 crossref_primary_10_3390_su16219284 crossref_primary_10_3390_su16072897 crossref_primary_10_3390_su16219281 crossref_primary_10_1016_j_jenvman_2024_123568 crossref_primary_10_1016_j_resourpol_2024_104706 crossref_primary_10_1080_15567249_2024_2419956 crossref_primary_10_1007_s10668_024_05504_6 crossref_primary_10_1111_exsy_13563 crossref_primary_10_1111_exsy_70018 crossref_primary_10_3390_axioms13020109 crossref_primary_10_3390_w16121749 crossref_primary_10_1007_s42823_024_00841_y crossref_primary_10_1080_19942060_2024_2327437 crossref_primary_10_1007_s11356_024_32529_1 crossref_primary_10_1515_econ_2022_0086 crossref_primary_10_1080_19942060_2024_2322509 crossref_primary_10_1111_1477_8947_12424 |
Cites_doi | 10.1016/j.eap.2022.02.010 10.1109/TII.2021.3073128 10.1109/JIOT.2022.3202628 10.1109/TCSS.2022.3212864 10.1109/TIFS.2023.3268843 10.1016/j.procs.2022.01.152 10.1016/j.oneear.2021.06.006 10.1177/0308518X18819004 10.1177/0309132519856260 10.1080/14693062.2020.1785380 10.1016/j.future.2022.10.029 10.1109/TITS.2022.3197424 10.1016/j.apm.2021.03.020 10.1109/TCSS.2022.3222682 10.1109/ACCESS.2019.2897760 10.1016/j.psep.2022.08.011 10.1145/3532093 10.1109/ICDCECE57866.2023.10150834 10.1080/17583004.2019.1686930 10.1016/j.cities.2022.103971 10.1007/s00500-021-05775-5 10.1016/j.future.2022.10.032 10.1016/j.comcom.2021.08.014 10.1109/TVT.2023.3265300 10.1109/TIV.2023.3237960 10.1080/17583004.2020.1755597 10.1038/s41586-021-03723-9 10.1002/mde.3510 10.15244/pjoes/114261 10.1109/JSYST.2023.3262255 10.1007/s10644-021-09353-5 |
ContentType | Journal Article |
Copyright | 2024, World Scientific Publishing Company 2024. World Scientific Publishing Company |
Copyright_xml | – notice: 2024, World Scientific Publishing Company – notice: 2024. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0218126624501536 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1793-6454 |
ExternalDocumentID | 10_1142_S0218126624501536 S0218126624501536 |
GroupedDBID | .DC 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RWJ WSC AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3146-1c2c6ceda2b404e2e9e348016696d931808c59772e7c7f972f020458f55a90053 |
ISSN | 0218-1266 |
IngestDate | Mon Jun 30 13:00:39 EDT 2025 Tue Jul 01 03:09:48 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Fri Aug 23 08:19:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep neural network enterprise management assistive decision financial risk |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3146-1c2c6ceda2b404e2e9e348016696d931808c59772e7c7f972f020458f55a90053 |
Notes | This paper was recommended by Regional Editor Takuro Sato. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-4934-769X |
PQID | 3165669236 |
PQPubID | 2049873 |
ParticipantIDs | crossref_citationtrail_10_1142_S0218126624501536 worldscientific_primary_S0218126624501536 crossref_primary_10_1142_S0218126624501536 proquest_journals_3165669236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240530 2024-05-30 |
PublicationDateYYYYMMDD | 2024-05-30 |
PublicationDate_xml | – month: 05 year: 2024 text: 20240530 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of circuits, systems, and computers |
PublicationYear | 2024 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Yue Z. (S0218126624501536BIB020) 2021; 2 Zhu X. (S0218126624501536BIB001) 2023 S0218126624501536BIB008 S0218126624501536BIB009 S0218126624501536BIB006 S0218126624501536BIB028 S0218126624501536BIB007 S0218126624501536BIB029 S0218126624501536BIB004 S0218126624501536BIB026 S0218126624501536BIB005 S0218126624501536BIB027 S0218126624501536BIB002 S0218126624501536BIB024 S0218126624501536BIB003 S0218126624501536BIB025 Wang J. (S0218126624501536BIB033) 2020; 6 S0218126624501536BIB022 S0218126624501536BIB023 S0218126624501536BIB021 S0218126624501536BIB019 S0218126624501536BIB017 S0218126624501536BIB018 S0218126624501536BIB015 S0218126624501536BIB016 S0218126624501536BIB013 S0218126624501536BIB014 S0218126624501536BIB011 S0218126624501536BIB012 S0218126624501536BIB034 S0218126624501536BIB031 S0218126624501536BIB010 S0218126624501536BIB032 S0218126624501536BIB030 |
References_xml | – ident: S0218126624501536BIB015 doi: 10.1016/j.eap.2022.02.010 – volume: 2 start-page: 127 year: 2021 ident: S0218126624501536BIB020 publication-title: Front. Econ. Manag. – ident: S0218126624501536BIB027 doi: 10.1109/TII.2021.3073128 – volume: 6 start-page: 31 year: 2020 ident: S0218126624501536BIB033 publication-title: CSEE J. Power Energy Syst. – ident: S0218126624501536BIB008 doi: 10.1109/JIOT.2022.3202628 – ident: S0218126624501536BIB009 doi: 10.1109/TCSS.2022.3212864 – ident: S0218126624501536BIB011 doi: 10.1109/TIFS.2023.3268843 – ident: S0218126624501536BIB023 doi: 10.1016/j.procs.2022.01.152 – ident: S0218126624501536BIB034 doi: 10.1016/j.oneear.2021.06.006 – ident: S0218126624501536BIB029 doi: 10.1177/0308518X18819004 – ident: S0218126624501536BIB030 doi: 10.1177/0309132519856260 – ident: S0218126624501536BIB024 doi: 10.1080/14693062.2020.1785380 – ident: S0218126624501536BIB012 doi: 10.1016/j.future.2022.10.029 – year: 2023 ident: S0218126624501536BIB001 publication-title: IEEE Internet Things J. – ident: S0218126624501536BIB025 doi: 10.1109/TITS.2022.3197424 – ident: S0218126624501536BIB021 doi: 10.1016/j.apm.2021.03.020 – ident: S0218126624501536BIB005 doi: 10.1109/TCSS.2022.3222682 – ident: S0218126624501536BIB031 doi: 10.1109/ACCESS.2019.2897760 – ident: S0218126624501536BIB014 doi: 10.1016/j.psep.2022.08.011 – ident: S0218126624501536BIB013 doi: 10.1145/3532093 – ident: S0218126624501536BIB026 doi: 10.1109/ICDCECE57866.2023.10150834 – ident: S0218126624501536BIB018 doi: 10.1080/17583004.2019.1686930 – ident: S0218126624501536BIB010 doi: 10.1016/j.cities.2022.103971 – ident: S0218126624501536BIB022 doi: 10.1007/s00500-021-05775-5 – ident: S0218126624501536BIB007 doi: 10.1016/j.future.2022.10.032 – ident: S0218126624501536BIB004 doi: 10.1016/j.comcom.2021.08.014 – ident: S0218126624501536BIB003 doi: 10.1109/TVT.2023.3265300 – ident: S0218126624501536BIB006 doi: 10.1109/TIV.2023.3237960 – ident: S0218126624501536BIB019 doi: 10.1080/17583004.2020.1755597 – ident: S0218126624501536BIB028 doi: 10.1038/s41586-021-03723-9 – ident: S0218126624501536BIB032 doi: 10.1002/mde.3510 – ident: S0218126624501536BIB017 doi: 10.15244/pjoes/114261 – ident: S0218126624501536BIB002 doi: 10.1109/JSYST.2023.3262255 – ident: S0218126624501536BIB016 doi: 10.1007/s10644-021-09353-5 |
SSID | ssj0004580 |
Score | 2.5886197 |
Snippet | The price of carbon emission rights in the market fluctuates greatly due to various factors from economy, finance, and climate. For an enterprise that needs to... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Carbon Emission analysis Emissions trading Neural networks Regression models Risk |
Title | A Deep Neural Network-Based Assistive Decision Method for Financial Risk Prediction in Carbon Trading Market |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0218126624501536 https://www.proquest.com/docview/3165669236 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoHDxKcYDOQDF6g8Mid2k2MpqybUlgla0VuUOI4UaeqmNjnAmT-c92znY2s3bVyiyE2cyu_n95793vuZkA9p5g-4CBXLs0SyANY9DDmgmQhD30u8zE9NHfd0Js8WwbelWPZ6fztZS1WZHqs_O-tK_keq0AZyxSrZB0i26RQa4B7kC1eQMFzvJeMhqAt91UeCDRjpmc3oZl_AMGU47jh9TV6QPUanPzWnRZvEwnFDtPEDc8vP1xivqfMeR8k6hTswY6biZWoKo2_xYlWxVlVRGjRYVuhNnRCq3IERjdc-qWyYp2h3q23Lr-p34iwotC4rAzpMEyu6mxI8MPF0r1V9JhHIaCeT8dTdUxtdHvfPS210X5u5hPoOvA12wqVjxrb6GNQHQ9KxrsK2zBkOmOFuOxBwE4k2DoyUPBDg9vg7OLdn3-PxYjKJ56fL-SOyz2GxAep9f_h1OvnZYZ0P7V6d-4MuOg4f-bz1iev-TbtoOTAMuJtmSDpezPwpOXCCo0OLpWekp1fPyZMOKeULcjGkiCpqUUWvoYo2qKI1qqhFFQVU0QZVFFFFW1TRYkUtqqhDFbWoekkW49P56Iy5MzmY8sGoshPFlVQ6S3gaeIHmOtI-MhBJGcksAgPhhQopDbkeqEEeDXiO1dcizIVIItT4r8je6nKlXxMq_CwSPEhVpsGNxIB5pJQMI5VkMgdbc0i8eiRj5Qjr8dyUi9gW0_N4a_APyafmlSvL1nLXw0e1eGI3qTexj2xUElY98PPHGyJrutzq6s3dXb0lj9tJckT2ynWl34EvW6bvHdT-AVuDmuc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Neural+Network-Based+Assistive+Decision+Method+for+Financial+Risk+Prediction+in+Carbon+Trading+Market&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Luo%2C+Ji&rft.au=Zhuo%2C+Wuyang&rft.au=Xu%2C+Binfei&rft.date=2024-05-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1142%2FS0218126624501536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon |