Nonlinear radiation effects on water-based nanofluid containing CNTs subject to heat source/ sink past a wedge

In this paper, a two-dimensional and incompressible laminar flow comprised of water-based carbon nanotubes over convectively heated moving wedge under the magnetic field and nonlinear radiation and heat production/ absorption is investigated. The base nanofluid (water) contains single wall carbon na...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 37; no. 27
Main Authors Muqaddass, N., Mabood, F., Shehzad, S. A., Badruddin, I. A., Rauf, A.
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 30.10.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a two-dimensional and incompressible laminar flow comprised of water-based carbon nanotubes over convectively heated moving wedge under the magnetic field and nonlinear radiation and heat production/ absorption is investigated. The base nanofluid (water) contains single wall carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs). In order to convert the dimensional nonlinear partial differential equations in nondimensional nonlinear ordinary differential form, an adequate set of similarity variables had been used. These set of equations and boundary conditions are evaluated by the implementation of RKF-45 (Runge–Kutta–Fehlberg fourth-fifth) order scheme. The influence of several physical parameters on particular nanoparticle’s volume friction, temperature and velocity ratio parameter, heat source/ sink parameter, nonlinear radiative constraint, exponent constant, magnetic factor, Eckert and Biot numbers is studied. An opposite behavior of volume fraction and velocity ratio parameters on velocity and energy profiles is achieved.
AbstractList In this paper, a two-dimensional and incompressible laminar flow comprised of water-based carbon nanotubes over convectively heated moving wedge under the magnetic field and nonlinear radiation and heat production/ absorption is investigated. The base nanofluid (water) contains single wall carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs). In order to convert the dimensional nonlinear partial differential equations in nondimensional nonlinear ordinary differential form, an adequate set of similarity variables had been used. These set of equations and boundary conditions are evaluated by the implementation of RKF-45 (Runge–Kutta–Fehlberg fourth-fifth) order scheme. The influence of several physical parameters on particular nanoparticle’s volume friction, temperature and velocity ratio parameter, heat source/ sink parameter, nonlinear radiative constraint, exponent constant, magnetic factor, Eckert and Biot numbers is studied. An opposite behavior of volume fraction and velocity ratio parameters on velocity and energy profiles is achieved.
Author Shehzad, S. A.
Muqaddass, N.
Mabood, F.
Rauf, A.
Badruddin, I. A.
Author_xml – sequence: 1
  givenname: N.
  surname: Muqaddass
  fullname: Muqaddass, N.
– sequence: 2
  givenname: F.
  surname: Mabood
  fullname: Mabood, F.
– sequence: 3
  givenname: S. A.
  surname: Shehzad
  fullname: Shehzad, S. A.
– sequence: 4
  givenname: I. A.
  surname: Badruddin
  fullname: Badruddin, I. A.
– sequence: 5
  givenname: A.
  surname: Rauf
  fullname: Rauf, A.
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz2uT7G6zOUrxC0o9WM_LbHZSU9ekJinFf-_WigcLnmaYd575eEdk4LxDQi45u-a8EJNnJrhUUgmRlyznojwhw76QZ9NSVgMy3MvZXj8joxjXjLGpkGxI3MK7zjqEQAO0FpL1jqIxqFOkfbqDhCFrIGJLHThvuq1tqfYugXXWrehssYw0bpt1T9Dk6StCotFvg8YJjda90Q3ERIHusF3hOTk10EW8-Ilj8nJ3u5w9ZPOn-8fZzTzTOS_KzCglZGmEEgVMVdNOFW-4alkFEouiYnlhAKQ0otWVKk2j0GgjGLCCc80B8zG5OszdBP-xxZjqdX-S61fWopJK9f_LvO-Shy4dfIwBTa1t-rYgBbBdzVm9N7c-Mrcn-R9yE-w7hM9_GXZgdj50bdQWXbLG6l_0GPkC_eKNQA
CitedBy_id crossref_primary_10_1002_zamm_202300628
Cites_doi 10.1016/j.aej.2013.09.002
10.1016/j.aej.2013.11.011
10.1088/1402-4896/abecf7
10.1016/j.icheatmasstransfer.2022.105995
10.1063/1.1341218
10.1504/IJEX.2013.056131
10.1007/s10973-020-09928-w
10.1016/j.cjph.2021.10.024
10.1016/j.aej.2021.08.055
10.1088/1402-4896/ac45aa
10.1177/00368504211050292
10.1007/BF01251888
10.3934/math.2023226
10.1021/nn401995z
10.1016/j.csite.2021.101674
10.1016/j.ijthermalsci.2010.10.008
10.1016/j.physa.2019.124054
10.1007/s12206-018-1245-y
10.1016/j.ijheatmasstransfer.2015.10.014
10.1016/j.rinp.2016.12.024
10.1016/j.ijhydene.2017.09.114
10.1016/j.apt.2017.03.017
10.1016/j.ijheatmasstransfer.2016.02.060
10.1016/j.physa.2019.02.020
10.1016/j.aej.2021.03.042
10.1016/j.icheatmasstransfer.2020.104996
10.1063/1.1408272
10.1016/j.ijheatmasstransfer.2017.10.036
10.1108/HFF-10-2020-0636
10.1007/s13204-020-01611-8
10.1016/j.csite.2021.100915
10.1115/1.4051484
10.1016/j.mseb.2021.115586
10.3390/e23111448
10.1080/14786443109461870
10.1140/epjp/s13360-020-00536-z
10.1142/S0217979223500078
10.1038/s41598-021-92186-z
10.1016/j.physa.2019.121154
10.1016/j.molliq.2017.08.084
10.1016/j.cjph.2021.10.045
10.3390/math9010025
10.1016/j.icheatmasstransfer.2021.105484
10.1007/s10483-020-2584-7
10.1063/1.5010171
10.1007/BF01172973
10.1016/j.icheatmasstransfer.2022.106110
10.1002/htj.22301
10.1088/1402-4896/ab2ddc
10.3390/ma15030747
10.1038/s41598-018-31777-9
10.1016/j.rinp.2021.104145
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0217979223503125
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6578
ExternalDocumentID 10_1142_S0217979223503125
S0217979223503125
GroupedDBID -~X
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RNS
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3145-f99275f2924a69bd691b19d08a7e448034faa77f2dc895fb9efcf20a0411c1ae3
ISSN 0217-9792
IngestDate Sun Jun 29 16:12:16 EDT 2025
Tue Jul 01 02:05:47 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Aug 23 08:19:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Natural convection
applied magnetic field
flow over wedge
heat transfer
nonlinear radiation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3145-f99275f2924a69bd691b19d08a7e448034faa77f2dc895fb9efcf20a0411c1ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5128-446X
PQID 2879900073
PQPubID 2049856
ParticipantIDs worldscientific_primary_S0217979223503125
proquest_journals_2879900073
crossref_citationtrail_10_1142_S0217979223503125
crossref_primary_10_1142_S0217979223503125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231030
2023-10-30
PublicationDateYYYYMMDD 2023-10-30
PublicationDate_xml – month: 10
  year: 2023
  text: 20231030
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Ganesh N. V. (S0217979223503125BIB024) 2022; 61
Blasius H. (S0217979223503125BIB057) 1908; 56
Asadi A. (S0217979223503125BIB014) 2018; 117
Imtiaz M. (S0217979223503125BIB018) 2021; 77
Yacob N. A. (S0217979223503125BIB048) 2011; 50
Zhang R. (S0217979223503125BIB007) 2013; 7
Haq R. (S0217979223503125BIB051) 2017; 243
Jabeen K. (S0217979223503125BIB032) 2022; 144
Waqas H. (S0217979223503125BIB029) 2019; 94
Rehman A. U. (S0217979223503125BIB013) 2017; 28
Watanabe T. (S0217979223503125BIB056) 1990; 83
Khan M. (S0217979223503125BIB031) 2021; 23
Nadeem S. (S0217979223503125BIB008) 2016; 97
Malvandi A. (S0217979223503125BIB053) 2013; 52
Ahmad S. (S0217979223503125BIB030) 2020; 547
Kumar M. D. (S0217979223503125BIB005) 2022; 134
Raju C. S. K. (S0217979223503125BIB004) 2022; 135
Mabood F. (S0217979223503125BIB028) 2016; 93
Ali B. (S0217979223503125BIB040) 2021; 9
Ali L. (S0217979223503125BIB044) 2022; 77
Berrehal H. (S0217979223503125BIB049) 2019; 33
Mamatha S. U. (S0217979223503125BIB058) 2023; 37
Alzahrani F. (S0217979223503125BIB025) 2022; 277
Sheikholeslami M. (S0217979223503125BIB016) 2019; 523
Ge-JiLe H. (S0217979223503125BIB003) 2021; 25
Nadeem S. (S0217979223503125BIB023) 2021; 104
Nadeem S. (S0217979223503125BIB012) 2017; 42
Ahmad S. (S0217979223503125BIB046) 2020; 547
Yih K. A. (S0217979223503125BIB027) 1998; 128
Nandeppanavar M. M. (S0217979223503125BIB036) 2022; 51
Hussain M. (S0217979223503125BIB042) 2021; 60
Awaludin I. S. (S0217979223503125BIB034) 2018; 8
Berrehal H. (S0217979223503125BIB050) 2019; 52
Makinde O. M. (S0217979223503125BIB052) 2013; 13
Khan M. I. (S0217979223503125BIB015) 2019; 527
Nayak M. K. (S0217979223503125BIB020) 2021; 120
Hedayati F. (S0217979223503125BIB055) 2014; 53
Yacob N. A. (S0217979223503125BIB054) 2011; 50
Malik M. (S0217979223503125BIB041) 2021; 96
Zhang R. (S0217979223503125BIB002) 2001; 78
Hussain S. T. (S0217979223503125BIB009) 2015; 214
Lu D. (S0217979223503125BIB010) 2017; 29
Eid M. R. (S0217979223503125BIB021) 2021; 143
Waini I. (S0217979223503125BIB035) 2020; 41
Nayak M. K. (S0217979223503125BIB019) 2021; 11
Shahzadi I. (S0217979223503125BIB011) 2017; 7
Falkner V. M. (S0217979223503125BIB026) 1931; 12
Eastman J. A. (S0217979223503125BIB001) 2001; 79
Areekara S. (S0217979223503125BIB017) 2021; 126
Kakar N. (S0217979223503125BIB043) 2022; 30
Raju C. S. K. (S0217979223503125BIB006) 2023; 8
Mabood F. (S0217979223503125BIB037) 2021; 32
Mohsan H. (S0217979223503125BIB033) 2018; 97
Khan Z. (S0217979223503125BIB039) 2022; 15
Berrehal H. (S0217979223503125BIB045) 2020; 135
Saeed A. (S0217979223503125BIB047) 2021; 11
Ali B. (S0217979223503125BIB022) 2021; 25
Acharya M. R. (S0217979223503125BIB038) 2022; 97
References_xml – volume: 52
  start-page: 595
  year: 2013
  ident: S0217979223503125BIB053
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.09.002
– volume: 53
  start-page: 1
  year: 2014
  ident: S0217979223503125BIB055
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.11.011
– volume: 96
  start-page: 065003
  year: 2021
  ident: S0217979223503125BIB041
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abecf7
– volume: 134
  start-page: 105995
  year: 2022
  ident: S0217979223503125BIB005
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.105995
– volume: 78
  start-page: 718
  year: 2001
  ident: S0217979223503125BIB002
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1341218
– volume: 13
  start-page: 159
  year: 2013
  ident: S0217979223503125BIB052
  publication-title: Int. J. Exergy
  doi: 10.1504/IJEX.2013.056131
– volume: 143
  start-page: 2419
  year: 2021
  ident: S0217979223503125BIB021
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09928-w
– volume: 77
  start-page: 1587
  year: 2021
  ident: S0217979223503125BIB018
  publication-title: Chinese Journal of Physics
  doi: 10.1016/j.cjph.2021.10.024
– volume: 61
  start-page: 3249
  year: 2022
  ident: S0217979223503125BIB024
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.08.055
– volume: 97
  start-page: 015204
  year: 2022
  ident: S0217979223503125BIB038
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac45aa
– volume: 104
  start-page: 1
  year: 2021
  ident: S0217979223503125BIB023
  publication-title: Sci. Progr.
  doi: 10.1177/00368504211050292
– volume: 128
  start-page: 173
  year: 1998
  ident: S0217979223503125BIB027
  publication-title: Acta Mech.
  doi: 10.1007/BF01251888
– volume: 8
  start-page: 4575
  year: 2023
  ident: S0217979223503125BIB006
  publication-title: AIMS Math.
  doi: 10.3934/math.2023226
– volume: 7
  start-page: 6156
  year: 2013
  ident: S0217979223503125BIB007
  publication-title: ACS Nano
  doi: 10.1021/nn401995z
– volume: 30
  start-page: 101674
  year: 2022
  ident: S0217979223503125BIB043
  publication-title: Case Studies Therm. Eng.
  doi: 10.1016/j.csite.2021.101674
– volume: 50
  start-page: 133
  year: 2011
  ident: S0217979223503125BIB048
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.10.008
– volume: 547
  start-page: 124054
  year: 2020
  ident: S0217979223503125BIB046
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.124054
– volume: 33
  start-page: 459
  year: 2019
  ident: S0217979223503125BIB049
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-1245-y
– volume: 93
  start-page: 674
  year: 2016
  ident: S0217979223503125BIB028
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.10.014
– volume: 7
  start-page: 667
  year: 2017
  ident: S0217979223503125BIB011
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2016.12.024
– volume: 42
  start-page: 28945
  year: 2017
  ident: S0217979223503125BIB012
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.114
– volume: 28
  start-page: 1991
  year: 2017
  ident: S0217979223503125BIB013
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.03.017
– volume: 97
  start-page: 794
  year: 2016
  ident: S0217979223503125BIB008
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.02.060
– volume: 523
  start-page: 544
  year: 2019
  ident: S0217979223503125BIB016
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.02.020
– volume: 52
  start-page: 459
  year: 2019
  ident: S0217979223503125BIB050
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-1245-y
– volume: 60
  start-page: 5473
  year: 2021
  ident: S0217979223503125BIB042
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.03.042
– volume: 120
  start-page: 104996
  year: 2021
  ident: S0217979223503125BIB020
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104996
– volume: 79
  start-page: 2252
  year: 2001
  ident: S0217979223503125BIB001
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1408272
– volume: 97
  start-page: 277
  year: 2018
  ident: S0217979223503125BIB033
  publication-title: Can. J. Phys.
– volume: 117
  start-page: 474
  year: 2018
  ident: S0217979223503125BIB014
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.10.036
– volume: 32
  start-page: 120
  year: 2021
  ident: S0217979223503125BIB037
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-10-2020-0636
– volume: 11
  start-page: 399
  year: 2021
  ident: S0217979223503125BIB019
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01611-8
– volume: 25
  start-page: 100915
  year: 2021
  ident: S0217979223503125BIB003
  publication-title: Case Studies Therm. Eng.
  doi: 10.1016/j.csite.2021.100915
– volume: 144
  start-page: 011204
  year: 2022
  ident: S0217979223503125BIB032
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4051484
– volume: 214
  start-page: 2252
  year: 2015
  ident: S0217979223503125BIB009
  publication-title: J. Mol. Liquids
– volume: 547
  start-page: 124054
  year: 2020
  ident: S0217979223503125BIB030
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.124054
– volume: 277
  start-page: 115586
  year: 2022
  ident: S0217979223503125BIB025
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2021.115586
– volume: 56
  start-page: 1
  year: 1908
  ident: S0217979223503125BIB057
  publication-title: J. Appl. Math. Phys.
– volume: 23
  start-page: 1448
  year: 2021
  ident: S0217979223503125BIB031
  publication-title: Entropy
  doi: 10.3390/e23111448
– volume: 12
  start-page: 865
  year: 1931
  ident: S0217979223503125BIB026
  publication-title: Philos. Mag.
  doi: 10.1080/14786443109461870
– volume: 135
  start-page: 535
  year: 2020
  ident: S0217979223503125BIB045
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00536-z
– volume: 50
  start-page: 133
  year: 2011
  ident: S0217979223503125BIB054
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.10.008
– volume: 37
  start-page: 2350007
  year: 2023
  ident: S0217979223503125BIB058
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979223500078
– volume: 11
  start-page: 12865
  year: 2021
  ident: S0217979223503125BIB047
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92186-z
– volume: 527
  start-page: 121154
  year: 2019
  ident: S0217979223503125BIB015
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121154
– volume: 243
  start-page: 682
  year: 2017
  ident: S0217979223503125BIB051
  publication-title: J. Mol. Liquids
  doi: 10.1016/j.molliq.2017.08.084
– volume: 77
  start-page: 1625
  year: 2022
  ident: S0217979223503125BIB044
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.10.045
– volume: 9
  start-page: 25
  year: 2021
  ident: S0217979223503125BIB040
  publication-title: Mathematics
  doi: 10.3390/math9010025
– volume: 126
  start-page: 105484
  year: 2021
  ident: S0217979223503125BIB017
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105484
– volume: 41
  start-page: 507
  year: 2020
  ident: S0217979223503125BIB035
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-020-2584-7
– volume: 29
  start-page: 123103
  year: 2017
  ident: S0217979223503125BIB010
  publication-title: Phys. Fluids
  doi: 10.1063/1.5010171
– volume: 83
  start-page: 119
  year: 1990
  ident: S0217979223503125BIB056
  publication-title: Acta Mech.
  doi: 10.1007/BF01172973
– volume: 135
  start-page: 106110
  year: 2022
  ident: S0217979223503125BIB004
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106110
– volume: 51
  start-page: 170
  year: 2022
  ident: S0217979223503125BIB036
  publication-title: Heat Transfer
  doi: 10.1002/htj.22301
– volume: 94
  start-page: 115304
  year: 2019
  ident: S0217979223503125BIB029
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab2ddc
– volume: 15
  start-page: 747
  year: 2022
  ident: S0217979223503125BIB039
  publication-title: Materials
  doi: 10.3390/ma15030747
– volume: 8
  start-page: 13622
  year: 2018
  ident: S0217979223503125BIB034
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31777-9
– volume: 25
  start-page: 104145
  year: 2021
  ident: S0217979223503125BIB022
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104145
SSID ssj0006270
Score 2.3644016
Snippet In this paper, a two-dimensional and incompressible laminar flow comprised of water-based carbon nanotubes over convectively heated moving wedge under the...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary conditions
Fluid flow
Incompressible flow
Laminar flow
Mathematical analysis
Multi wall carbon nanotubes
Nanofluids
Nanoparticles
Nonlinear differential equations
Parameters
Partial differential equations
Physical properties
Radiation effects
Runge-Kutta method
Single wall carbon nanotubes
Two dimensional flow
Wedges
Title Nonlinear radiation effects on water-based nanofluid containing CNTs subject to heat source/ sink past a wedge
URI http://www.worldscientific.com/doi/abs/10.1142/S0217979223503125
https://www.proquest.com/docview/2879900073
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvZZ8sWzf0sJdNOLVl2Y4eu6ylG0lWaAJ9M5It00HrdLFDoX_w_o6dPmI7zSjbXoyRk7PR_Xw-ne5-h9CHJIlV5kfSE4EfeqyI4UzR0MuDUCWwPMhlrOudp7P4dMG-XUQXvd6vTtbSupbD7O6PdSX_o1UYA73qKtl_0GwjFAbgHPQLR9AwHP9KxzPLcyFWZKUpBowqmwSNktyCH7ny9HcqJ6Uol8XV-kduktNtWwgyns0rUq2ljsVoJ1QbZmLD-ZrNvIJ1KrkRVU0Eub2fNbQdSuwQUFzb7mo2ZFINyWcTi13qTrv6Qa4Noefmsr6ma5oMXbQuCmuHhfOP3VCLjJ9gLIXt9d7sI00ByzZ3qM1UvlSXdxbA592Ibb5a57llTvjqxl3Ug5r8ObeBY2yryTQy5s-kVHWDduPlkJzVyhjXNjVKG1RYfnk8sb33hsoafLBPOv1n1P0iWBoah3xLXbD7pWHU7HWDTC2ShhGYR1vDvc3qPfueniwmk3R-fDF_hPYoLGdoH-0dfZlOzhufIaaJjQa6J3T773CTw51bbHtQ7bJo33DsVs2cdPyk-VO07xY4-Mii9RnqqfI5enxmlfgClQ1mcYNZ7DCL4bSDWdxgFreYxRqz2GEW10usMYstZg-xRizWiMUCG8S-RIuT4_n41HM9P7wsDFjkFZzTJCoop0zEXOYxD2TAc38kEsXYyA9ZIUSSFDTPRjwqJFdFVlBf-CwIskCo8BXql8tSvUY4yyhLOIilmgIpjiW44mEg46zgSsiADZC_mcc0c4T4ui_LVWqL9Wm6M_UD9Kn5y41lg3noxwcb5aTuLaxSOko4N_vjA_TxnsIakTui3jws6i160r4jB6hfr9bqHfjKtXzvgPYb-YjALw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+radiation+effects+on+water-based+nanofluid+containing+CNTs+subject+to+heat+source%2F+sink+past+a+wedge&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Muqaddass%2C+N&rft.au=Mabood%2C+F&rft.au=Shehzad%2C+S+A&rft.au=Badruddin%2C+I+A&rft.date=2023-10-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=37&rft.issue=27&rft_id=info:doi/10.1142%2FS0217979223503125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon