Well-posedness and numerical simulations employing Legendre-shifted spectral approach for Caputo–Fabrizio fractional stochastic integrodifferential equations
This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such...
Saved in:
Published in | International journal of modern physics. C, Computational physics, physical computation Vol. 34; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.06.2023
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to
ℱ
0
-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative. |
---|---|
AbstractList | This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to
ℱ
0
-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative. This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to ℱ0-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative. This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to [Formula: see text]-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative. |
Author | Shawagfeh, Nabil Badawi, Haneen Arqub, Omar Abu |
Author_xml | – sequence: 1 givenname: Haneen surname: Badawi fullname: Badawi, Haneen – sequence: 2 givenname: Omar Abu surname: Arqub fullname: Arqub, Omar Abu – sequence: 3 givenname: Nabil surname: Shawagfeh fullname: Shawagfeh, Nabil |
BookMark | eNp9kctqGzEUhkVIIM7lAbITdD3pkeS5LYOJ04Chi7Z0OWikI1tmLI0lDSFZ5R36AHm3Pkln6tBFDVkJ8f_ff24X5NR5h4TcMLhlbM4_fwPGa1YJxkUOUEJ-QmasrEVW5FVxSmaTnE36ObmIcQsAnOcwI28_seuy3kfUDmOk0mnqhh0Gq2RHo90NnUzWu0hx13f-2bo1XeEanQ6YxY01CTWNPaoURr_s--Cl2lDjA13Ifkj-9-uvpWyDfbGemiDVFDYlJ682MiarqHUJ18FrawwGdMmOMu6HQ9krcmZkF_H6_b0kP5b33xdfstXXh8fF3SpTgs3zrOYlawujochlq7SAokRVt7Wqal0Vgs-ZxnndMqjLqp2-JSjTFkIDB5MLJS7Jp0PuOMB-wJiarR_C2GlseMUEG4MFH13s4FLBxxjQNH2wOxmeGwbNdIfm6A4jU_7HKJv-DjeuzHYfknAgn3zodFR2Wo6x6l_RY-QPcvCidw |
CitedBy_id | crossref_primary_10_1142_S0129183124501584 crossref_primary_10_1016_j_rico_2024_100376 crossref_primary_10_1016_j_future_2024_107528 crossref_primary_10_1186_s13661_024_01833_7 crossref_primary_10_1016_j_rico_2024_100450 crossref_primary_10_1142_S0217984923500458 crossref_primary_10_1007_s12190_023_01886_4 crossref_primary_10_1016_j_padiff_2024_100986 crossref_primary_10_1016_j_padiff_2025_101119 crossref_primary_10_1002_nem_2226 crossref_primary_10_1080_07362994_2024_2411349 crossref_primary_10_1016_j_heliyon_2024_e30206 crossref_primary_10_1016_j_compbiomed_2023_107502 crossref_primary_10_1007_s40995_023_01500_z crossref_primary_10_1016_j_sciaf_2024_e02386 crossref_primary_10_3934_nhm_2023044 crossref_primary_10_1007_s40995_023_01566_9 crossref_primary_10_1016_j_asej_2024_102762 crossref_primary_10_1016_j_amc_2024_129024 crossref_primary_10_1142_S0218126624500907 crossref_primary_10_1016_j_rinam_2024_100504 crossref_primary_10_1016_j_sciaf_2024_e02158 crossref_primary_10_1016_j_asej_2024_103040 crossref_primary_10_1016_j_comcom_2023_07_037 crossref_primary_10_1016_j_padiff_2024_100656 crossref_primary_10_1140_epjp_s13360_024_05579_0 crossref_primary_10_1142_S1793524523500705 crossref_primary_10_1016_j_sciaf_2023_e01966 crossref_primary_10_1007_s40995_024_01621_z crossref_primary_10_1007_s40435_024_01495_4 crossref_primary_10_1016_j_padiff_2024_100693 crossref_primary_10_1007_s40995_023_01518_3 crossref_primary_10_1007_s11135_024_01928_4 crossref_primary_10_1016_j_asej_2024_103127 crossref_primary_10_1007_s11277_024_11399_3 crossref_primary_10_1016_j_asej_2025_103300 |
Cites_doi | 10.18576/amis/100539 10.1016/j.chaos.2022.111818 10.1177/1077546319852218 10.1016/j.jmaa.2012.07.062 10.1016/j.aml.2019.106006 10.1016/j.aej.2019.11.017 10.2298/TSCI160111018A 10.3390/axioms10030174 10.1016/j.cam.2017.02.027 10.1016/j.aml.2020.106705 10.1007/s11075-014-9839-7 10.1007/s40819-021-01032-3 10.1142/S0218348X22400382 10.1186/s13662-020-03020-1 10.1016/j.cnsns.2020.105184 10.1186/s13660-017-1358-3 10.3390/math9172106 10.1016/j.apnum.2018.05.016 10.14419/ijamr.v4i2.4302 10.1007/s40314-022-01940-0 10.32604/cmc.2020.011623 10.1016/j.chaos.2019.07.010 10.1007/978-3-031-79625-8 10.1515/fca-2016-0078 10.1016/j.chaos.2019.07.050 10.1201/9780429284083 10.1016/j.chaos.2020.110253 10.1016/j.apnum.2019.01.009 10.1016/j.joes.2019.03.002 10.1016/j.nonrwa.2012.08.009 10.1080/17442508.2018.1466885 10.1016/j.aml.2020.106461 |
ContentType | Journal Article |
Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0129183123500705 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6586 |
ExternalDocumentID | 10_1142_S0129183123500705 S0129183123500705 |
GroupedDBID | -~X .DC 0R~ 4.4 5GY ADSJI AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ O9- P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3145-9271b6fd065abcd3067ec9b9c89d863241de49b10978b324170cfb63d020f53c3 |
ISSN | 0129-1831 |
IngestDate | Mon Jun 30 06:39:06 EDT 2025 Tue Jul 01 01:50:51 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Fri Aug 23 08:19:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fractional stochastic integrodifferential equation Fractional Caputo–Fabrizio derivative Legendre-shifted collocation spectral method standard Brownian motion |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3145-9271b6fd065abcd3067ec9b9c89d863241de49b10978b324170cfb63d020f53c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2813106532 |
PQPubID | 2049855 |
ParticipantIDs | crossref_primary_10_1142_S0129183123500705 proquest_journals_2813106532 crossref_citationtrail_10_1142_S0129183123500705 worldscientific_primary_S0129183123500705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. C, Computational physics, physical computation |
PublicationYear | 2023 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Jaradat I. (S0129183123500705BIB012) 2022; 156 Zhang X. (S0129183123500705BIB029) 2018; 90 Kamrani M. (S0129183123500705BIB034) 2014; 68 Guo Z. (S0129183123500705BIB023) 2020; 2020 Yang X. J. (S0129183123500705BIB002) 2019 Taheri Z. (S0129183123500705BIB027) 2017; 321 Kreyszig E. (S0129183123500705BIB045) 1978 West B. J. (S0129183123500705BIB004) 2022 Kiataramkul C. (S0129183123500705BIB006) 2021; 10 Hesameddini E. (S0129183123500705BIB040) 2017; 5 Demir A. (S0129183123500705BIB011) 2018; 9 Khater M. M. A. (S0129183123500705BIB009) 2019; 4 Han M. (S0129183123500705BIB024) 2021; 112 El-Sayed A. M. A. (S0129183123500705BIB047) 2016; 10 Mirzaee F. (S0129183123500705BIB038) 2015; 22 Zheng X. (S0129183123500705BIB031) 2020; 107 Gejj V. D. (S0129183123500705BIB005) 2014 Wang Y. (S0129183123500705BIB044) 2017; 2017 Cardone A. (S0129183123500705BIB037) 2019; 139 Loh J. R. (S0129183123500705BIB039) 2018; 132 Wang W. (S0129183123500705BIB010) 2013; 14 Atanachovic T. M. (S0129183123500705BIB001) 2019 Bekhouche F. (S0129183123500705BIB014) 2021; 66 Abdelhakem M. (S0129183123500705BIB019) 2019; 25 Avalos-Ruiz L. F. (S0129183123500705BIB017) 2019; 127 Pei B. (S0129183123500705BIB026) 2020; 100 Kajouni A. (S0129183123500705BIB008) 2021; 2021 Karaagac B. (S0129183123500705BIB015) 2020; 65 Mohammadi F. (S0129183123500705BIB035) 2015; 4 Ali M. (S0129183123500705BIB013) 2021; 7 Abdelhakem M. (S0129183123500705BIB021) 2022; 2022 Kythe P. K. (S0129183123500705BIB043) 2005 Yang Y. (S0129183123500705BIB003) 2019 Ahmaadov A. (S0129183123500705BIB032) 2020; 139 Aryani E. (S0129183123500705BIB042) 2022; 10 Chen P. (S0129183123500705BIB028) 2016; 6 Asgari M. (S0129183123500705BIB036) 2014; 1 Moualkia S. (S0129183123500705BIB030) 2021; 9 Abdelhakem M. (S0129183123500705BIB018) 2022; 30 Kouhkani S. (S0129183123500705BIB033) 2019; 1 Curtain R. F. (S0129183123500705BIB046) 1977 Saad K. M. (S0129183123500705BIB041) 2020; 59 Dung N. T. (S0129183123500705BIB022) 2013; 397 Liu Q. (S0129183123500705BIB025) 2020; 84 Owolabi K. M. (S0129183123500705BIB016) 2019; 128 Atangana A. (S0129183123500705BIB007) 2016; 20 Abdelhakem M. (S0129183123500705BIB020) 2022; 41 |
References_xml | – volume: 2022 year: 2022 ident: S0129183123500705BIB021 publication-title: Int. J. Mod. Phys. C – volume: 10 start-page: 1971 year: 2016 ident: S0129183123500705BIB047 publication-title: Appl. Math. Sci. doi: 10.18576/amis/100539 – volume: 10 start-page: 61 year: 2022 ident: S0129183123500705BIB042 publication-title: Comput. Methods Differ. Equ. – volume: 2021 start-page: 6245435 year: 2021 ident: S0129183123500705BIB008 publication-title: Int. J. Differ. Equ. – volume: 156 start-page: 111818 year: 2022 ident: S0129183123500705BIB012 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.111818 – volume: 25 start-page: 2143 year: 2019 ident: S0129183123500705BIB019 publication-title: J. Vib. Control doi: 10.1177/1077546319852218 – volume: 397 start-page: 334 year: 2013 ident: S0129183123500705BIB022 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.07.062 – volume: 100 start-page: 106006 year: 2020 ident: S0129183123500705BIB026 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106006 – volume: 59 start-page: 1909 year: 2020 ident: S0129183123500705BIB041 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2019.11.017 – volume-title: Functional Analysis in Modern Applied Mathematics year: 1977 ident: S0129183123500705BIB046 – volume: 22 start-page: 2472 year: 2015 ident: S0129183123500705BIB038 publication-title: Sci. Iran. D – volume: 1 start-page: 3 year: 2014 ident: S0129183123500705BIB036 publication-title: Bull. Math. Soc. Sci. Math. Roum. – volume: 20 start-page: 763 year: 2016 ident: S0129183123500705BIB007 publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A – volume-title: Introductory Functional Analysis With Applications year: 1978 ident: S0129183123500705BIB045 – volume: 10 start-page: 174 year: 2021 ident: S0129183123500705BIB006 publication-title: Axioms doi: 10.3390/axioms10030174 – volume: 321 start-page: 336 year: 2017 ident: S0129183123500705BIB027 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.02.027 – volume: 112 start-page: 106705 year: 2021 ident: S0129183123500705BIB024 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106705 – volume: 68 start-page: 81 year: 2014 ident: S0129183123500705BIB034 publication-title: Numer. Algor. doi: 10.1007/s11075-014-9839-7 – volume: 7 start-page: 90 year: 2021 ident: S0129183123500705BIB013 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-021-01032-3 – volume: 30 start-page: 2240038 year: 2022 ident: S0129183123500705BIB018 publication-title: Fractals doi: 10.1142/S0218348X22400382 – volume: 2020 start-page: 636 year: 2020 ident: S0129183123500705BIB023 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-03020-1 – volume: 84 start-page: 105184 year: 2020 ident: S0129183123500705BIB025 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105184 – volume: 2017 start-page: 77 year: 2017 ident: S0129183123500705BIB044 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-017-1358-3 – volume: 9 start-page: 2106 year: 2021 ident: S0129183123500705BIB030 publication-title: Mathematics doi: 10.3390/math9172106 – volume: 132 start-page: 138 year: 2018 ident: S0129183123500705BIB039 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2018.05.016 – volume: 4 start-page: 217 year: 2015 ident: S0129183123500705BIB035 publication-title: Int. J. Appl. Math. Res. doi: 10.14419/ijamr.v4i2.4302 – volume: 41 start-page: 253 year: 2022 ident: S0129183123500705BIB020 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-022-01940-0 – volume: 5 start-page: 33 year: 2017 ident: S0129183123500705BIB040 publication-title: Bull. Comput. Appl. Math. – volume-title: Fractional Calculus and the Future of Science year: 2022 ident: S0129183123500705BIB004 – volume: 65 start-page: 1905 year: 2020 ident: S0129183123500705BIB015 publication-title: Comput. Mater.Continua doi: 10.32604/cmc.2020.011623 – volume: 9 start-page: 229 year: 2018 ident: S0129183123500705BIB011 publication-title: Commun. Math. Appl. – volume: 127 start-page: 364 year: 2019 ident: S0129183123500705BIB017 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.07.010 – volume-title: Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles year: 2019 ident: S0129183123500705BIB001 – volume-title: Fractional Calculus with its Applications in Engineering and Technology year: 2019 ident: S0129183123500705BIB003 doi: 10.1007/978-3-031-79625-8 – volume-title: Handbook of Computational Methods For Integration year: 2005 ident: S0129183123500705BIB043 – volume: 6 start-page: 1507 year: 2016 ident: S0129183123500705BIB028 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0078 – volume: 128 start-page: 280 year: 2019 ident: S0129183123500705BIB016 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.07.050 – volume: 1 start-page: 1 year: 2019 ident: S0129183123500705BIB033 publication-title: Int. J. Stat. Anal. – volume-title: General Fractional Derivatives: Theory, Methods and Applications year: 2019 ident: S0129183123500705BIB002 doi: 10.1201/9780429284083 – volume: 139 start-page: 110253 year: 2020 ident: S0129183123500705BIB032 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110253 – volume: 139 start-page: 115 year: 2019 ident: S0129183123500705BIB037 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.01.009 – volume: 4 start-page: 144 year: 2019 ident: S0129183123500705BIB009 publication-title: J.Ocean Eng. Sci. doi: 10.1016/j.joes.2019.03.002 – volume: 14 start-page: 875 year: 2013 ident: S0129183123500705BIB010 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2012.08.009 – volume: 90 start-page: 1005 year: 2018 ident: S0129183123500705BIB029 publication-title: Int. J. Probab. Stoch. Process. doi: 10.1080/17442508.2018.1466885 – volume: 107 start-page: 106461 year: 2020 ident: S0129183123500705BIB031 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106461 – volume-title: Fractional Calculus: Theory and Applications year: 2014 ident: S0129183123500705BIB005 – volume: 66 start-page: 1 year: 2021 ident: S0129183123500705BIB014 publication-title: Roman. J. Phys. |
SSID | ssj0002250 |
Score | 2.502328 |
Snippet | This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Banach spaces Brownian motion Collocation methods Polynomials Randomness Spectral methods Well posed problems |
Title | Well-posedness and numerical simulations employing Legendre-shifted spectral approach for Caputo–Fabrizio fractional stochastic integrodifferential equations |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0129183123500705 https://www.proquest.com/docview/2813106532 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcKp4iUNAeuEDkkqwdxz5GoVGF0odEInKzvA83QUmcxrYq9cR_4Afw3_gRnJnd9XrdpqqAi5XYzjjyfJ6d-TwPhN5RWEZdHhOn2-eu47EwdIKk7zv9uONSIijE0JKHPDn1j6fe51lv1mj8rmUtFTk9ZNd31pX8j1ZhH-hVVsn-g2YrobADPoN-YQsahu1f6firWC6dTZoJrgyW5MDXhX4Fs2xni1VhEt2EmuurCpoESONb4WTzRSK9TVVqKav0TXdxlXg4jDdFnppMCHcU0-3iepG2k60uhFBVJimbx7LNc9lzIjXDVnLJwovLokYGfrMJ85Z_rHWtWOmRbJpnyQ7bQ0XgqokT5uzymDywMeBi9gxLyfL4So_ijtfCFrqdreJte0CL9mB7WdCKWJrHV_FFIuZ6paFlwklJgxDXpmtpY6tSj5Q9VDlWdRZvmB62z3OhrK3NlVJsKgkdsGlajNArABgsB9wyv75ElHzrwtr73ZXHI-rdN4iUEonbk52UenaZNakFp2fRaDoeR5Oj2eQB2iMQ3pAm2ht8Ohl_qXwIsLKKHTR_sHwfDxf5uHOJmx6VDZP2Vc_drLolNb9p8hjtlwEPHmj0PkENsX6KHp5rZT5DP29iGAOGcYVhXMMwrjCMb2MYGwxjg2EMGMYaw7--_zDoxRa92KIX34FeXKH3OZqOjibDY6ccGuIwt-v1nJD0u9RPOLjWMWVcRsSChTRkQcgDOZugy4UXUpl4EVD5td9hCQV7BXFT0nOZ-wI11-lavESYJi7jSScQHgd_wvdjEnCRMOaTkEsaooU65sZHrOyoLwe7LCNd7U-iHV210IfqJxvdTua-kw-MNqPyicwiEnQhIvN7Lmmh97c0XIncEfXqflGv0SP7TB2gZr4txBtwtnP6tkTmH25o36k |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-posedness+and+numerical+simulations+employing+Legendre-shifted+spectral+approach+for+Caputo%E2%80%93Fabrizio+fractional+stochastic+integrodifferential+equations&rft.jtitle=International+journal+of+modern+physics.+C%2C+Computational+physics%2C+physical+computation&rft.au=Badawi%2C+Haneen&rft.au=Omar+Abu+Arqub&rft.au=Shawagfeh%2C+Nabil&rft.date=2023-06-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0129-1831&rft.eissn=1793-6586&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1142%2FS0129183123500705&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-1831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-1831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-1831&client=summon |