Well-posedness and numerical simulations employing Legendre-shifted spectral approach for Caputo–Fabrizio fractional stochastic integrodifferential equations

This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. C, Computational physics, physical computation Vol. 34; no. 6
Main Authors Badawi, Haneen, Arqub, Omar Abu, Shawagfeh, Nabil
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.06.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to ℱ 0 -measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative.
AbstractList This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to ℱ 0 -measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative.
This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to ℱ0-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative.
This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are constructed by considering some applicable conditions and combining theories of Banach space, AAT, and FPST. Approximating the solutions of such equations is still challenging for many mathematicians today due to their randomness and the hardness of finding the exact one. For the numerical aim, we introduce some useful properties of the Legendre-shifted polynomials and employ them as a basis of the collocation spectral method. The idea of this scheme is to convert such stochastic equations into algebraic systems subject to [Formula: see text]-measurable independent parameters. The stochastic term is driven by one-dimensional standard Brownian motion which is the most familiar type and for simulating its trajectories we discuss an easy method. We rigorously analyze the convergence of the proposed technique and other error behavior-bound results. Finally, various tangible numerical applications are performed to verify the present scheme’s accuracy and great feasibility and support theoretical results. The acquired results reveal that the methodology used is effective and appropriate to deal with various issues in light of the fractional Caputo–Fabrizio derivative.
Author Shawagfeh, Nabil
Badawi, Haneen
Arqub, Omar Abu
Author_xml – sequence: 1
  givenname: Haneen
  surname: Badawi
  fullname: Badawi, Haneen
– sequence: 2
  givenname: Omar Abu
  surname: Arqub
  fullname: Arqub, Omar Abu
– sequence: 3
  givenname: Nabil
  surname: Shawagfeh
  fullname: Shawagfeh, Nabil
BookMark eNp9kctqGzEUhkVIIM7lAbITdD3pkeS5LYOJ04Chi7Z0OWikI1tmLI0lDSFZ5R36AHm3Pkln6tBFDVkJ8f_ff24X5NR5h4TcMLhlbM4_fwPGa1YJxkUOUEJ-QmasrEVW5FVxSmaTnE36ObmIcQsAnOcwI28_seuy3kfUDmOk0mnqhh0Gq2RHo90NnUzWu0hx13f-2bo1XeEanQ6YxY01CTWNPaoURr_s--Cl2lDjA13Ifkj-9-uvpWyDfbGemiDVFDYlJ682MiarqHUJ18FrawwGdMmOMu6HQ9krcmZkF_H6_b0kP5b33xdfstXXh8fF3SpTgs3zrOYlawujochlq7SAokRVt7Wqal0Vgs-ZxnndMqjLqp2-JSjTFkIDB5MLJS7Jp0PuOMB-wJiarR_C2GlseMUEG4MFH13s4FLBxxjQNH2wOxmeGwbNdIfm6A4jU_7HKJv-DjeuzHYfknAgn3zodFR2Wo6x6l_RY-QPcvCidw
CitedBy_id crossref_primary_10_1142_S0129183124501584
crossref_primary_10_1016_j_rico_2024_100376
crossref_primary_10_1016_j_future_2024_107528
crossref_primary_10_1186_s13661_024_01833_7
crossref_primary_10_1016_j_rico_2024_100450
crossref_primary_10_1142_S0217984923500458
crossref_primary_10_1007_s12190_023_01886_4
crossref_primary_10_1016_j_padiff_2024_100986
crossref_primary_10_1016_j_padiff_2025_101119
crossref_primary_10_1002_nem_2226
crossref_primary_10_1080_07362994_2024_2411349
crossref_primary_10_1016_j_heliyon_2024_e30206
crossref_primary_10_1016_j_compbiomed_2023_107502
crossref_primary_10_1007_s40995_023_01500_z
crossref_primary_10_1016_j_sciaf_2024_e02386
crossref_primary_10_3934_nhm_2023044
crossref_primary_10_1007_s40995_023_01566_9
crossref_primary_10_1016_j_asej_2024_102762
crossref_primary_10_1016_j_amc_2024_129024
crossref_primary_10_1142_S0218126624500907
crossref_primary_10_1016_j_rinam_2024_100504
crossref_primary_10_1016_j_sciaf_2024_e02158
crossref_primary_10_1016_j_asej_2024_103040
crossref_primary_10_1016_j_comcom_2023_07_037
crossref_primary_10_1016_j_padiff_2024_100656
crossref_primary_10_1140_epjp_s13360_024_05579_0
crossref_primary_10_1142_S1793524523500705
crossref_primary_10_1016_j_sciaf_2023_e01966
crossref_primary_10_1007_s40995_024_01621_z
crossref_primary_10_1007_s40435_024_01495_4
crossref_primary_10_1016_j_padiff_2024_100693
crossref_primary_10_1007_s40995_023_01518_3
crossref_primary_10_1007_s11135_024_01928_4
crossref_primary_10_1016_j_asej_2024_103127
crossref_primary_10_1007_s11277_024_11399_3
crossref_primary_10_1016_j_asej_2025_103300
Cites_doi 10.18576/amis/100539
10.1016/j.chaos.2022.111818
10.1177/1077546319852218
10.1016/j.jmaa.2012.07.062
10.1016/j.aml.2019.106006
10.1016/j.aej.2019.11.017
10.2298/TSCI160111018A
10.3390/axioms10030174
10.1016/j.cam.2017.02.027
10.1016/j.aml.2020.106705
10.1007/s11075-014-9839-7
10.1007/s40819-021-01032-3
10.1142/S0218348X22400382
10.1186/s13662-020-03020-1
10.1016/j.cnsns.2020.105184
10.1186/s13660-017-1358-3
10.3390/math9172106
10.1016/j.apnum.2018.05.016
10.14419/ijamr.v4i2.4302
10.1007/s40314-022-01940-0
10.32604/cmc.2020.011623
10.1016/j.chaos.2019.07.010
10.1007/978-3-031-79625-8
10.1515/fca-2016-0078
10.1016/j.chaos.2019.07.050
10.1201/9780429284083
10.1016/j.chaos.2020.110253
10.1016/j.apnum.2019.01.009
10.1016/j.joes.2019.03.002
10.1016/j.nonrwa.2012.08.009
10.1080/17442508.2018.1466885
10.1016/j.aml.2020.106461
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0129183123500705
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6586
ExternalDocumentID 10_1142_S0129183123500705
S0129183123500705
GroupedDBID -~X
.DC
0R~
4.4
5GY
ADSJI
AENEX
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
O9-
P71
RNS
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3145-9271b6fd065abcd3067ec9b9c89d863241de49b10978b324170cfb63d020f53c3
ISSN 0129-1831
IngestDate Mon Jun 30 06:39:06 EDT 2025
Tue Jul 01 01:50:51 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Fri Aug 23 08:19:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fractional stochastic integrodifferential equation
Fractional Caputo–Fabrizio derivative
Legendre-shifted collocation spectral method
standard Brownian motion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3145-9271b6fd065abcd3067ec9b9c89d863241de49b10978b324170cfb63d020f53c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2813106532
PQPubID 2049855
ParticipantIDs crossref_primary_10_1142_S0129183123500705
proquest_journals_2813106532
crossref_citationtrail_10_1142_S0129183123500705
worldscientific_primary_S0129183123500705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. C, Computational physics, physical computation
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Jaradat I. (S0129183123500705BIB012) 2022; 156
Zhang X. (S0129183123500705BIB029) 2018; 90
Kamrani M. (S0129183123500705BIB034) 2014; 68
Guo Z. (S0129183123500705BIB023) 2020; 2020
Yang X. J. (S0129183123500705BIB002) 2019
Taheri Z. (S0129183123500705BIB027) 2017; 321
Kreyszig E. (S0129183123500705BIB045) 1978
West B. J. (S0129183123500705BIB004) 2022
Kiataramkul C. (S0129183123500705BIB006) 2021; 10
Hesameddini E. (S0129183123500705BIB040) 2017; 5
Demir A. (S0129183123500705BIB011) 2018; 9
Khater M. M. A. (S0129183123500705BIB009) 2019; 4
Han M. (S0129183123500705BIB024) 2021; 112
El-Sayed A. M. A. (S0129183123500705BIB047) 2016; 10
Mirzaee F. (S0129183123500705BIB038) 2015; 22
Zheng X. (S0129183123500705BIB031) 2020; 107
Gejj V. D. (S0129183123500705BIB005) 2014
Wang Y. (S0129183123500705BIB044) 2017; 2017
Cardone A. (S0129183123500705BIB037) 2019; 139
Loh J. R. (S0129183123500705BIB039) 2018; 132
Wang W. (S0129183123500705BIB010) 2013; 14
Atanachovic T. M. (S0129183123500705BIB001) 2019
Bekhouche F. (S0129183123500705BIB014) 2021; 66
Abdelhakem M. (S0129183123500705BIB019) 2019; 25
Avalos-Ruiz L. F. (S0129183123500705BIB017) 2019; 127
Pei B. (S0129183123500705BIB026) 2020; 100
Kajouni A. (S0129183123500705BIB008) 2021; 2021
Karaagac B. (S0129183123500705BIB015) 2020; 65
Mohammadi F. (S0129183123500705BIB035) 2015; 4
Ali M. (S0129183123500705BIB013) 2021; 7
Abdelhakem M. (S0129183123500705BIB021) 2022; 2022
Kythe P. K. (S0129183123500705BIB043) 2005
Yang Y. (S0129183123500705BIB003) 2019
Ahmaadov A. (S0129183123500705BIB032) 2020; 139
Aryani E. (S0129183123500705BIB042) 2022; 10
Chen P. (S0129183123500705BIB028) 2016; 6
Asgari M. (S0129183123500705BIB036) 2014; 1
Moualkia S. (S0129183123500705BIB030) 2021; 9
Abdelhakem M. (S0129183123500705BIB018) 2022; 30
Kouhkani S. (S0129183123500705BIB033) 2019; 1
Curtain R. F. (S0129183123500705BIB046) 1977
Saad K. M. (S0129183123500705BIB041) 2020; 59
Dung N. T. (S0129183123500705BIB022) 2013; 397
Liu Q. (S0129183123500705BIB025) 2020; 84
Owolabi K. M. (S0129183123500705BIB016) 2019; 128
Atangana A. (S0129183123500705BIB007) 2016; 20
Abdelhakem M. (S0129183123500705BIB020) 2022; 41
References_xml – volume: 2022
  year: 2022
  ident: S0129183123500705BIB021
  publication-title: Int. J. Mod. Phys. C
– volume: 10
  start-page: 1971
  year: 2016
  ident: S0129183123500705BIB047
  publication-title: Appl. Math. Sci.
  doi: 10.18576/amis/100539
– volume: 10
  start-page: 61
  year: 2022
  ident: S0129183123500705BIB042
  publication-title: Comput. Methods Differ. Equ.
– volume: 2021
  start-page: 6245435
  year: 2021
  ident: S0129183123500705BIB008
  publication-title: Int. J. Differ. Equ.
– volume: 156
  start-page: 111818
  year: 2022
  ident: S0129183123500705BIB012
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.111818
– volume: 25
  start-page: 2143
  year: 2019
  ident: S0129183123500705BIB019
  publication-title: J. Vib. Control
  doi: 10.1177/1077546319852218
– volume: 397
  start-page: 334
  year: 2013
  ident: S0129183123500705BIB022
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.07.062
– volume: 100
  start-page: 106006
  year: 2020
  ident: S0129183123500705BIB026
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106006
– volume: 59
  start-page: 1909
  year: 2020
  ident: S0129183123500705BIB041
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2019.11.017
– volume-title: Functional Analysis in Modern Applied Mathematics
  year: 1977
  ident: S0129183123500705BIB046
– volume: 22
  start-page: 2472
  year: 2015
  ident: S0129183123500705BIB038
  publication-title: Sci. Iran. D
– volume: 1
  start-page: 3
  year: 2014
  ident: S0129183123500705BIB036
  publication-title: Bull. Math. Soc. Sci. Math. Roum.
– volume: 20
  start-page: 763
  year: 2016
  ident: S0129183123500705BIB007
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume-title: Introductory Functional Analysis With Applications
  year: 1978
  ident: S0129183123500705BIB045
– volume: 10
  start-page: 174
  year: 2021
  ident: S0129183123500705BIB006
  publication-title: Axioms
  doi: 10.3390/axioms10030174
– volume: 321
  start-page: 336
  year: 2017
  ident: S0129183123500705BIB027
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.02.027
– volume: 112
  start-page: 106705
  year: 2021
  ident: S0129183123500705BIB024
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106705
– volume: 68
  start-page: 81
  year: 2014
  ident: S0129183123500705BIB034
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-014-9839-7
– volume: 7
  start-page: 90
  year: 2021
  ident: S0129183123500705BIB013
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-021-01032-3
– volume: 30
  start-page: 2240038
  year: 2022
  ident: S0129183123500705BIB018
  publication-title: Fractals
  doi: 10.1142/S0218348X22400382
– volume: 2020
  start-page: 636
  year: 2020
  ident: S0129183123500705BIB023
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-03020-1
– volume: 84
  start-page: 105184
  year: 2020
  ident: S0129183123500705BIB025
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105184
– volume: 2017
  start-page: 77
  year: 2017
  ident: S0129183123500705BIB044
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1358-3
– volume: 9
  start-page: 2106
  year: 2021
  ident: S0129183123500705BIB030
  publication-title: Mathematics
  doi: 10.3390/math9172106
– volume: 132
  start-page: 138
  year: 2018
  ident: S0129183123500705BIB039
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2018.05.016
– volume: 4
  start-page: 217
  year: 2015
  ident: S0129183123500705BIB035
  publication-title: Int. J. Appl. Math. Res.
  doi: 10.14419/ijamr.v4i2.4302
– volume: 41
  start-page: 253
  year: 2022
  ident: S0129183123500705BIB020
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-022-01940-0
– volume: 5
  start-page: 33
  year: 2017
  ident: S0129183123500705BIB040
  publication-title: Bull. Comput. Appl. Math.
– volume-title: Fractional Calculus and the Future of Science
  year: 2022
  ident: S0129183123500705BIB004
– volume: 65
  start-page: 1905
  year: 2020
  ident: S0129183123500705BIB015
  publication-title: Comput. Mater.Continua
  doi: 10.32604/cmc.2020.011623
– volume: 9
  start-page: 229
  year: 2018
  ident: S0129183123500705BIB011
  publication-title: Commun. Math. Appl.
– volume: 127
  start-page: 364
  year: 2019
  ident: S0129183123500705BIB017
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.010
– volume-title: Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles
  year: 2019
  ident: S0129183123500705BIB001
– volume-title: Fractional Calculus with its Applications in Engineering and Technology
  year: 2019
  ident: S0129183123500705BIB003
  doi: 10.1007/978-3-031-79625-8
– volume-title: Handbook of Computational Methods For Integration
  year: 2005
  ident: S0129183123500705BIB043
– volume: 6
  start-page: 1507
  year: 2016
  ident: S0129183123500705BIB028
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0078
– volume: 128
  start-page: 280
  year: 2019
  ident: S0129183123500705BIB016
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.050
– volume: 1
  start-page: 1
  year: 2019
  ident: S0129183123500705BIB033
  publication-title: Int. J. Stat. Anal.
– volume-title: General Fractional Derivatives: Theory, Methods and Applications
  year: 2019
  ident: S0129183123500705BIB002
  doi: 10.1201/9780429284083
– volume: 139
  start-page: 110253
  year: 2020
  ident: S0129183123500705BIB032
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110253
– volume: 139
  start-page: 115
  year: 2019
  ident: S0129183123500705BIB037
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.01.009
– volume: 4
  start-page: 144
  year: 2019
  ident: S0129183123500705BIB009
  publication-title: J.Ocean Eng. Sci.
  doi: 10.1016/j.joes.2019.03.002
– volume: 14
  start-page: 875
  year: 2013
  ident: S0129183123500705BIB010
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2012.08.009
– volume: 90
  start-page: 1005
  year: 2018
  ident: S0129183123500705BIB029
  publication-title: Int. J. Probab. Stoch. Process.
  doi: 10.1080/17442508.2018.1466885
– volume: 107
  start-page: 106461
  year: 2020
  ident: S0129183123500705BIB031
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106461
– volume-title: Fractional Calculus: Theory and Applications
  year: 2014
  ident: S0129183123500705BIB005
– volume: 66
  start-page: 1
  year: 2021
  ident: S0129183123500705BIB014
  publication-title: Roman. J. Phys.
SSID ssj0002250
Score 2.502328
Snippet This paper investigates the well-posedness of a class of FSIDEs utilizing the fractional Caputo–Fabrizio derivative. Herein, the well-posedness proofs are...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Banach spaces
Brownian motion
Collocation methods
Polynomials
Randomness
Spectral methods
Well posed problems
Title Well-posedness and numerical simulations employing Legendre-shifted spectral approach for Caputo–Fabrizio fractional stochastic integrodifferential equations
URI http://www.worldscientific.com/doi/abs/10.1142/S0129183123500705
https://www.proquest.com/docview/2813106532
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcKp4iUNAeuEDkkqwdxz5GoVGF0odEInKzvA83QUmcxrYq9cR_4Afw3_gRnJnd9XrdpqqAi5XYzjjyfJ6d-TwPhN5RWEZdHhOn2-eu47EwdIKk7zv9uONSIijE0JKHPDn1j6fe51lv1mj8rmUtFTk9ZNd31pX8j1ZhH-hVVsn-g2YrobADPoN-YQsahu1f6firWC6dTZoJrgyW5MDXhX4Fs2xni1VhEt2EmuurCpoESONb4WTzRSK9TVVqKav0TXdxlXg4jDdFnppMCHcU0-3iepG2k60uhFBVJimbx7LNc9lzIjXDVnLJwovLokYGfrMJ85Z_rHWtWOmRbJpnyQ7bQ0XgqokT5uzymDywMeBi9gxLyfL4So_ijtfCFrqdreJte0CL9mB7WdCKWJrHV_FFIuZ6paFlwklJgxDXpmtpY6tSj5Q9VDlWdRZvmB62z3OhrK3NlVJsKgkdsGlajNArABgsB9wyv75ElHzrwtr73ZXHI-rdN4iUEonbk52UenaZNakFp2fRaDoeR5Oj2eQB2iMQ3pAm2ht8Ohl_qXwIsLKKHTR_sHwfDxf5uHOJmx6VDZP2Vc_drLolNb9p8hjtlwEPHmj0PkENsX6KHp5rZT5DP29iGAOGcYVhXMMwrjCMb2MYGwxjg2EMGMYaw7--_zDoxRa92KIX34FeXKH3OZqOjibDY6ccGuIwt-v1nJD0u9RPOLjWMWVcRsSChTRkQcgDOZugy4UXUpl4EVD5td9hCQV7BXFT0nOZ-wI11-lavESYJi7jSScQHgd_wvdjEnCRMOaTkEsaooU65sZHrOyoLwe7LCNd7U-iHV210IfqJxvdTua-kw-MNqPyicwiEnQhIvN7Lmmh97c0XIncEfXqflGv0SP7TB2gZr4txBtwtnP6tkTmH25o36k
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-posedness+and+numerical+simulations+employing+Legendre-shifted+spectral+approach+for+Caputo%E2%80%93Fabrizio+fractional+stochastic+integrodifferential+equations&rft.jtitle=International+journal+of+modern+physics.+C%2C+Computational+physics%2C+physical+computation&rft.au=Badawi%2C+Haneen&rft.au=Omar+Abu+Arqub&rft.au=Shawagfeh%2C+Nabil&rft.date=2023-06-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0129-1831&rft.eissn=1793-6586&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1142%2FS0129183123500705&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-1831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-1831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-1831&client=summon