Weakly supervised video anomaly detection based on hyperbolic space
In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly de...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 26348 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information. |
---|---|
AbstractList | In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information. Abstract In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information. In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information. |
ArticleNumber | 26348 |
Author | Wu, Yuanyuan Qi, Meilin |
Author_xml | – sequence: 1 givenname: Meilin surname: Qi fullname: Qi, Meilin organization: Chengdu University of Technology, College of Computer Science and Cyber Security (Pilot Software College) – sequence: 2 givenname: Yuanyuan surname: Wu fullname: Wu, Yuanyuan email: wuyuanyuan@cdut.edu.cn organization: Chengdu University of Technology, College of Computer Science and Cyber Security (Pilot Software College) |
BookMark | eNp9kUtv1DAUhS1UREvpH2AViQ2bgB_Xib1CaMSjUiU2IJaWHV9PM2TiwU5Gmn-PM6mAssAbX_uc--na5zm5GOOIhLxk9A2jQr3NwKRWNeVQt62ksoYn5IpTkDUXnF_8VV-Sm5x3tCzJNTD9jFwKDarlSl2RzXe0P4ZTlecDpmOf0VfH3mOs7Bj3tggeJ-ymPo6Vs4taivtT8bo49F2VD7bDF-RpsEPGm4f9mnz7-OHr5nN99-XT7eb9Xd0JBlAHL70LgjFwyCS4hspylKAbLSUHrbmw1AXrUDkbIAQrvWZBA29k8NSLa3K7cn20O3NI_d6mk4m2N-eLmLbGpqnvBjTUa-5bpkBTBOsaBwqoaFBqsKAdLax3K-swuz36Dscp2eER9LEy9vdmG4-GMSlow5tCeP1ASPHnjHky-z53OAx2xDhnIxhfHqcoFOurf6y7OKex_NXZxVrBYRmJr64uxZwTht_TMGqWzM2auSmZm3PmZkGLtSkX87jF9Af9n65f9A6uXQ |
Cites_doi | 10.1109/CVPR46437.2021.01379 10.1007/978-3-031-19778-9_42 10.1609/aaai.v37i3.25489 10.1109/ICCV.2019.00719 10.1609/aaai.v37i1.25112 10.1109/CVPR52733.2024.01180 10.1109/ICCV.2019.00829 10.1109/LSP.2022.3226411 10.1109/CVPR52688.2022.01433 10.1145/3488560.3498419 10.1109/WACV56688.2023.00550 10.1007/978-3-030-58577-8_20 10.1109/ICME46284.2020.9102722 10.1109/CVPR52729.2023.01561 10.1007/978-3-030-58542-6_22 10.1609/aaai.v36i2.20028 10.1145/3459637.3482109 10.1109/CVPR.2017.502 10.18653/v1/2022.acl-long.389 10.1109/ICCV48922.2021.00493 10.1016/j.neucom.2022.01.026 10.1109/CVPR.2018.00678 10.1109/WACV57701.2024.00665 10.1109/ICASSP39728.2021.9413686 10.1109/CVPR.2016.86 10.1021/acs.jcim.0c00681 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-77505-4 |
DatabaseName | Springer Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_0d92d718490e4ab6b484036e594a49b0 10_1038_s41598_024_77505_4 |
GrantInformation_xml | – fundername: Chengdu University of Technology 2023 Young and Middle-aged Backbone Teachers Development Funding Program grantid: NO.10912-JXGG2023-06470 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION 7XB 8FK K9. M48 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c3144-fd5dbf3114be154b605bf35496955249923a0bfabe8baf4ffa5d91f94265fd0d3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Mon Nov 04 19:57:31 EST 2024 Mon Nov 04 05:26:24 EST 2024 Mon Nov 04 17:47:10 EST 2024 Sat Nov 02 05:21:42 EDT 2024 Wed Nov 06 13:16:57 EST 2024 Sat Nov 02 01:30:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Video anomaly detection Weakly supervised Hyperbolic space |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3144-fd5dbf3114be154b605bf35496955249923a0bfabe8baf4ffa5d91f94265fd0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530626/ |
PMID | 39487288 |
PQID | 3123173240 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d92d718490e4ab6b484036e594a49b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11530626 proquest_miscellaneous_3123549804 proquest_journals_3123173240 crossref_primary_10_1038_s41598_024_77505_4 springer_journals_10_1038_s41598_024_77505_4 |
PublicationCentury | 2000 |
PublicationDate | 11-1-2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 11-1-2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K. & Davis, L. S. Learning temporal regularity in video sequences. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 733–742 (2016). Zaheer, M. Z. et al. Generative cooperative learning for unsupervised video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14744–14754 (2022). Zeng, R. et al. Graph convolutional networks for temporal action localization. In Proc. of the IEEE/CVF international conference on computer vision, 7094–7103 (2019). Wu, P. et al. Not only look, but also listen: Learning multimodal violence detection under weak supervision. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16, 322–339 (Springer, 2020). CorsoGNeural distance embeddings for biological sequencesAdv. Neural. Inf. Process. Syst.2021341853918551 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint[SPACE]http://arxiv.org/abs/1412.6980 (2014). GeraldTZaatitiHHajriHBaskiotisNSchwanderOA hyperbolic approach for learning communities on graphsData Min. Knowl. Disc.202337109011244572207 Schölkopf, B., Williamson, R. C., Smola, A., Shawe-Taylor, J. & Platt, J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst.12 (1999). Thakare, K. V., Raghuwanshi, Y., Dogra, D. P., Choi, H. & Kim, I.-J. Dyannet: A scene dynamicity guided self-trained video anomaly detection network. In Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 5541–5550 (2023). Al-Lahham, A., Zaheer, M. Z., Tastan, N. & Nandakumar, K. Collaborative learning of anomalies with privacy (clap) for unsupervised video anomaly detection: A new baseline. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12416–12425 (2024). ChenYMgfn: Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence20233738739510.1609/aaai.v37i1.25112 Nickel, M. & Kiela, D. Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In International Conference on Machine Learning, 3779–3788 (PMLR, 2018). Wu, J.-C., Hsieh, H.-Y., Chen, D.-J., Fuh, C.-S. & Liu, T.-L. Self-supervised sparse representation for video anomaly detection. In European Conference on Computer Vision, 729–745 (Springer, 2022). LiSLiuFJiaoLSelf-training multi-sequence learning with transformer for weakly supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence2022361395140310.1609/aaai.v36i2.20028 Nickel, M. & Kiela, D. Poincaré embeddings for learning hierarchical representations. Adv. Neural Inf. Process. Syst.30 (2017). YuKVisweswaranSBatmanghelichKSemi-supervised hierarchical drug embedding in hyperbolic spaceJ. Chem. Inf. Model.202060564756571:CAS:528:DC%2BB3cXit1agurjN10.1021/acs.jcim.0c00681331409697943198 Tian, Y. et al. Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In Proc. of the IEEE/CVF International Conference on Computer Vision, 4975–4986 (2021). Al-Lahham, A., Tastan, N., Zaheer, M. Z. & Nandakumar, K. A coarse-to-fine pseudo-labeling (c2fpl) framework for unsupervised video anomaly detection. In Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 6793–6802 (2024). Pang, W.-F., He, Q.-H., Hu, Y.-j. & Li, Y.-X. Violence detection in videos based on fusing visual and audio information. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2260–2264 (IEEE, 2021). Gulcehre, C. et al. Hyperbolic attention networks. In International Conference on Learning Representations. Sala, F., De Sa, C., Gu, A. & Ré, C. Representation tradeoffs for hyperbolic embeddings. In International Conference on Machine Learning, 4460–4469 (PMLR, 2018). Carreira, J. & Zisserman, A. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 6299–6308 (2017). LiNZhongJ-XShuXGuoHWeakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaningNeurocomputing202248115416710.1016/j.neucom.2022.01.026 Wang, J. & Cherian, A. Gods: Generalized one-class discriminative subspaces for anomaly detection. In Proc. of the IEEE/CVF International Conference on Computer Vision, 8201–8211 (2019). Feng, J.-C., Hong, F.-T. & Zheng, W.-S. Mist: Multiple instance self-training framework for video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14009–14018 (2021). Zhang, C. et al. Exploiting completeness and uncertainty of pseudo labels for weakly supervised video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16271–16280 (2023). Wan, B., Fang, Y., Xia, X. & Mei, J. Weakly supervised video anomaly detection via center-guided discriminative learning. In 2020 IEEE International Conference on Multimedia and Expo (ICME), 1–6 (IEEE, 2020). Sultani, W., Chen, C. & Shah, M. Real-world anomaly detection in surveillance videos. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 6479–6488 (2018). Zaheer, M. Z., Mahmood, A., Astrid, M. & Lee, S.-I. Claws: Clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, 358–376 (Springer, 2020). ZhouHYuJYangWDual memory units with uncertainty regulation for weakly supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence2023373769377710.1609/aaai.v37i3.25489 Chami, I., Ying, Z., Ré, C. & Leskovec, J. Hyperbolic graph convolutional neural networks. Adv. Neural Inf. Process. Syst.32 (2019). Chen, Y. et al. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware recommendation. In Proc. of the Fifteenth ACM International Conference on Web Search and Data Mining, 94–102 (2022). Tifrea, A., Becigneul, G. & Ganea, O.-E. Poincare glove: Hyperbolic word embeddings. In International Conference on Learning Representations. Ganea, O., Bécigneul, G. & Hofmann, T. Hyperbolic neural networks. Adv. Neural Inf. Process. Syst.31 (2018). Wang, L., Hu, F., Wu, S. & Wang, L. Fully hyperbolic graph convolution network for recommendation. In Proc. of the 30th ACM International Conference on Information & Knowledge Management, 3483–3487 (2021). Chen, W. et al. Fully hyperbolic neural networks. In Proc. of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 5672–5686 (2022). CaoCZhangXZhangSWangPZhangYAdaptive graph convolutional networks for weakly supervised anomaly detection in videosIEEE Signal Process. Lett.202229249725012022ISPL...29.2497C10.1109/LSP.2022.3226411 Becigneul, G. & Ganea, O.-E. Riemannian adaptive optimization methods. In International Conference on Learning Representations. 77505_CR2 77505_CR3 77505_CR1 K Yu (77505_CR16) 2020; 60 S Li (77505_CR30) 2022; 36 C Cao (77505_CR38) 2022; 29 N Li (77505_CR17) 2022; 481 77505_CR19 77505_CR18 77505_CR15 77505_CR37 77505_CR14 77505_CR36 77505_CR13 77505_CR35 77505_CR12 77505_CR34 77505_CR11 77505_CR33 77505_CR32 77505_CR31 G Corso (77505_CR9) 2021; 34 T Gerald (77505_CR10) 2023; 37 77505_CR29 77505_CR28 77505_CR27 77505_CR26 77505_CR25 77505_CR24 77505_CR8 77505_CR23 H Zhou (77505_CR7) 2023; 37 77505_CR22 Y Chen (77505_CR5) 2023; 37 77505_CR6 77505_CR21 77505_CR20 77505_CR4 |
References_xml | – ident: 77505_CR29 – ident: 77505_CR6 doi: 10.1109/CVPR46437.2021.01379 – ident: 77505_CR32 doi: 10.1007/978-3-031-19778-9_42 – volume: 37 start-page: 3769 year: 2023 ident: 77505_CR7 publication-title: In Proc. of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v37i3.25489 contributor: fullname: H Zhou – ident: 77505_CR23 doi: 10.1109/ICCV.2019.00719 – volume: 37 start-page: 387 year: 2023 ident: 77505_CR5 publication-title: In Proc. of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v37i1.25112 contributor: fullname: Y Chen – ident: 77505_CR36 doi: 10.1109/CVPR52733.2024.01180 – ident: 77505_CR34 doi: 10.1109/ICCV.2019.00829 – volume: 29 start-page: 2497 year: 2022 ident: 77505_CR38 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2022.3226411 contributor: fullname: C Cao – ident: 77505_CR1 doi: 10.1109/CVPR52688.2022.01433 – ident: 77505_CR12 doi: 10.1145/3488560.3498419 – ident: 77505_CR19 – ident: 77505_CR27 doi: 10.1109/WACV56688.2023.00550 – ident: 77505_CR15 – ident: 77505_CR18 doi: 10.1007/978-3-030-58577-8_20 – ident: 77505_CR3 doi: 10.1109/ICME46284.2020.9102722 – ident: 77505_CR31 doi: 10.1109/CVPR52729.2023.01561 – ident: 77505_CR37 doi: 10.1007/978-3-030-58542-6_22 – ident: 77505_CR13 – ident: 77505_CR21 – ident: 77505_CR25 – volume: 36 start-page: 1395 year: 2022 ident: 77505_CR30 publication-title: In Proc. of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v36i2.20028 contributor: fullname: S Li – volume: 37 start-page: 1090 year: 2023 ident: 77505_CR10 publication-title: Data Min. Knowl. Disc. contributor: fullname: T Gerald – volume: 34 start-page: 18539 year: 2021 ident: 77505_CR9 publication-title: Adv. Neural. Inf. Process. Syst. contributor: fullname: G Corso – ident: 77505_CR11 doi: 10.1145/3459637.3482109 – ident: 77505_CR22 doi: 10.1109/CVPR.2017.502 – ident: 77505_CR26 – ident: 77505_CR24 doi: 10.18653/v1/2022.acl-long.389 – ident: 77505_CR4 doi: 10.1109/ICCV48922.2021.00493 – volume: 481 start-page: 154 year: 2022 ident: 77505_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.026 contributor: fullname: N Li – ident: 77505_CR8 – ident: 77505_CR2 doi: 10.1109/CVPR.2018.00678 – ident: 77505_CR35 doi: 10.1109/WACV57701.2024.00665 – ident: 77505_CR33 doi: 10.1109/ICASSP39728.2021.9413686 – ident: 77505_CR20 – ident: 77505_CR14 – ident: 77505_CR28 doi: 10.1109/CVPR.2016.86 – volume: 60 start-page: 5647 year: 2020 ident: 77505_CR16 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00681 contributor: fullname: K Yu |
SSID | ssj0000529419 |
Score | 2.4795363 |
Snippet | In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing... Abstract In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 26348 |
SubjectTerms | 639/705/117 639/705/258 Aggression Embedding Euclidean space Humanities and Social Sciences Hyperbolic space multidisciplinary Science Science (multidisciplinary) Video anomaly detection Weakly supervised |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idUsGblvUjaZujDscQ9ORwt5A0CRO1Het22H_vS9LNdSBevLVNaZP3krz34-X9HkI3MpE2fBVIDTMYcxIHsOcpWO6ZyISgObd1yJ5f0uEIP43JeKPUlzkT5uiBneB6oaSxhA0UwxcwF6nAAEmSVBGKOabCofWQboApx-odUxzRJksmTPJeDZbKZJPFGBxKMPsBblkiS9jf8jK3z0huBUqt_RkcoP3GcfTvXYcP0Y4qj9CuKyW5PEb9N8U_Ppd-vZia1V8r6ZsMu8rnZfXFoUGquT11VfrGcEkfLiaAQWfCEAP7sK8U6gSNBo-v_WHQFEgIigSAUKAlkUInAGmEAldIADSBW0B8KSUEcBU4bzwUmguVC66x1pxIGmkKVploGcrkFHXKqlRnyFeU6AxrGhdFiiXNaUGlDAWAv4wSEeUeul0Ji00dDwaz8eskZ060DETLrGgZ9tCDkef6TcNhbR-AZlmjWfaXZj3UXWmDNQurZglY2igzLIIeul43w5IwcQ5eqmrh3gEh5CH0I29psdWhdkv5PrHk2uAhA4qKUw_drRT-8_ffR3z-HyO-QHuxmaA21bGLOvPZQl2CzzMXV3Z6fwMwEfun priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5REFIviD4QAVqlErc22jzsJD4hQF2tkOipiL1ZdsZmEZAsm90D_56xk10UpPaWxJHijOf1eTwzAKeYoQ9fRWiJg5niaUQ6z5C4F7rQWpTK9yG7_pNPbtjVlE_7Dbe2P1a51oleUWNTuT3yUUYqNilc-biz-XPkuka56GrfQuMD7CRpnLsjXcW02OyxuCgWS0SfKxNn5agle-VyylJGbiUZ_4gN7JEv2z_wNd-flHwXLvVWaLwPe737GJ536_0Jtkz9GXa7hpIvX-Dy1qiHx5ewXc2dDmgNhi7PrglV3TwpGkCz9Gev6tCZLwzpYkZIdKFdeeCQtEtlvsLN-Pffy0nUt0mIqozgUGSRo7YZARttyCHSBFDolnBfLjgndEUunIq1VdqUWllmreIoEivINnOLMWYHsF03tTmE0AhuC2ZFWlU5Q1GKSiDGmiBgIbhOygB-rokl5101DOmj2FkpO9JKIq30pJUsgAtHz82brpK1f9As7mQvGDJGkSIZSEYcwpTONSPImeWGC6aY0HEAJ-vVkL14tfKNGQL4sRkmwXDRDlWbZtW9Q0QoY5pHOVjFwYSGI_X9zJfYJj-ZsFSaB_BrveBvX__3Hx_9f7LH8DF1rOdTGU9ge7lYmW_k0yz1d8-4r7Nu9Ac priority: 102 providerName: ProQuest – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3BokpcEC2tCF9Kpd5K1GxiJ_YRVqxQpfZUVG6WHduiArKI3T3w73l2slsFwYFbEjuKM-PJm5fxjIm-2dLG8FVmPWYw07zI8M1zMPfa1MZIoeM-ZL9-V5dX7Oc1v-7L5IRcmEH8vhQ_5gCYkARWMPiBQOuMbdIWMFiE5VuTarL-nxIiVmws-7yY128dYE8s0T_wK1-uinwRGo2IM92lnd5VTM863X6kDdd-og_d5pFPezT56_Tt3VM6Xz4Ee587m4aculmq29m9RoN1i7jOqk0DVNkUBzdgnY8mlAJO8SVp3Ge6ml78mVxm_ZYIWVOC-mTecmt8CRJjHJwfAzKCU3C8SnIOJgV3TefGa-OE0Z55r7mVYy-Bw9zb3JZfaNTOWrdPqZPc18zLomkqZqWQjbQ2N6B7teRmLBL6vhKWeugqX6gYsS6F6kSrIFoVRatYQudBnuueoWp1vABlqt4IVG5lYQGGDLOBaVMZBnpZVo5Lppk0eUJHK22o3pTmqgS2jutQNzChr-tmGEGIbOjWzZZdHwhB5BiHGGhxMKBhS_vvJpbThk8M3lRUCZ2uFP7_6W-_8cH7uh_SdhGmYkxjPKLR4nHpjuHPLMxJnMjP3J3tJQ priority: 102 providerName: Springer Nature |
Title | Weakly supervised video anomaly detection based on hyperbolic space |
URI | https://link.springer.com/article/10.1038/s41598-024-77505-4 https://www.proquest.com/docview/3123173240 https://www.proquest.com/docview/3123549804 https://pubmed.ncbi.nlm.nih.gov/PMC11530626 https://doaj.org/article/0d92d718490e4ab6b484036e594a49b0 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlEIvpU_qJl1c6K111mtLtnVsloRQSAiloXsTkiU1IVl72cch_z6fZDvpBnrpzbIMlkcjzfdZ8yD6YnITjq8S46DBTPEswZ5nsdxLXWotKhXqkJ2dF6eX7MeMz3aoGGJhgtN-ra8Pm9v5YXN9FXwrF_N6PPiJjS_OpkAxQLpZMd6lXWjoXxy9y-idCTYRfYRMmlfjFayUjyTLGMAkTH7iq_HkAlg9CxVXHg1SyNu_BTafuko-OS8NZujkFb3s8WP8vRvna9qxzRt63lWUvHtL099W3dzexavNwm8CK2tiH2jXxqpp5wodxq6D81UTe_tlYlxcgYoutc8PHGN7qe07ujw5_jU9Tfo6CUmdgw8lznCjXQ5moy0QkQZDQRPErxCcg14Bw6lUO6VtpZVjziluxMQJGGfuTGry97TXtI39QLEV3JXMiayuC2ZEJWphTKrBAUvB9aSK6OsgLLno0mHIcIydV7KTsoSUZZCyZBEdeXk-POlTWYcb7fKP7CdUpkZkBhaSQUWY0oVm4Jx5YblgigmdRnQwzIbs19dK5jC4k9InE4zo80M3VoY_7lCNbTfdMxBClWIc1dYsbg1ouwcqF3JsDyoW0bdhwh_f_u8v_vj_b9qnF5nX0BDneEB76-XGfgLgWesRtHxWjujZ0fH5xU-0psV0FH4ejILm3wPRPwHh |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGE4IXtA8QBbYVaW-jotcmbfOEGBq6jY8nEPcWJXUCCGiP690D_z1O2jtUJPbWNpWa2o7tXxzbAD8xRR--itCSBDPFk4h0nqHlnutca1Eo34fs_CIbXrF_Iz7qNtya7ljlXCd6RY116fbID1JSsYPclY87HD9FrmuUi652LTSW4KOrw-U6GOSjfLHH4qJYbCC6XJk4LQ4aslcupyxh5FaS8Y9Yzx75sv09X_PtSck34VJvhU4-wXrnPoZHLb8_wwdTfYGVtqHk81c4vjbq_uE5bGZjpwMag6HLs6tDVdWPigbQTP3Zqyp05gtDurglJDrRrjxwSNqlNBtwdfLn8ngYdW0SojIlOBRZ5KhtSsBGG3KINAEUuiXclwnOCV2RC6dibZU2hVaWWas4ioEVZJu5xRjTTViu6spsQWgEtzmzIinLjKEoRCkQY00QMBdcD4oAfs2JJcdtNQzpo9hpIVvSSiKt9KSVLIDfjp6LN10la_-gntzIbmHIGEWCZCAZSQhTOtOMIGeaGS6YYkLHAezOuSG75dXIV2EIYG8xTAvDRTtUZepZ-w4RoYhpHkWPi70J9Uequ1tfYpv8ZMJSSRbA_pzhr19__4-3_z_ZH7A6vDw_k2d_L053YC1xYujTGndheTqZmW_k30z1dy_ELz459u4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiKcIFAgSN4g2G9tJfEK0dFVeqwpR0ZtlZ2yKgGTZ7B767xk73q1SCW5JHCnOeDwzn-cF8BIZBvdVho44mGtRZCTzLG33ylTGyFqHPmSfF-XxKf9wJs5i_FMfwyq3MjEIauwaf0Y-ZSRiZ5UvHzd1MSzi5N38zfJP5jtIeU9rbKdxHfYqXrJ8AnsHR4uTL7sTF-_T4jMZM2dyVk970l4-w6zgZGSSKZDxkXYKRfxHlufVuMkrztOgk-Z34HY0JtO3w-rfhWu2vQc3hvaSF_fh8JvVP39dpP1m6SVCbzH1WXddqtvut6YBtOsQidWmXplhShfnhEtXxhcLTknWNPYBnM6Pvh4eZ7FpQtYwAkeZQ4HGMYI5xpJ5ZAiu0C2hwFIKQViLDDqdG6eNrY123DktUM6cJE0tHObIHsKk7Vr7CFIrhau4k0XTlBxlLRuJmBsChJUUZlYn8GpLLLUcamOo4NNmtRpIq4i0KpBW8QQOPD13b_q61uFBt_qu4jZROcoCSV1y4heuTWk4AVBWWiG55tLkCexvV0PFzdarS9ZI4MVumLaJ933o1nab4R0iQp3TPOrRKo4mNB5pf5yHgttkNROyKsoEXm8X_PLr__7jx_-f7HO4SRysPr1ffHwCtwrPhSHHcR8m69XGPiVjZ22eRS7-Cx7q_Is |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+supervised+video+anomaly+detection+based+on+hyperbolic+space&rft.jtitle=Scientific+reports&rft.au=Qi%2C+Meilin&rft.au=Wu%2C+Yuanyuan&rft.date=2024-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-77505-4&rft_id=info%3Apmid%2F39487288&rft.externalDBID=PMC11530626 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |