Weakly supervised video anomaly detection based on hyperbolic space

In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly de...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 26348 - 12
Main Authors Qi, Meilin, Wu, Yuanyuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.
AbstractList In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.
Abstract In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.
In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.
ArticleNumber 26348
Author Wu, Yuanyuan
Qi, Meilin
Author_xml – sequence: 1
  givenname: Meilin
  surname: Qi
  fullname: Qi, Meilin
  organization: Chengdu University of Technology, College of Computer Science and Cyber Security (Pilot Software College)
– sequence: 2
  givenname: Yuanyuan
  surname: Wu
  fullname: Wu, Yuanyuan
  email: wuyuanyuan@cdut.edu.cn
  organization: Chengdu University of Technology, College of Computer Science and Cyber Security (Pilot Software College)
BookMark eNp9kUtv1DAUhS1UREvpH2AViQ2bgB_Xib1CaMSjUiU2IJaWHV9PM2TiwU5Gmn-PM6mAssAbX_uc--na5zm5GOOIhLxk9A2jQr3NwKRWNeVQt62ksoYn5IpTkDUXnF_8VV-Sm5x3tCzJNTD9jFwKDarlSl2RzXe0P4ZTlecDpmOf0VfH3mOs7Bj3tggeJ-ymPo6Vs4taivtT8bo49F2VD7bDF-RpsEPGm4f9mnz7-OHr5nN99-XT7eb9Xd0JBlAHL70LgjFwyCS4hspylKAbLSUHrbmw1AXrUDkbIAQrvWZBA29k8NSLa3K7cn20O3NI_d6mk4m2N-eLmLbGpqnvBjTUa-5bpkBTBOsaBwqoaFBqsKAdLax3K-swuz36Dscp2eER9LEy9vdmG4-GMSlow5tCeP1ASPHnjHky-z53OAx2xDhnIxhfHqcoFOurf6y7OKex_NXZxVrBYRmJr64uxZwTht_TMGqWzM2auSmZm3PmZkGLtSkX87jF9Af9n65f9A6uXQ
Cites_doi 10.1109/CVPR46437.2021.01379
10.1007/978-3-031-19778-9_42
10.1609/aaai.v37i3.25489
10.1109/ICCV.2019.00719
10.1609/aaai.v37i1.25112
10.1109/CVPR52733.2024.01180
10.1109/ICCV.2019.00829
10.1109/LSP.2022.3226411
10.1109/CVPR52688.2022.01433
10.1145/3488560.3498419
10.1109/WACV56688.2023.00550
10.1007/978-3-030-58577-8_20
10.1109/ICME46284.2020.9102722
10.1109/CVPR52729.2023.01561
10.1007/978-3-030-58542-6_22
10.1609/aaai.v36i2.20028
10.1145/3459637.3482109
10.1109/CVPR.2017.502
10.18653/v1/2022.acl-long.389
10.1109/ICCV48922.2021.00493
10.1016/j.neucom.2022.01.026
10.1109/CVPR.2018.00678
10.1109/WACV57701.2024.00665
10.1109/ICASSP39728.2021.9413686
10.1109/CVPR.2016.86
10.1021/acs.jcim.0c00681
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-77505-4
DatabaseName Springer Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_0d92d718490e4ab6b484036e594a49b0
10_1038_s41598_024_77505_4
GrantInformation_xml – fundername: Chengdu University of Technology 2023 Young and Middle-aged Backbone Teachers Development Funding Program
  grantid: NO.10912-JXGG2023-06470
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c3144-fd5dbf3114be154b605bf35496955249923a0bfabe8baf4ffa5d91f94265fd0d3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Mon Nov 04 19:57:31 EST 2024
Mon Nov 04 05:26:24 EST 2024
Mon Nov 04 17:47:10 EST 2024
Sat Nov 02 05:21:42 EDT 2024
Wed Nov 06 13:16:57 EST 2024
Sat Nov 02 01:30:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Video anomaly detection
Weakly supervised
Hyperbolic space
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3144-fd5dbf3114be154b605bf35496955249923a0bfabe8baf4ffa5d91f94265fd0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530626/
PMID 39487288
PQID 3123173240
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0d92d718490e4ab6b484036e594a49b0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11530626
proquest_miscellaneous_3123549804
proquest_journals_3123173240
crossref_primary_10_1038_s41598_024_77505_4
springer_journals_10_1038_s41598_024_77505_4
PublicationCentury 2000
PublicationDate 11-1-2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 11-1-2024
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K. & Davis, L. S. Learning temporal regularity in video sequences. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 733–742 (2016).
Zaheer, M. Z. et al. Generative cooperative learning for unsupervised video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14744–14754 (2022).
Zeng, R. et al. Graph convolutional networks for temporal action localization. In Proc. of the IEEE/CVF international conference on computer vision, 7094–7103 (2019).
Wu, P. et al. Not only look, but also listen: Learning multimodal violence detection under weak supervision. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16, 322–339 (Springer, 2020).
CorsoGNeural distance embeddings for biological sequencesAdv. Neural. Inf. Process. Syst.2021341853918551
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint[SPACE]http://arxiv.org/abs/1412.6980 (2014).
GeraldTZaatitiHHajriHBaskiotisNSchwanderOA hyperbolic approach for learning communities on graphsData Min. Knowl. Disc.202337109011244572207
Schölkopf, B., Williamson, R. C., Smola, A., Shawe-Taylor, J. & Platt, J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst.12 (1999).
Thakare, K. V., Raghuwanshi, Y., Dogra, D. P., Choi, H. & Kim, I.-J. Dyannet: A scene dynamicity guided self-trained video anomaly detection network. In Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 5541–5550 (2023).
Al-Lahham, A., Zaheer, M. Z., Tastan, N. & Nandakumar, K. Collaborative learning of anomalies with privacy (clap) for unsupervised video anomaly detection: A new baseline. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12416–12425 (2024).
ChenYMgfn: Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence20233738739510.1609/aaai.v37i1.25112
Nickel, M. & Kiela, D. Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In International Conference on Machine Learning, 3779–3788 (PMLR, 2018).
Wu, J.-C., Hsieh, H.-Y., Chen, D.-J., Fuh, C.-S. & Liu, T.-L. Self-supervised sparse representation for video anomaly detection. In European Conference on Computer Vision, 729–745 (Springer, 2022).
LiSLiuFJiaoLSelf-training multi-sequence learning with transformer for weakly supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence2022361395140310.1609/aaai.v36i2.20028
Nickel, M. & Kiela, D. Poincaré embeddings for learning hierarchical representations. Adv. Neural Inf. Process. Syst.30 (2017).
YuKVisweswaranSBatmanghelichKSemi-supervised hierarchical drug embedding in hyperbolic spaceJ. Chem. Inf. Model.202060564756571:CAS:528:DC%2BB3cXit1agurjN10.1021/acs.jcim.0c00681331409697943198
Tian, Y. et al. Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In Proc. of the IEEE/CVF International Conference on Computer Vision, 4975–4986 (2021).
Al-Lahham, A., Tastan, N., Zaheer, M. Z. & Nandakumar, K. A coarse-to-fine pseudo-labeling (c2fpl) framework for unsupervised video anomaly detection. In Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision, 6793–6802 (2024).
Pang, W.-F., He, Q.-H., Hu, Y.-j. & Li, Y.-X. Violence detection in videos based on fusing visual and audio information. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2260–2264 (IEEE, 2021).
Gulcehre, C. et al. Hyperbolic attention networks. In International Conference on Learning Representations.
Sala, F., De Sa, C., Gu, A. & Ré, C. Representation tradeoffs for hyperbolic embeddings. In International Conference on Machine Learning, 4460–4469 (PMLR, 2018).
Carreira, J. & Zisserman, A. Quo vadis, action recognition? a new model and the kinetics dataset. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 6299–6308 (2017).
LiNZhongJ-XShuXGuoHWeakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaningNeurocomputing202248115416710.1016/j.neucom.2022.01.026
Wang, J. & Cherian, A. Gods: Generalized one-class discriminative subspaces for anomaly detection. In Proc. of the IEEE/CVF International Conference on Computer Vision, 8201–8211 (2019).
Feng, J.-C., Hong, F.-T. & Zheng, W.-S. Mist: Multiple instance self-training framework for video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14009–14018 (2021).
Zhang, C. et al. Exploiting completeness and uncertainty of pseudo labels for weakly supervised video anomaly detection. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16271–16280 (2023).
Wan, B., Fang, Y., Xia, X. & Mei, J. Weakly supervised video anomaly detection via center-guided discriminative learning. In 2020 IEEE International Conference on Multimedia and Expo (ICME), 1–6 (IEEE, 2020).
Sultani, W., Chen, C. & Shah, M. Real-world anomaly detection in surveillance videos. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 6479–6488 (2018).
Zaheer, M. Z., Mahmood, A., Astrid, M. & Lee, S.-I. Claws: Clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, 358–376 (Springer, 2020).
ZhouHYuJYangWDual memory units with uncertainty regulation for weakly supervised video anomaly detectionIn Proc. of the AAAI Conference on Artificial Intelligence2023373769377710.1609/aaai.v37i3.25489
Chami, I., Ying, Z., Ré, C. & Leskovec, J. Hyperbolic graph convolutional neural networks. Adv. Neural Inf. Process. Syst.32 (2019).
Chen, Y. et al. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware recommendation. In Proc. of the Fifteenth ACM International Conference on Web Search and Data Mining, 94–102 (2022).
Tifrea, A., Becigneul, G. & Ganea, O.-E. Poincare glove: Hyperbolic word embeddings. In International Conference on Learning Representations.
Ganea, O., Bécigneul, G. & Hofmann, T. Hyperbolic neural networks. Adv. Neural Inf. Process. Syst.31 (2018).
Wang, L., Hu, F., Wu, S. & Wang, L. Fully hyperbolic graph convolution network for recommendation. In Proc. of the 30th ACM International Conference on Information & Knowledge Management, 3483–3487 (2021).
Chen, W. et al. Fully hyperbolic neural networks. In Proc. of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 5672–5686 (2022).
CaoCZhangXZhangSWangPZhangYAdaptive graph convolutional networks for weakly supervised anomaly detection in videosIEEE Signal Process. Lett.202229249725012022ISPL...29.2497C10.1109/LSP.2022.3226411
Becigneul, G. & Ganea, O.-E. Riemannian adaptive optimization methods. In International Conference on Learning Representations.
77505_CR2
77505_CR3
77505_CR1
K Yu (77505_CR16) 2020; 60
S Li (77505_CR30) 2022; 36
C Cao (77505_CR38) 2022; 29
N Li (77505_CR17) 2022; 481
77505_CR19
77505_CR18
77505_CR15
77505_CR37
77505_CR14
77505_CR36
77505_CR13
77505_CR35
77505_CR12
77505_CR34
77505_CR11
77505_CR33
77505_CR32
77505_CR31
G Corso (77505_CR9) 2021; 34
T Gerald (77505_CR10) 2023; 37
77505_CR29
77505_CR28
77505_CR27
77505_CR26
77505_CR25
77505_CR24
77505_CR8
77505_CR23
H Zhou (77505_CR7) 2023; 37
77505_CR22
Y Chen (77505_CR5) 2023; 37
77505_CR6
77505_CR21
77505_CR20
77505_CR4
References_xml – ident: 77505_CR29
– ident: 77505_CR6
  doi: 10.1109/CVPR46437.2021.01379
– ident: 77505_CR32
  doi: 10.1007/978-3-031-19778-9_42
– volume: 37
  start-page: 3769
  year: 2023
  ident: 77505_CR7
  publication-title: In Proc. of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v37i3.25489
  contributor:
    fullname: H Zhou
– ident: 77505_CR23
  doi: 10.1109/ICCV.2019.00719
– volume: 37
  start-page: 387
  year: 2023
  ident: 77505_CR5
  publication-title: In Proc. of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v37i1.25112
  contributor:
    fullname: Y Chen
– ident: 77505_CR36
  doi: 10.1109/CVPR52733.2024.01180
– ident: 77505_CR34
  doi: 10.1109/ICCV.2019.00829
– volume: 29
  start-page: 2497
  year: 2022
  ident: 77505_CR38
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2022.3226411
  contributor:
    fullname: C Cao
– ident: 77505_CR1
  doi: 10.1109/CVPR52688.2022.01433
– ident: 77505_CR12
  doi: 10.1145/3488560.3498419
– ident: 77505_CR19
– ident: 77505_CR27
  doi: 10.1109/WACV56688.2023.00550
– ident: 77505_CR15
– ident: 77505_CR18
  doi: 10.1007/978-3-030-58577-8_20
– ident: 77505_CR3
  doi: 10.1109/ICME46284.2020.9102722
– ident: 77505_CR31
  doi: 10.1109/CVPR52729.2023.01561
– ident: 77505_CR37
  doi: 10.1007/978-3-030-58542-6_22
– ident: 77505_CR13
– ident: 77505_CR21
– ident: 77505_CR25
– volume: 36
  start-page: 1395
  year: 2022
  ident: 77505_CR30
  publication-title: In Proc. of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v36i2.20028
  contributor:
    fullname: S Li
– volume: 37
  start-page: 1090
  year: 2023
  ident: 77505_CR10
  publication-title: Data Min. Knowl. Disc.
  contributor:
    fullname: T Gerald
– volume: 34
  start-page: 18539
  year: 2021
  ident: 77505_CR9
  publication-title: Adv. Neural. Inf. Process. Syst.
  contributor:
    fullname: G Corso
– ident: 77505_CR11
  doi: 10.1145/3459637.3482109
– ident: 77505_CR22
  doi: 10.1109/CVPR.2017.502
– ident: 77505_CR26
– ident: 77505_CR24
  doi: 10.18653/v1/2022.acl-long.389
– ident: 77505_CR4
  doi: 10.1109/ICCV48922.2021.00493
– volume: 481
  start-page: 154
  year: 2022
  ident: 77505_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.026
  contributor:
    fullname: N Li
– ident: 77505_CR8
– ident: 77505_CR2
  doi: 10.1109/CVPR.2018.00678
– ident: 77505_CR35
  doi: 10.1109/WACV57701.2024.00665
– ident: 77505_CR33
  doi: 10.1109/ICASSP39728.2021.9413686
– ident: 77505_CR20
– ident: 77505_CR14
– ident: 77505_CR28
  doi: 10.1109/CVPR.2016.86
– volume: 60
  start-page: 5647
  year: 2020
  ident: 77505_CR16
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00681
  contributor:
    fullname: K Yu
SSID ssj0000529419
Score 2.4795363
Snippet In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing...
Abstract In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 26348
SubjectTerms 639/705/117
639/705/258
Aggression
Embedding
Euclidean space
Humanities and Social Sciences
Hyperbolic space
multidisciplinary
Science
Science (multidisciplinary)
Video anomaly detection
Weakly supervised
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idUsGblvUjaZujDscQ9ORwt5A0CRO1Het22H_vS9LNdSBevLVNaZP3krz34-X9HkI3MpE2fBVIDTMYcxIHsOcpWO6ZyISgObd1yJ5f0uEIP43JeKPUlzkT5uiBneB6oaSxhA0UwxcwF6nAAEmSVBGKOabCofWQboApx-odUxzRJksmTPJeDZbKZJPFGBxKMPsBblkiS9jf8jK3z0huBUqt_RkcoP3GcfTvXYcP0Y4qj9CuKyW5PEb9N8U_Ppd-vZia1V8r6ZsMu8rnZfXFoUGquT11VfrGcEkfLiaAQWfCEAP7sK8U6gSNBo-v_WHQFEgIigSAUKAlkUInAGmEAldIADSBW0B8KSUEcBU4bzwUmguVC66x1pxIGmkKVploGcrkFHXKqlRnyFeU6AxrGhdFiiXNaUGlDAWAv4wSEeUeul0Ji00dDwaz8eskZ060DETLrGgZ9tCDkef6TcNhbR-AZlmjWfaXZj3UXWmDNQurZglY2igzLIIeul43w5IwcQ5eqmrh3gEh5CH0I29psdWhdkv5PrHk2uAhA4qKUw_drRT-8_ffR3z-HyO-QHuxmaA21bGLOvPZQl2CzzMXV3Z6fwMwEfun
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5REFIviD4QAVqlErc22jzsJD4hQF2tkOipiL1ZdsZmEZAsm90D_56xk10UpPaWxJHijOf1eTwzAKeYoQ9fRWiJg5niaUQ6z5C4F7rQWpTK9yG7_pNPbtjVlE_7Dbe2P1a51oleUWNTuT3yUUYqNilc-biz-XPkuka56GrfQuMD7CRpnLsjXcW02OyxuCgWS0SfKxNn5agle-VyylJGbiUZ_4gN7JEv2z_wNd-flHwXLvVWaLwPe737GJ536_0Jtkz9GXa7hpIvX-Dy1qiHx5ewXc2dDmgNhi7PrglV3TwpGkCz9Gev6tCZLwzpYkZIdKFdeeCQtEtlvsLN-Pffy0nUt0mIqozgUGSRo7YZARttyCHSBFDolnBfLjgndEUunIq1VdqUWllmreIoEivINnOLMWYHsF03tTmE0AhuC2ZFWlU5Q1GKSiDGmiBgIbhOygB-rokl5101DOmj2FkpO9JKIq30pJUsgAtHz82brpK1f9As7mQvGDJGkSIZSEYcwpTONSPImeWGC6aY0HEAJ-vVkL14tfKNGQL4sRkmwXDRDlWbZtW9Q0QoY5pHOVjFwYSGI_X9zJfYJj-ZsFSaB_BrveBvX__3Hx_9f7LH8DF1rOdTGU9ge7lYmW_k0yz1d8-4r7Nu9Ac
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3BokpcEC2tCF9Kpd5K1GxiJ_YRVqxQpfZUVG6WHduiArKI3T3w73l2slsFwYFbEjuKM-PJm5fxjIm-2dLG8FVmPWYw07zI8M1zMPfa1MZIoeM-ZL9-V5dX7Oc1v-7L5IRcmEH8vhQ_5gCYkARWMPiBQOuMbdIWMFiE5VuTarL-nxIiVmws-7yY128dYE8s0T_wK1-uinwRGo2IM92lnd5VTM863X6kDdd-og_d5pFPezT56_Tt3VM6Xz4Ee587m4aculmq29m9RoN1i7jOqk0DVNkUBzdgnY8mlAJO8SVp3Ge6ml78mVxm_ZYIWVOC-mTecmt8CRJjHJwfAzKCU3C8SnIOJgV3TefGa-OE0Z55r7mVYy-Bw9zb3JZfaNTOWrdPqZPc18zLomkqZqWQjbQ2N6B7teRmLBL6vhKWeugqX6gYsS6F6kSrIFoVRatYQudBnuueoWp1vABlqt4IVG5lYQGGDLOBaVMZBnpZVo5Lppk0eUJHK22o3pTmqgS2jutQNzChr-tmGEGIbOjWzZZdHwhB5BiHGGhxMKBhS_vvJpbThk8M3lRUCZ2uFP7_6W-_8cH7uh_SdhGmYkxjPKLR4nHpjuHPLMxJnMjP3J3tJQ
  priority: 102
  providerName: Springer Nature
Title Weakly supervised video anomaly detection based on hyperbolic space
URI https://link.springer.com/article/10.1038/s41598-024-77505-4
https://www.proquest.com/docview/3123173240
https://www.proquest.com/docview/3123549804
https://pubmed.ncbi.nlm.nih.gov/PMC11530626
https://doaj.org/article/0d92d718490e4ab6b484036e594a49b0
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlEIvpU_qJl1c6K111mtLtnVsloRQSAiloXsTkiU1IVl72cch_z6fZDvpBnrpzbIMlkcjzfdZ8yD6YnITjq8S46DBTPEswZ5nsdxLXWotKhXqkJ2dF6eX7MeMz3aoGGJhgtN-ra8Pm9v5YXN9FXwrF_N6PPiJjS_OpkAxQLpZMd6lXWjoXxy9y-idCTYRfYRMmlfjFayUjyTLGMAkTH7iq_HkAlg9CxVXHg1SyNu_BTafuko-OS8NZujkFb3s8WP8vRvna9qxzRt63lWUvHtL099W3dzexavNwm8CK2tiH2jXxqpp5wodxq6D81UTe_tlYlxcgYoutc8PHGN7qe07ujw5_jU9Tfo6CUmdgw8lznCjXQ5moy0QkQZDQRPErxCcg14Bw6lUO6VtpZVjziluxMQJGGfuTGry97TXtI39QLEV3JXMiayuC2ZEJWphTKrBAUvB9aSK6OsgLLno0mHIcIydV7KTsoSUZZCyZBEdeXk-POlTWYcb7fKP7CdUpkZkBhaSQUWY0oVm4Jx5YblgigmdRnQwzIbs19dK5jC4k9InE4zo80M3VoY_7lCNbTfdMxBClWIc1dYsbg1ouwcqF3JsDyoW0bdhwh_f_u8v_vj_b9qnF5nX0BDneEB76-XGfgLgWesRtHxWjujZ0fH5xU-0psV0FH4ejILm3wPRPwHh
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGE4IXtA8QBbYVaW-jotcmbfOEGBq6jY8nEPcWJXUCCGiP690D_z1O2jtUJPbWNpWa2o7tXxzbAD8xRR--itCSBDPFk4h0nqHlnutca1Eo34fs_CIbXrF_Iz7qNtya7ljlXCd6RY116fbID1JSsYPclY87HD9FrmuUi652LTSW4KOrw-U6GOSjfLHH4qJYbCC6XJk4LQ4aslcupyxh5FaS8Y9Yzx75sv09X_PtSck34VJvhU4-wXrnPoZHLb8_wwdTfYGVtqHk81c4vjbq_uE5bGZjpwMag6HLs6tDVdWPigbQTP3Zqyp05gtDurglJDrRrjxwSNqlNBtwdfLn8ngYdW0SojIlOBRZ5KhtSsBGG3KINAEUuiXclwnOCV2RC6dibZU2hVaWWas4ioEVZJu5xRjTTViu6spsQWgEtzmzIinLjKEoRCkQY00QMBdcD4oAfs2JJcdtNQzpo9hpIVvSSiKt9KSVLIDfjp6LN10la_-gntzIbmHIGEWCZCAZSQhTOtOMIGeaGS6YYkLHAezOuSG75dXIV2EIYG8xTAvDRTtUZepZ-w4RoYhpHkWPi70J9Uequ1tfYpv8ZMJSSRbA_pzhr19__4-3_z_ZH7A6vDw_k2d_L053YC1xYujTGndheTqZmW_k30z1dy_ELz459u4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiKcIFAgSN4g2G9tJfEK0dFVeqwpR0ZtlZ2yKgGTZ7B767xk73q1SCW5JHCnOeDwzn-cF8BIZBvdVho44mGtRZCTzLG33ylTGyFqHPmSfF-XxKf9wJs5i_FMfwyq3MjEIauwaf0Y-ZSRiZ5UvHzd1MSzi5N38zfJP5jtIeU9rbKdxHfYqXrJ8AnsHR4uTL7sTF-_T4jMZM2dyVk970l4-w6zgZGSSKZDxkXYKRfxHlufVuMkrztOgk-Z34HY0JtO3w-rfhWu2vQc3hvaSF_fh8JvVP39dpP1m6SVCbzH1WXddqtvut6YBtOsQidWmXplhShfnhEtXxhcLTknWNPYBnM6Pvh4eZ7FpQtYwAkeZQ4HGMYI5xpJ5ZAiu0C2hwFIKQViLDDqdG6eNrY123DktUM6cJE0tHObIHsKk7Vr7CFIrhau4k0XTlBxlLRuJmBsChJUUZlYn8GpLLLUcamOo4NNmtRpIq4i0KpBW8QQOPD13b_q61uFBt_qu4jZROcoCSV1y4heuTWk4AVBWWiG55tLkCexvV0PFzdarS9ZI4MVumLaJ933o1nab4R0iQp3TPOrRKo4mNB5pf5yHgttkNROyKsoEXm8X_PLr__7jx_-f7HO4SRysPr1ffHwCtwrPhSHHcR8m69XGPiVjZ22eRS7-Cx7q_Is
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly+supervised+video+anomaly+detection+based+on+hyperbolic+space&rft.jtitle=Scientific+reports&rft.au=Qi%2C+Meilin&rft.au=Wu%2C+Yuanyuan&rft.date=2024-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-77505-4&rft_id=info%3Apmid%2F39487288&rft.externalDBID=PMC11530626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon