A NEW AUTO-SCORING ALGORITHM FOR BALANCE ASSESSMENT WITH WEARABLE IMU DEVICE BASED ON NONLINEAR MODEL
In this paper, a new auto-scoring algorithm that automatically evaluates the Berg balance scale (BBS) tasks is proposed. The BBS can be used as an indicator for patients to analyze their rehabilitation status by themselves. In the proposed method, the patient must use a wearable inertial measurement...
Saved in:
Published in | Journal of mechanics in medicine and biology Vol. 20; no. 10; p. 2040011 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.12.2020
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a new auto-scoring algorithm that automatically evaluates the Berg balance scale (BBS) tasks is proposed. The BBS can be used as an indicator for patients to analyze their rehabilitation status by themselves. In the proposed method, the patient must use a wearable inertial measurement unit (IMU) sensor, and the result of the patient’s BBS task execution would be scored automatically by the evaluation algorithm. The proposed evaluation algorithm involves only few computations and has high scoring accuracy. Nonlinear kernel principal component analysis and a small number of linear features were combined to reduce the features from each sensor, and the algorithm model was implemented using a support vector machine (SVM), a machine learning technique with low computational complexity. The effectiveness of the algorithm was evaluated through clinical evaluation of 53 subjects with up to eight IMU sensors. The average accuracy of the proposed algorithm using eight sensors was 93.2%, and that using five sensors was 91.5%. There was a 12.6% and 10.9% increase in accuracy, respectively, compared to a previous study. The training and testing times of the proposed SVM model were over 38 times faster than the multi-layer perceptron model used in a previous study. |
---|---|
AbstractList | In this paper, a new auto-scoring algorithm that automatically evaluates the Berg balance scale (BBS) tasks is proposed. The BBS can be used as an indicator for patients to analyze their rehabilitation status by themselves. In the proposed method, the patient must use a wearable inertial measurement unit (IMU) sensor, and the result of the patient’s BBS task execution would be scored automatically by the evaluation algorithm. The proposed evaluation algorithm involves only few computations and has high scoring accuracy. Nonlinear kernel principal component analysis and a small number of linear features were combined to reduce the features from each sensor, and the algorithm model was implemented using a support vector machine (SVM), a machine learning technique with low computational complexity. The effectiveness of the algorithm was evaluated through clinical evaluation of 53 subjects with up to eight IMU sensors. The average accuracy of the proposed algorithm using eight sensors was 93.2%, and that using five sensors was 91.5%. There was a 12.6% and 10.9% increase in accuracy, respectively, compared to a previous study. The training and testing times of the proposed SVM model were over 38 times faster than the multi-layer perceptron model used in a previous study. |
Author | LEE, SANGMIN JUNG, HAN YOUNG JOA, KYUNG LIM CHO, WOO HYEONG KIM, YEON WOOK |
Author_xml | – sequence: 1 givenname: YEON WOOK surname: KIM fullname: KIM, YEON WOOK – sequence: 2 givenname: WOO HYEONG surname: CHO fullname: CHO, WOO HYEONG – sequence: 3 givenname: KYUNG LIM surname: JOA fullname: JOA, KYUNG LIM – sequence: 4 givenname: HAN YOUNG surname: JUNG fullname: JUNG, HAN YOUNG – sequence: 5 givenname: SANGMIN surname: LEE fullname: LEE, SANGMIN |
BookMark | eNp9kEtrg0AUhYeSQpO0P6C7ga5t585MHF1OzCQRfEA0zVKsjmBINVVD6b_vhJQuGujqPs757oE7QaOmbTRCj0CeATh9SQgFdwYup4QTYlY3aAzCZZbtABmh8Vm2zvodmvT9npiZE2eMtMSR2mG5TWMr8eKNH62wDFamSdchXsYbPJeBjDyFZZKoJAlVlOKdEfFOyY2cBwr74RYv1KtvPHOZqAWOIxzFUeBHxoHDeKGCe3Rb5YdeP_zUKdouVeqtrSBe-Z4MrIIB5xZ1WU5coDYw7XKY5dTJRVEABeJWhDFdaloBr7ioCgDGGM-hLO23EgQRgjhsip4ud49d-3HS_ZDt21PXmMiMcmFTQSmbGRdcXEXX9n2nq-zY1e9595UByc7fzK6-aRjxhynqIR_qthm6vD78S5IL-dl2h7Ivat0MdVUXv6HXyDdEtH4I |
CitedBy_id | crossref_primary_10_1142_S0219519422400486 crossref_primary_10_3390_s22103932 crossref_primary_10_1177_09544119251317614 crossref_primary_10_3390_s21227628 |
Cites_doi | 10.1109/ICCAS.2015.7364654 10.1023/A:1009715923555 10.1007/s12206-009-0438-9 10.1007/978-3-540-77690-1_2 10.2522/ptj.20070205 10.1097/00005768-200201000-00003 10.1053/apmr.2002.35469 10.1016/j.fishres.2006.11.021 10.1016/j.patcog.2015.11.015 10.1111/j.1532-5415.1991.tb01616.x 10.1191/0269215504cr733oa 10.1016/j.conbuildmat.2019.117021 10.1016/j.math.2006.07.009 10.1109/TNSRE.2016.2519413 10.1097/01.wco.0000200544.29915.cc 10.1016/0268-0033(94)90004-3 10.2522/ptj.20070251 10.1109/TSMCB.2008.2002909 10.1016/j.proenv.2011.12.040 10.1016/j.mcna.2006.05.013 10.1186/s40537-019-0192-5 10.1093/comjnl/bxz035 10.1016/j.compmedimag.2015.05.007 10.1109/LSP.2003.821662 10.1016/j.bspc.2015.10.005 10.3390/s20123600 10.1093/ptj/73.4.254 10.1093/ageing/afl084 10.1023/A:1027388729489 10.1109/TNNLS.2013.2246188 10.1007/s00170-016-9887-3 |
ContentType | Journal Article |
Copyright | 2020, The Author(s) 2020. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Copyright_xml | – notice: 2020, The Author(s) – notice: 2020. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
DBID | ADCHV AAYXX CITATION |
DOI | 10.1142/S0219519420400114 |
DatabaseName | World Scientific Open CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1793-6810 |
ExternalDocumentID | 10_1142_S0219519420400114 S0219519420400114 |
GroupedDBID | 0R~ 4.4 53G 5GY ABDBF ADCHV ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EAD EAP EBD EBS EJD EMK EOJEC EPL ESX F5P HZ~ I-F MK~ ML~ O9- OBODZ P2P P71 RWJ TUS AAYXX ACUHS CITATION |
ID | FETCH-LOGICAL-c3144-293a0912613e9415a28a7cc12109f033ede2f14f47fc113334a1dd6bd17077083 |
ISSN | 0219-5194 |
IngestDate | Sun Jun 29 15:32:27 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Tue Jul 01 04:02:18 EDT 2025 Fri Aug 23 08:19:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | inertial measurement unit Balance assessment support vector machine kernel principal component analysis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3144-293a0912613e9415a28a7cc12109f033ede2f14f47fc113334a1dd6bd17077083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://www.worldscientific.com/doi/abs/10.1142/S0219519420400114 |
PQID | 2476272235 |
PQPubID | 2049871 |
ParticipantIDs | crossref_primary_10_1142_S0219519420400114 worldscientific_primary_S0219519420400114 proquest_journals_2476272235 crossref_citationtrail_10_1142_S0219519420400114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of mechanics in medicine and biology |
PublicationYear | 2020 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Muir SW (S0219519420400114BIB014) 2008; 88 Lahdhiri H (S0219519420400114BIB022) 2017; 91 Blum L (S0219519420400114BIB010) 2008; 88 Rubenstein IZ (S0219519420400114BIB002) 2006; 35 Verheyden G (S0219519420400114BIB009) 2004; 18 Badura P (S0219519420400114BIB015) 2015; 46 Liu Z (S0219519420400114BIB024) 2011; 11 Dite W (S0219519420400114BIB008) 2002; 83 Tang Y (S0219519420400114BIB028) 2008; 39 Azimi-Pour M (S0219519420400114BIB031) 2020; 230 Castro CL (S0219519420400114BIB033) 2013; 24 Bermejo S (S0219519420400114BIB026) 2007; 84 Caruana R (S0219519420400114BIB037) 2001 Flandrin P (S0219519420400114BIB018) 2004; 11 Rubenstein LZ (S0219519420400114BIB012) 2006; 90 Ayachi F (S0219519420400114BIB019) 2016; 24 Abdollahi M (S0219519420400114BIB036) 2020; 20 Podsiadlo D (S0219519420400114BIB006) 1991; 48 Badura P (S0219519420400114BIB016) 2016; 24 Qu M (S0219519420400114BIB017) 2003; 217 Burges CJC (S0219519420400114BIB025) 1998; 2 Caruana R (S0219519420400114BIB035) 2006 Johnson JM (S0219519420400114BIB032) 2019; 6 Zappi P (S0219519420400114BIB021) 2008 Roebroeck ME (S0219519420400114BIB007) 1994; 9 Neffati S (S0219519420400114BIB029) 2020; 63 Krakauer JW (S0219519420400114BIB013) 2006; 19 Naseer N (S0219519420400114BIB034) 2015 Mondal R (S0219519420400114BIB038) 2020 Dong H (S0219519420400114BIB020) 2009; 23 Akbani R (S0219519420400114BIB027) 2004 Ghumman MK (S0219519420400114BIB030) 2020; 12 Judge JO (S0219519420400114BIB003) 1993; 73 Stevens VK (S0219519420400114BIB005) 2007; 12 Liu R (S0219519420400114BIB023) 2016; 53 Pasupa K (S0219519420400114BIB039) 2016 Tideiksaar R (S0219519420400114BIB011) 1997 Kelly JP (S0219519420400114BIB001) 1991 Nadler SF (S0219519420400114BIB004) 2002; 34 |
References_xml | – start-page: 1817 volume-title: 2015 15th Int Conf Control, Automation and Systems (ICCAS) year: 2015 ident: S0219519420400114BIB034 doi: 10.1109/ICCAS.2015.7364654 – volume: 2 start-page: 121 year: 1998 ident: S0219519420400114BIB025 publication-title: Data Min Knowl Discov doi: 10.1023/A:1009715923555 – volume: 23 start-page: 2000 year: 2009 ident: S0219519420400114BIB020 publication-title: J Mech Sci Technol doi: 10.1007/s12206-009-0438-9 – volume: 12 start-page: 841 issue: 2 year: 2020 ident: S0219519420400114BIB030 publication-title: J Xi’an Univ Arch Technol – start-page: 17 volume-title: European Conf Wireless Sensor Networks year: 2008 ident: S0219519420400114BIB021 doi: 10.1007/978-3-540-77690-1_2 – volume: 88 start-page: 559 year: 2008 ident: S0219519420400114BIB010 publication-title: Phys Ther doi: 10.2522/ptj.20070205 – volume: 34 start-page: 9 year: 2002 ident: S0219519420400114BIB004 publication-title: Med Sci Sports Exerc doi: 10.1097/00005768-200201000-00003 – volume: 83 start-page: 1566 year: 2002 ident: S0219519420400114BIB008 publication-title: Arch Phys Med Rehabil doi: 10.1053/apmr.2002.35469 – volume: 84 start-page: 247 year: 2007 ident: S0219519420400114BIB026 publication-title: Fish Res doi: 10.1016/j.fishres.2006.11.021 – volume: 53 start-page: 73 year: 2016 ident: S0219519420400114BIB023 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.11.015 – start-page: 39 volume-title: European Conf Machine Learning year: 2004 ident: S0219519420400114BIB027 – start-page: 1 volume-title: 2016 8th Int Conf Information Technology and Electrical Engineering (ICITEE) year: 2016 ident: S0219519420400114BIB039 – volume: 48 start-page: 142 year: 1991 ident: S0219519420400114BIB006 publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.1991.tb01616.x – volume: 18 start-page: 326 year: 2004 ident: S0219519420400114BIB009 publication-title: Clin Rehabil doi: 10.1191/0269215504cr733oa – volume: 230 start-page: 117021 year: 2020 ident: S0219519420400114BIB031 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117021 – volume: 12 start-page: 271 year: 2007 ident: S0219519420400114BIB005 publication-title: Man Ther doi: 10.1016/j.math.2006.07.009 – volume: 24 start-page: 1060 year: 2016 ident: S0219519420400114BIB019 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2519413 – start-page: 1 volume-title: 2020 Int Conf Computer Science, Engineering and Applications (ICCSEA) year: 2020 ident: S0219519420400114BIB038 – volume: 19 start-page: 84 year: 2006 ident: S0219519420400114BIB013 publication-title: Curr Opin Neurol doi: 10.1097/01.wco.0000200544.29915.cc – volume: 9 start-page: 235 year: 1994 ident: S0219519420400114BIB007 publication-title: Clin Biomech doi: 10.1016/0268-0033(94)90004-3 – volume: 88 start-page: 449 year: 2008 ident: S0219519420400114BIB014 publication-title: Phys Ther doi: 10.2522/ptj.20070251 – volume: 39 start-page: 281 issue: 1 year: 2008 ident: S0219519420400114BIB028 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2002909 – start-page: 161 volume-title: Proc 23rd Int Conf Machine Learning year: 2006 ident: S0219519420400114BIB035 – volume: 11 start-page: 256 year: 2011 ident: S0219519420400114BIB024 publication-title: Procedia Environ Sci doi: 10.1016/j.proenv.2011.12.040 – volume: 90 start-page: 807 year: 2006 ident: S0219519420400114BIB012 publication-title: Med Clin North Am doi: 10.1016/j.mcna.2006.05.013 – volume: 6 start-page: 27 year: 2019 ident: S0219519420400114BIB032 publication-title: J Big Data doi: 10.1186/s40537-019-0192-5 – volume: 63 start-page: 383 year: 2020 ident: S0219519420400114BIB029 publication-title: Comput J doi: 10.1093/comjnl/bxz035 – volume: 46 start-page: 169 year: 2015 ident: S0219519420400114BIB015 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2015.05.007 – start-page: 402 volume-title: Advances in Neural Information Processing Systems year: 2001 ident: S0219519420400114BIB037 – volume: 11 start-page: 112 year: 2004 ident: S0219519420400114BIB018 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2003.821662 – volume: 24 start-page: 114 year: 2016 ident: S0219519420400114BIB016 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.10.005 – volume: 20 start-page: 3600 issue: 12 year: 2020 ident: S0219519420400114BIB036 publication-title: Sensors doi: 10.3390/s20123600 – volume: 73 start-page: 254 year: 1993 ident: S0219519420400114BIB003 publication-title: Phys Ther doi: 10.1093/ptj/73.4.254 – volume-title: The Sense of Balance, Principles of Neuroscience year: 1991 ident: S0219519420400114BIB001 – volume: 35 start-page: 37 year: 2006 ident: S0219519420400114BIB002 publication-title: Age Ageing doi: 10.1093/ageing/afl084 – volume: 217 start-page: 157 year: 2003 ident: S0219519420400114BIB017 publication-title: Sol Phys doi: 10.1023/A:1027388729489 – start-page: 16 volume-title: Falling in Old Age: Its Prevention and Treatment year: 1997 ident: S0219519420400114BIB011 – volume: 24 start-page: 888 year: 2013 ident: S0219519420400114BIB033 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2246188 – volume: 91 start-page: 2799 year: 2017 ident: S0219519420400114BIB022 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9887-3 |
SSID | ssj0021408 |
Score | 2.208452 |
Snippet | In this paper, a new auto-scoring algorithm that automatically evaluates the Berg balance scale (BBS) tasks is proposed. The BBS can be used as an indicator... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2040011 |
SubjectTerms | Accuracy Algorithms Evaluation Inertial platforms Inertial sensing devices Machine learning Multilayers Nonlinear analysis Principal components analysis Rehabilitation Sensors Support vector machines Wearable technology |
Title | A NEW AUTO-SCORING ALGORITHM FOR BALANCE ASSESSMENT WITH WEARABLE IMU DEVICE BASED ON NONLINEAR MODEL |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0219519420400114 https://www.proquest.com/docview/2476272235 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJyQuE5-ibCAfuIAVSGy36Y5pm5FWTSyxRt1OUeI4EhIUtHUH-Gv4U3l2UjcsAzEuUZQ6L6nfL-_Dfh8IvS75sBhJmjtSMeZwTpVTuFQ6XuHTgoLCrDO842QUpXxxPjzv9X62opaut8U7-ePWvJL_4SpcA77qLNk7cNYShQtwDvyFI3AYjv_E44Ak4ZrAywjnbCp0XAMJlh_gZBXFBNw78MJN8xldvBEmWtftB499FZF1GHwMJsuQzONU9-Gc62Wm4CycEZGQRCTLeQIjSCxm4fIP5usXpXOGdY3nTxu7Q2-2Ipq6TlaUz2Mj50MgvRbCLqtOI2EC_IQgkf7RNvlaiMCIn4sU_s9yn5S2SOv8qihIyIVImxuaFQt6M_qjjhIyosuEQ7UX3LpCECSqA1ZmveigaiENMsXRddTaUpy6bbS6t2sHTs3-NNDUJKkWYJ7H96rQBih2xtxDBxQcEdpHB8FkNjm1Tj04qEbb796z2TmHR73vEPnd9tk7NIemOu6VnZGWhbN6iA4b3uKgxtkj1FObx-h-3az0-xOkAgxow220YYs2DGjDDdrwHm1Yow3v0IYBbbhGGzZowyLBFm3YoO0pSk_D1TRymiYdjmTgjDtgLuZgc4IjztQJWIM5Hee-lLou3UnlMqZKRSuPV9yvpOcxxnjuleWoKD3f9X1wAJ6h_ubrRj1H2B0X41KCxVRxEBoS9J9SrBoNS16MGS_pALm76ctkU8FeN1L5nNXZ9TTrzPgAvbW3fKvLt_xt8PGOJ1nzlV9llIO5AIxnwwF6c4NPlmSH1Is7jD1CD_ZfyTHqby-v1UuwdLfFqwZsvwC2moux |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+NEW+AUTO-SCORING+ALGORITHM+FOR+BALANCE+ASSESSMENT+WITH+WEARABLE+IMU+DEVICE+BASED+ON+NONLINEAR+MODEL&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=KIM%2C+YEON+WOOK&rft.au=CHO%2C+WOO+HYEONG&rft.au=JOA%2C+KYUNG+LIM&rft.au=JUNG%2C+HAN+YOUNG&rft.date=2020-12-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=20&rft.issue=10&rft_id=info:doi/10.1142%2FS0219519420400114&rft.externalDocID=S0219519420400114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon |