Estimating relationships between phenotypes and subjects drawn from admixed families
Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulat...
Saved in:
Published in | BMC proceedings Vol. 10; no. S7; pp. 357 - 362 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model.
We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them.
Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it. |
---|---|
AbstractList | Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model.
We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them.
Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it. Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model.BACKGROUNDEstimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model.We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them.RESULTSWe found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them.Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it.CONCLUSIONSAdmixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it. |
ArticleNumber | 42 |
Author | Thornton, Timothy Wijsman, Ellen M. Brown, Lisa A. Raffa, Jesse Conomos, Matthew P. Ranola, John Blue, Elizabeth M. Nato, Alejandro Q. Kirk, Jennifer L. Popejoy, Alice B. |
Author_xml | – sequence: 1 givenname: Elizabeth M. surname: Blue fullname: Blue, Elizabeth M. – sequence: 2 givenname: Lisa A. surname: Brown fullname: Brown, Lisa A. – sequence: 3 givenname: Matthew P. surname: Conomos fullname: Conomos, Matthew P. – sequence: 4 givenname: Jennifer L. surname: Kirk fullname: Kirk, Jennifer L. – sequence: 5 givenname: Alejandro Q. surname: Nato fullname: Nato, Alejandro Q. – sequence: 6 givenname: Alice B. surname: Popejoy fullname: Popejoy, Alice B. – sequence: 7 givenname: Jesse surname: Raffa fullname: Raffa, Jesse – sequence: 8 givenname: John surname: Ranola fullname: Ranola, John – sequence: 9 givenname: Ellen M. surname: Wijsman fullname: Wijsman, Ellen M. – sequence: 10 givenname: Timothy surname: Thornton fullname: Thornton, Timothy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27980662$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlPHDEQha0IFLb8gFwiH7l04rLH7ukLEkJkkZC4wNnyUmaMuu2O3cPy79PDACIcOLmkeu9Vub4DspNyQkK-AvsOsFQ_KvAOuoaBahiTqhGfyD60UjRKKth5U--Rg1pvGVNMdvwz2eNtt2RK8X1ydV6nOJgpphtasJ-LnOoqjpVanO4REx1XmPL0OGKlJnla1_YW3VSpL-Y-0VDyQI0f4gN6GswQ-4j1iOwG01f88vwekuuf51dnv5uLy19_zk4vGidgIRrrOATXmuCRSRsWQlrBQVkn29Y7y7oOl5vWQqi2BWs4WpTGh0XgwlqvxCE52eaOazugd5imYno9lvlH5VFnE_X_nRRX-ibfaQlCSA5zwPFzQMl_11gnPcTqsO9NwryuGpZyc2Ih2Sz99nbW65CXU84C2ApcybUWDK8SYHqDS29x6RmX3uDSYva07zwuTk8M5nVj_4HzH5U2nJg |
CitedBy_id | crossref_primary_10_1016_j_ajhg_2017_01_017 crossref_primary_10_1111_1755_0998_13552 |
Cites_doi | 10.1002/gepi.20418 10.1016/j.ajhg.2009.01.005 10.1038/nature02168 10.1038/ng.548 10.1002/gepi.21737 10.1093/bioinformatics/btr330 10.1002/gepi.21896 10.1093/bioinformatics/bts606 10.1038/ng1847 10.1126/science.296.5566.261b 10.1093/bioinformatics/btq559 10.1093/genetics/163.3.1153 10.1016/j.ajhg.2013.06.020 10.1038/nature09534 10.1086/504302 10.1101/gr.7156307 10.1086/519795 10.1101/gr.094052.109 10.1186/1753-6561-8-S1-S5 |
ContentType | Journal Article |
Copyright | The Author(s). 2016 |
Copyright_xml | – notice: The Author(s). 2016 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1186/s12919-016-0056-3 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1753-6561 |
EndPage | 362 |
ExternalDocumentID | PMC5133521 27980662 10_1186_s12919_016_0056_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG049507 – fundername: NIGMS NIH HHS grantid: R01 GM046255 – fundername: NIMH NIH HHS grantid: R01 MH094293 – fundername: NIGMS NIH HHS grantid: T32 GM081062 – fundername: NIGMS NIH HHS grantid: P01 GM099568 – fundername: NIA NIH HHS grantid: R00 AG040184 – fundername: NIGMS NIH HHS grantid: R37 GM046255 – fundername: NIA NIH HHS grantid: P50 AG005136 – fundername: NIA NIH HHS grantid: K99 AG040184 – fundername: NIGMS NIH HHS grantid: R01 GM031575 |
GroupedDBID | --- 0R~ 2WC 53G 5VS 7X7 8FE 8FG 8FI 8FJ AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFS ACUHS ADBBV ADRAZ AFKRA AFPKN AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS BAWUL BCNDV BENPR BFQNJ BGLVJ BMC BPHCQ BVXVI C6C CCPQU CITATION D1I DIK E3Z EBD EBLON EBS EJD ESX FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK KB. KQ8 L6V M48 M7S MK0 M~E O5R O5S OK1 P62 PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS ROL RPM RSV SMD SOJ TUS UKHRP ~8M -A0 2VQ 3V. ACRMQ ADINQ ADUKV AOIJS C24 HYE NPM 7X8 PQGLB 5PM |
ID | FETCH-LOGICAL-c3143-bc21fc7afde05bf435b3216bc577dcb099e8de05436771ba2ebe5adf4f23bbd63 |
IEDL.DBID | M48 |
ISSN | 1753-6561 |
IngestDate | Thu Aug 21 13:58:42 EDT 2025 Fri Jul 11 05:32:48 EDT 2025 Wed Feb 19 02:40:34 EST 2025 Tue Jul 01 01:54:54 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S7 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3143-bc21fc7afde05bf435b3216bc577dcb099e8de05436771ba2ebe5adf4f23bbd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12919-016-0056-3 |
PMID | 27980662 |
PQID | 1851291350 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5133521 proquest_miscellaneous_1851291350 pubmed_primary_27980662 crossref_primary_10_1186_s12919_016_0056_3 crossref_citationtrail_10_1186_s12919_016_0056_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC proceedings |
PublicationTitleAlternate | BMC Proc |
PublicationYear | 2016 |
Publisher | BioMed Central |
Publisher_xml | – name: BioMed Central |
References | International HapMap Consortium (56_CR15) 2003; 426 P Danecek (56_CR6) 2011; 27 BK Maples (56_CR4) 2013; 93 X Zheng (56_CR8) 2012; 28 TC Matise (56_CR5) 2007; 17 56_CR11 Y Choi (56_CR3) 2009; 33 HM Cann (56_CR14) 2002; 296 J Morrison (56_CR10) 2013; 37 HM Kang (56_CR12) 2010; 42 A Manichaikul (56_CR2) 2010; 26 GR Abecasis (56_CR9) 2010; 467 AL Price (56_CR19) 2006; 38 H Tang (56_CR16) 2006; 79 TA Thornton (56_CR18) 2014; 8 S Purcell (56_CR7) 2007; 81 DH Alexander (56_CR17) 2009; 19 BG Milligan (56_CR1) 2003; 163 BL Browning (56_CR13) 2009; 84 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8 20926424 - Bioinformatics. 2010 Nov 15;26(22):2867-73 17989245 - Genome Res. 2007 Dec;17(12):1783-6 25810074 - Genet Epidemiol. 2015 May;39(4):276-93 23910464 - Am J Hum Genet. 2013 Aug 8;93(2):278-88 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 14685227 - Nature. 2003 Dec 18;426(6968):789-96 16862161 - Nat Genet. 2006 Aug;38(8):904-9 25519330 - BMC Proc. 2014 Jun 17;8(Suppl 1):S5 23740691 - Genet Epidemiol. 2013 Sep;37(6):635-41 20208533 - Nat Genet. 2010 Apr;42(4):348-54 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 16773560 - Am J Hum Genet. 2006 Jul;79(1):1-12 11954565 - Science. 2002 Apr 12;296(5566):261-2 19333967 - Genet Epidemiol. 2009 Dec;33(8):668-78 19200528 - Am J Hum Genet. 2009 Feb;84(2):210-23 12663552 - Genetics. 2003 Mar;163(3):1153-67 23060615 - Bioinformatics. 2012 Dec 15;28(24):3326-8 19648217 - Genome Res. 2009 Sep;19(9):1655-64 |
References_xml | – volume: 33 start-page: 668 issue: 8 year: 2009 ident: 56_CR3 publication-title: Genet Epidemiol doi: 10.1002/gepi.20418 – volume: 84 start-page: 210 issue: 2 year: 2009 ident: 56_CR13 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.01.005 – volume: 426 start-page: 789 issue: 6968 year: 2003 ident: 56_CR15 publication-title: Nature doi: 10.1038/nature02168 – volume: 42 start-page: 348 issue: 4 year: 2010 ident: 56_CR12 publication-title: Nat Genet doi: 10.1038/ng.548 – volume: 37 start-page: 635 issue: 6 year: 2013 ident: 56_CR10 publication-title: Genet Epidemiol doi: 10.1002/gepi.21737 – volume: 27 start-page: 2156 issue: 15 year: 2011 ident: 56_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – ident: 56_CR11 doi: 10.1002/gepi.21896 – volume: 28 start-page: 3326 issue: 24 year: 2012 ident: 56_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts606 – volume: 38 start-page: 904 issue: 8 year: 2006 ident: 56_CR19 publication-title: Nat Genet doi: 10.1038/ng1847 – volume: 296 start-page: 261 issue: 5566 year: 2002 ident: 56_CR14 publication-title: Science doi: 10.1126/science.296.5566.261b – volume: 26 start-page: 2867 issue: 22 year: 2010 ident: 56_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq559 – volume: 163 start-page: 1153 issue: 3 year: 2003 ident: 56_CR1 publication-title: Genetics doi: 10.1093/genetics/163.3.1153 – volume: 93 start-page: 278 issue: 2 year: 2013 ident: 56_CR4 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2013.06.020 – volume: 467 start-page: 1061 issue: 7319 year: 2010 ident: 56_CR9 publication-title: Nature doi: 10.1038/nature09534 – volume: 79 start-page: 1 issue: 1 year: 2006 ident: 56_CR16 publication-title: Am J Hum Genet doi: 10.1086/504302 – volume: 17 start-page: 1783 issue: 12 year: 2007 ident: 56_CR5 publication-title: Genome Res doi: 10.1101/gr.7156307 – volume: 81 start-page: 559 issue: 3 year: 2007 ident: 56_CR7 publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 19 start-page: 1655 issue: 9 year: 2009 ident: 56_CR17 publication-title: Genome Res doi: 10.1101/gr.094052.109 – volume: 8 start-page: S5 issue: Suppl 1 year: 2014 ident: 56_CR18 publication-title: BMC Proc doi: 10.1186/1753-6561-8-S1-S5 – reference: 16773560 - Am J Hum Genet. 2006 Jul;79(1):1-12 – reference: 20926424 - Bioinformatics. 2010 Nov 15;26(22):2867-73 – reference: 19200528 - Am J Hum Genet. 2009 Feb;84(2):210-23 – reference: 25810074 - Genet Epidemiol. 2015 May;39(4):276-93 – reference: 11954565 - Science. 2002 Apr 12;296(5566):261-2 – reference: 20208533 - Nat Genet. 2010 Apr;42(4):348-54 – reference: 25519330 - BMC Proc. 2014 Jun 17;8(Suppl 1):S5 – reference: 23060615 - Bioinformatics. 2012 Dec 15;28(24):3326-8 – reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96 – reference: 23740691 - Genet Epidemiol. 2013 Sep;37(6):635-41 – reference: 23910464 - Am J Hum Genet. 2013 Aug 8;93(2):278-88 – reference: 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8 – reference: 12663552 - Genetics. 2003 Mar;163(3):1153-67 – reference: 19333967 - Genet Epidemiol. 2009 Dec;33(8):668-78 – reference: 16862161 - Nat Genet. 2006 Aug;38(8):904-9 – reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 – reference: 17989245 - Genome Res. 2007 Dec;17(12):1783-6 – reference: 19648217 - Genome Res. 2009 Sep;19(9):1655-64 – reference: 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 |
SSID | ssj0060592 |
Score | 1.9801579 |
Snippet | Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 357 |
SubjectTerms | Proceedings |
Title | Estimating relationships between phenotypes and subjects drawn from admixed families |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27980662 https://www.proquest.com/docview/1851291350 https://pubmed.ncbi.nlm.nih.gov/PMC5133521 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6AaUvY_1OtwYV-lRQa1u2pDyM0Y6kpZAyRgN5M5IlN4HOaeOGdf_97hw7NFvXF2OQdA93Ou53H7oDOMlDT0hcc2djyWOpPdeJj3kQWOuM6uA_ZXT7t_J6EN8Mk-EKNOOtagaWb7p2NE9qMH04e3n6_RUV_kul8Fqel2iz6ClOiL4x2nMuVmEdDZMiPe3Hi6QCAvdqRjL1puQIY8I6yfkmCWoSrDqa-qMvW6x_YOjf1ZSvzFPvI3yocSW7mF-ELVjxxTZs9OvM-Q7cdVGXCZ0W92zaFMCNxo8lqyu1GBV7TSgiWzJTOFbOLIVoSuam5lfB6BkKM-7n-MU7VkVF0MXehUGve_ftmtcTFXgmEBhxm0VhnimTOx8kNkeoZEUUSpslSrnMIlr0mpZiIZUKrYlQxIlxeZxHAmUnxR6sFZPCHwBD5JfhcSSCwhZWkt9jO0mSG52J3OoWBA3X0qxuN05TLx7Syu3QMp3zPKUSM-J5KlpwujjyOO-18d7m40YUKWoEpTlM4SezMkUEQptFErRgfy6aBblGpi1QS0JbbKBu28srxXhUdd2mQTiIdQ7_S_MTbEbVBaL4zGdYe57O_BEilmfbhlU1VPjVvas2rF92b7__aFfef7u6oX8AzDrrHQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+relationships+between+phenotypes+and+subjects+drawn+from+admixed+families&rft.jtitle=BMC+proceedings&rft.au=Blue%2C+Elizabeth+M&rft.au=Brown%2C+Lisa+A&rft.au=Conomos%2C+Matthew+P&rft.au=Kirk%2C+Jennifer+L&rft.date=2016&rft.issn=1753-6561&rft.eissn=1753-6561&rft.volume=10&rft.issue=Suppl+7&rft.spage=357&rft_id=info:doi/10.1186%2Fs12919-016-0056-3&rft_id=info%3Apmid%2F27980662&rft.externalDocID=27980662 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-6561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-6561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-6561&client=summon |